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Brane order and quantum magnetism in modulated anisotropic ladders
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Two-leg spin-1/2 ladders with anisotropy and two different dimerization patterns are analyzed at zero
temperature. This model is equivalent to a modulated interacting (Kitaev) ladder. The Hartree-Fock mean-field
approximation reduces the model to a sum of two quadratic effective Majorana Hamiltonians, which are dual
to two quantum transverse XY chains. The mapping between the effective Hamiltonian of the ladder and a pair
of chains considerably simplifies calculations of the order parameters and analysis of the hidden symmetry
breaking. The ground-state phase diagram of the staggered ladder contains nine phases, four of them are
conventional antiferromagnets, while the other five possess nonlocal brane orders. Using the dualities and the
newly found exact results for the local and string order parameters of the transverse XY chains, we were able
to find analytically all the magnetizations and the brane order parameters for the staggered case, as functions of
the renormalized couplings of the effective Hamiltonian. The columnar ladder has three ground-state phases and
does not possess magnetic long-ranged order. The brane order parameters for these three phases are calculated
numerically from the Toeplitz determinants. All brane-ordered phases are spin liquids with identified distinct
order parameters, winding numbers, and sets of the Majorana edge modes. Disorder lines and the special points
of disentanglement are found in both dimerization patterns. We expect this study to motivate the search for the
real spin-Peierls anisotropic ladder compounds which manifest predicted properties.
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I. INTRODUCTION

Spin ladders have been the focus of significant theoretical
interest in the past several decades [1,2]. One of the most
peculiar properties of spin ladders is that the existence of a gap
(i.e., mass) depends on the number of legs. The spin excita-
tions in an isotropic (XXX) antiferromagnetic m-leg spin-1/2
ladder are gapped if m is even, and the system is gapless
(quantum critical) when the number of legs m is odd. The
even-m-leg ladders are interesting examples of spin liquids,
where a gap is not accompanied by a local long-ranged order
or apparent symmetry breaking.

The purpose of this study is to explore the ground-state
phase diagram and the nature of the “hidden” (nonlocal) or-
ders in the massive phases of the two-leg antiferromagnetic
Heisenberg spin-1/2 ladders whose isotropic Hamiltonian is
perturbed by the relevant terms as dimerization and anisotropy
(XXX �→ XYZ). It is known even for a single gapless XXX
chain that the interplay of dimerization and anisotropy, each
of which leads to a gap opening, can result in gaplessness or
quantum criticality in some range of parameters [3]. Similarly,
the gapped isotropic two-leg ladder perturbed by dimerization
and anisotropy, can demonstrate various phases and quantum
phase transitions in the space of relevant parameters.

When two chains are coupled into a ladder, the system
is gapped due to the relevant interchain exchange coupling
[2]. Subtle interplay of relevant terms may result in that the
dimerized two- (or three-) leg ladders made out of gapped
spin chains, can be gapless. The criticality (gaplessness) in

the dimerized two- and three-leg ladders was first conjec-
tured in [4] and has been confirmed by subsequent numerical
and analytical work [5–17]. The main interest in dimerized
ladders comes from the real experiments on the spin-Peierls
ladder-type compounds, see, e.g., Ref. [18], so the spin-Peierls
transitions were analyzed in the ladder models, see, e.g.,
Refs. [15,19,20].

A drawback for the experimental observations of the pre-
dicted quantum phase transitions in the dimerized ladder is
that if the said dimerization occurs due to the spin-Peierls
transition, and it is not a built-in property of the Hamiltonian,
then the ladder locks itself into the plainly gapped colum-
nar dimerization pattern which has lower energy [12], rather
then into the energetically unfavorable staggered pattern (see
Fig. 1), which can demonstrate the quantum criticality pre-
dicted in Ref. [4]. As we show in the present work, in a more
general ladder model with the spin exchange xy anisotropy,
the quantum phase transitions occur for the both types of the
dimerization patterns, which opens the possibility for experi-
mental observations of the predicted phases.

On the theoretical side, we are not aware of similar studies
of the spin ladders with the anisotropy and dimerization, how-
ever there has been work done on the ground-state phases and
entanglement in the Kitaev fermionic ladders with modula-
tions and anomalous terms [21–29]. Such fermionic models
are the closest counteparts of the spin ladders in question,
since the models with 1/2-spin or spinless fermions can be
mapped onto each other by a judiciously chosen Jordan-
Wigner transformation. Whether one deals with the spin or
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(a) (b)

FIG. 1. Dimerized two-leg ladder. Bold or thin lines represent
the stronger or weaker chain coupling; dashed lines represent rung
coupling J⊥, respectively. Dimerization patterns: (a) staggered and
(b) columnar.

fermionic ladder, the fundamental question to answer is the
nature of the phases of the model, that is, the order corre-
sponding to a given phase.

The key notions of the Landau paradigm are the order
parameter and the symmetry it breaks spontaneously [30].
There has been a huge recent effort to understand whether var-
ious quantum spin liquids, frustrated magnets, topological and
Mott insulators, etc. [31–35], which often lack conventional
local order even at zero temperature, can be dealt within the
Landau framework or some new paradigms are needed [36].

The line pursued in the present study is that the extended
Landau theory which incorporates the notions of nonlocal
(string) order [37] and spontaneous breaking of hidden sym-
metry [38], remains instrumental even for nonconventional
orders [14,39–41]. The local and nonlocal string order param-
eters in the extended formalism are related by duality, and
probing a phase transition and related emerging order is a
problem of appropriate choice of variables [14,39–46].

The latter point becomes painfully obvious if we take a
paradigmatic toy model much discussed in the recent litera-
ture, namely, the so-called Kitaev fermionic chain [47]. It has
two phases with all attributes of the topological order: they
are gapped, degenerate, no apparent local order or symmetry
breaking, nontrivial topological winding numbers Nw = ±1,
and even the zero-energy Majorana edge modes. However, as
emphasized by Fendley [48], with a flip of a coin the physics
may be rendered plain-vanilla-like. The fermionic model
in the spin representation is the well-known XY chain in
transverse field with twofold degenerate (anti)ferromagnetic
phases, clean cut symmetry breaking, and the conventional ex-
actly known local order parameters mx,y (see, e.g., Ref. [49]).
Even the Majorana modes, if there is interest, can be recov-
ered. They resurge in the spin framework as the surface (edge)
magnetizations [50,51].

The very important point is that the string order yields a
proper order parameter in the sense of Landau: its critical
index β along with other critical indices satisfy the stan-
dard (hyper)scaling relations. This is quite simple to establish
for those quantum models which are equivalent to the one-
dimensional free fermions, that is to the 2D Ising universality
class. There is a rare example of analytical results available
for an interacting model: from the bosonization calculations
for the string parameters of the dimerized XXX chain, due
to Hida [52], one can find the critical indices β = 1/12,
η = 1/4, and ν = 2/3, and verify that they correspond to a
special parametric point of the eight-vertex model [53] and
satisfy all scaling relations. The string order parameters can
be used to study spins, fermions, and bosons [54], and even be
observed [55].

The notion of the string order parameter initially de-
fined for a chain [37], was later generalized for spin ladders
[56–61]. However to systematically probe nonlocal order be-
yond 1D, one needs to define the brane order parameters
[44,62–65], and that is the concept we use in this work. As
shown below in case of the two-leg ladders, the brane param-
eters probe genuine nonlocal order both along the chains and
the rungs.1

The spin ladder is equivalent to an interacting fermionic
model which is treated in this work within a Hartree-Fock
mean-field approach. Such mean-field theory is known to be
quite accurate even quantitatively for spin ladders [66–69],
and was previously successfully applied to study the quan-
tum phase transitions with nonlocal orders in the dimerized
ladders [12,14,19,70,71]. The key goal of this approximation
is to obtain an effective quadratic fermionic Hamiltonian. Its
spectrum yields the ground-state phase diagram, topologi-
cal winding numbers. This Hamiltonian is used to calculate
the thermodynamic quantities, and in particular, the order
parameters. The progress in calculation of the brane order
parameters is made in the current work by using the du-
ality transformations and mapping the effective fermionic
Hamiltonian of the ladder first onto two decoupled Majorana
Hamiltonians, and then onto two decoupled modulated XY
chains. As a result, the brane order parameters of the lad-
der are expressed via the local or string order parameters of
the chains, and found analytically in a closed form for the
ladder with staggered dimerization. For the columnar dimer-
ized ladder, those parameters are calculated numerically from
the Toeplitz determinants.

The rest of the paper is organized as follows. In
Sec. II, the spin ladder model is defined, and the effective
fermionic Hamiltonian is introduced along with its mean-field
(renormalized) parameters. (The derivation of the effective
Hamiltonian and details on the mean-field equations are pre-
sented in Appendix A). Sections III and IV contain most of
the formalism and results. The physical quantities which do
not belong to the standard set of parameters of the Landau
framework: topological winding numbers, zero-energy Ma-
jorana edge states, entanglement, are presented in Sec. V.
Appendix B contains several new exact results for the order
parameters in the XY chain with transverse fields, applied to
calculate the brane orders. The results are summarized in the
concluding Sec. VI.

II. MODEL AND THE EFFECTIVE MEAN-FIELD
HAMILTONIAN

In this paper, we analyze the Heisenberg spin-1/2 two-leg
ladder with intrinsic dimerization and the xy spin anisotropy

1In the connection with the earlier related work on the ladders
[13,14], the string order parameters defined there for the ladders
are just special cases of the branes considered in the present study.
However, the current use of the term “brane” is more accurate and
appropriate.
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at zero temperature. The ladder Hamiltonian is given by

H =
N∑

n=1

2∑
α=1

{
Jα (n)Sα (n) · Sα (n + 1) + Jγ

[
Sx

α (n)Sx
α (n + 1) − Sy

α (n)Sy
α (n + 1)

]}+ J⊥
N∑

n=1

Sα (n) · Sα+1(n). (1)

The dimerization and anisotropy are assumed along the chains only, with the rung coupling J⊥ taken as constant. All the spin
exchange couplings are antiferromagnetic. The two possible dimerization patterns shown in Fig. 1 are defined as

Jα (n) =
{

J[1 + (−1)n+αδ], staggered

J[1 + (−1)nδ]. columnar
. (2)

The spin operators S = 1
2σ are defined in terms of the standard Pauli matrices σ on the chains (α = 1, 2), the bond alternation

parameter |δ| � 1, and γ is the anisotropy parameter.
The spin ladder will be treated within a mean-field approach [66] which consists of two steps: first, one maps the spin

Hamiltonian onto an interacting model of spinless fermions via a Jordan-Wigner transformation; second, the interaction terms are
decoupled via the Hartree-Fock approximation. This mean-field approach is confirmed to be qualitatively and even quantitatively
adequate for analysis of similar ladder models [12,14,19]. Relegating the technical details to Appendix A, the spin model is
reduced to the quadratic effective fermionic Hamiltonian

HMF = 1

2

∑
n

{∑
α

(−1)n+α−1[JαR(n)c†
α (n)cα (n + 1) + �R(n)c†

α (n)c†
α (n + 1)] + J⊥R(n)c†

1(n)c2(n) + H.c.

}
+ 2NC. (3)

We have introduced the renormalized couplings:

JαR(n) =
{

J[tR + (−1)n+αδR], staggered

J[tR + (−1)nδR], columnar
, (4)

�αR(n) =
{

J[γR + (−1)n+αγaR], staggered

J[γR + (−1)nγaR], columnar
, (5)

and

J⊥R(n) = J⊥(1 + 2t⊥), (6)

along with the renormalized model’s parameters:

tR = 1 + 2(K + δ2η), (7)

δR = δ(1 + 2(K + η)), (8)

γR = γ − 2(P − δ2ηp), (9)

γaR = −2δ(P − ηp). (10)

The constant term is

C = K2 − P2 + δ2
(
η2 − η2

p

)+ 2δ2(Kη + Pηp) + 1
2 J⊥t2

⊥.

(11)

The definitions and the self-consistent equations for the
mean-field parameters entering above relations are given in
Appendix A. There we also present formulas and numeri-
cal results for the mean-field parameters and renormalized
couplings and their relations to the bare parameters of the
microscopic Hamiltonian. In the following, we will be work-
ing with the effective Hamiltonian (3), and for notational
simplicity we drop the subscript R in its parameters from now
on, keeping in mind that we deal with the renormalized pa-
rameters (7)–(10). We also express the dimensional quantities
in the units of J from now.

Note that (3) can be also viewed as a tight-binding
Hamiltonian of the Kitaev-Majorana ladder [26]. To get rid
of the factor (−1)n in front of the quadratic terms of the
Hamiltonian (3) we use the canonical transformation

cα (n) �→ eiφn cα (n), where φn+1 = φn + πn (φ1 = 0). (12)

We then introduce an extra label to distinguish two fermion
species residing on even/odd sites as cα (n) �→ cα,e/o for n =
2l or n = 2l − 1, respectively. Then the Fourier transform of
the Hamiltonian (3) can be written as

H = 2NC + 1

2

∑
k

�
†
kH(k)�k, (13)

where the even and odd fermions are unified in the spinor

�
†
k = (c†

1,e(k), c†
1,o(k), c†

2,e(k), c†
2,o(k), c1,e(−k), c1,o(−k), c2,e(−k), c2,o(−k)

)
(14)

with the wave numbers restricted to the reduced Brillouin
zone k ∈ [−π/2, π/2], and we set the lattice spacing a = 1.
The 8 × 8 Hamiltonian matrix H(k) reads

H(k) =
(

Â B̂
B̂† −Â

)
. (15)

The explicit form of the 4 × 4 matrix Â depends on the dimer-
ization pattern. For the staggered case,

Âs =
(

Û T 1
2 J⊥1

1
2 J⊥1 −Û

)
, (16)
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FIG. 2. The path of Jordan-Wigner transformation used for
fermionization of the two-leg ladder. This is also the path used to
map the sites of the two-leg ladder onto a snake-like chain.

where

Û ≡
(

0 t cos k + iδ sin k
t cos k − iδ sin k 0

)
. (17)

For the columnar pattern,

Âc =
(

Û 1
2 J⊥1

1
2 J⊥1 −Û

)
. (18)

The 4 × 4 matrix B̂ is the same for both dimerization patterns
and reads

B̂ =
(

V̂ 0
0 −V̂ T

)
, (19)

where

V̂ ≡
(

0 γa cos k − iγ sin k
−γa cos k − iγ sin k 0

)
. (20)

The staggered anisotropy γa is absent in the bare Hamiltonian
but could be induced by the mean-field equations. The actual
values are very small in the interesting range of parameters,
so γa will be discarded in the final results.

III. SPECTRA, PHASE DIAGRAM, AND DUAL MODELS

A. Staggered ladder

The 8 × 8 Hamiltonian matrix (15) [see Eqs. (16) and (19)]
has eight eigenvalues ±E±±(k), where

E±±(k) =
√

(γa ± t )2 cos2 k +
(

(γ ± δ) sin k ± J⊥
2

)2

.

(21)

From Eq. (21), we infer that the model is gapped in general,
however the gap

� =
∣∣∣∣(γ ± δ) ± J⊥

2

∣∣∣∣ (22)

at the edge of Brillouin zone k = π/2 vanishes on the lines of
quantum critical transitions shown in Fig. 3:

γ = ±
∣∣∣∣δ ± J⊥

2

∣∣∣∣, (23)

when three relevant perturbations δ, γ , J⊥ cancel, rendering
the model gapless.

The phase diagram of the isotropic (γ = 0) dimerized lad-
der and quantum phase transitions, accompanied by nonlocal

FIG. 3. Phase diagram of the anisotropic staggered two-leg
ladder. Nonvanishing brane and local order parameters are shown
in nine regions (A–I) of the (δ, γ ) parametric plane. The solid bold
blue/red lines (γ ∓ δ)2 = J2

⊥/4 are the lines of quantum phase tran-
sitions (phase boundaries). The dashed blue/red lines denote the
even/odd disorder lines (γ ∓ δ)2 = t2 + J2

⊥/4 which are bounds of
the IC modulations in the even/odd sectors of the Hamiltonian, re-
spectively. The bold magenta dots are the points of disentanglement
with the factorized ground state of the Hamiltonian.

order parameters in this model, were actively studied in the lit-
erature [4–15]. The anisotropy (γ �= 0) renders model’s phase
diagram richer: phases with nonlocal (brane) orders are found
along with conventional antiferromagnetic phases. To the best
of our knowledge, these results were not reported before.

To understand the nature of different phases of the phase
diagram in Fig. 3, it is convenient to relabel the ladder
fermionic operators of the effective mean-field Hamiltonian
(3) according to the snake-like path shown in Fig. 2. This
yields

HMF = 1

2

N∑
l=1

{−(t − δ)c†
2l−1c2l+2 + (t + δ)c†

2l c2l+1

+ γ (−c†
2l−1c†

2l+2 + c†
2l c

†
2l+1) + J⊥c†

2l−1c2l} + H.c.

(24)

In terms of the Majorana operators2

2c†
2n = a2n + ib2n−1 (25)

Hamiltonian (24) maps onto a sum of two decoupled quadratic
Majorana Hamiltonians (Kitaev chains) defined on the even
and odd sites of the snakelike chain shown in Fig. 2:

HMF = Ho + He, (26)

where

Ho = i

4

N∑
l=1

{−(t − γ − δ)b2l+1a2l−1

2To avoid confusion with earlier related work [14,39–41] note a
different definition (25) of Majorana operators. It corresponds to the
tilded Majorana operators defined in the Appendix A of Ref. [40].
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+ (t + γ + δ)b2l−1a2l+1 + J⊥b2l−1a2l−1}, (27)

He = i

4

N∑
l=1

{−(t + γ − δ)b2l−2a2l+2

+ (t − γ + δ)b2l a2l + J⊥b2l−2a2l}. (28)

To advance our analysis we make an inverse Jordan-Wigner
transformation of the above Hamiltonians from the Majorana
operators to new dual spins represented by the Pauli matrices
τ̃ . Using the path of Fig. 2 to relabel the original ladder spins
σ , the sequence of the transformations from the original spins
to Majoranas and then to dual spins reads

σ x
n σ x

n+1 = ibn−1an+1 = τ̃ x
n−1τ̃

x
n+1, (29)

σ y
n σ

y
n+1 = ibnan = τ̃ z

n . (30)

The dual spins τ̃ obey the standard algebra of the Pauli opera-
tors, and they reside on the sites of the dual lattice, which can
be placed between the sites of the original lattice. Then the
odd and even Hamiltonians (27) and (28) become

Ho = 1

4

N∑
l=1

{
(t + γ + δ)τ̃ x

2l−1τ̃
x
2l+1

− (t − γ − δ)τ̃ y
2l−1τ̃

y
2l+1 + J⊥τ̃ z

2l−1

}
, (31)

He = 1

4

N∑
l=1

{
(t + γ − δ)τ̃ x

2l−2τ̃
z
2l τ̃

x
2l+2

+ J⊥τ̃ x
2l−2τ̃

x
2l + (t − γ + δ)τ̃ z

2l

}
. (32)

Making use of the canonical transformation

τ x
2l−1 = τ̃ x

2l−1, (33)

τ
y
2l−1 = (−1)l τ̃

y
2l−1, (34)

τ z
2l−1 = (−1)l τ̃ z

2l−1. (35)

we bring the odd sector of the effective Hamiltonian to the
form of the XY chain in a staggered transverse field:

Ho = 1

4

N∑
l=1

{
(t + γ + δ)τ x

2l−1τ
x
2l+1

+ (t − γ − δ)τ y
2l−1τ

y
2l+1 + (−1)l J⊥τ z

2l−1

}
. (36)

To simplify the even sector of the Hamiltonian we follow
the same steps as above, and then perform an additional dual
transformation to μ̃ spins defined as

τ̃ x
2l−2τ̃

x
2l = μ̃z

2l−2, (37)

τ̃ z
2l = μ̃

y
2l−2μ̃

y
2l , (38)

followed by the canonical transformation analogous to
(33)–(35). As a result we obtain the even Hamiltonian in a
convenient form of the XY chain:

He = 1

4

N∑
l=1

{
(t + γ − δ)μx

2l−2μ
x
2l

+ (t − γ + δ)μy
2l−2μ

y
2l + (−1)l J⊥μz

2l−2

}
. (39)

FIG. 4. Phase diagram of the anisotropic columnar two-leg lad-
der. Nonvanishing brane order parameters are shown in three regions
C, G, and I on the (δ, γ ) parametric plane. The bold red lines γ 2 =
δ2 + J2

⊥/4 are the lines of quantum phase transitions. The dashed red
lines denote the disorder lines γ 2 = (1 + 4t2/J2

⊥)(δ2 + J2
⊥/4) bound-

ing the IC modulations. The bold magenta dots are the points of
disentanglement with the factorized ground state of the Hamiltonian.

B. Columnar ladder

We diagonalize the 8 × 8 Hamiltonian matrix (15), (18),
(19) and find four twofold degenerate eigenvalues ±E±(k),
where

E±(k) =
√

(γa ± t )2 cos2 k +
(√

δ2 sin2 k + 1

4
J2
⊥ ± γ sin k

)2

.

(40)

The spectrum (40) has the gap

� =
∣∣∣∣γ ±

√
δ2 + 1

4
J2
⊥

∣∣∣∣ (41)

at the edge of the Brillouin zone which vanishes when

γ 2 = δ2 + 1
4 J2

⊥. (42)

These curves of quantum criticality (phase boundaries) are
plotted in Fig. 4. Anisotropy (γ �= 0) brings some new physics
contrary to the “plain vanilla” case of the isotropic (γ =
0) columnar-dimerized ladder which is always gapped and
locked in the same phase [12,13].

Using relabelling according to the path in Fig. 2 and trans-
formations explained in detail in the previous subsection, the
effective mean-field Hamiltonian (3) for the columnar pattern
is mapped onto a sum (26) of two decoupled even and odd
quadratic Majorana Hamiltonians (Kitaev chains) with

Ho = i

4

N∑
l=1

{(t − (−1)lδ − γ )b2l+1a2l−1 + (t − (−1)lδ + γ )

× b2l−1a2l+1 + J⊥b2l−1a2l−1}, (43)
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He = i

4

N∑
l=1

{(t − (−1)lδ + γ )b2l−2a2l+2

+ (t − (−1)lδ − γ )b2l a2l + J⊥b2l−2a2l}. (44)

In their turn, the Majorana Hamiltonians can be transformed
to the dual spins, as defined in the previous subsection, yield-
ing two equivalent decoupled dimerized XY chains in the
staggered transverse fields:

Ho = 1

4

N∑
l=1

{
(t − (−1)lδ + γ )τ x

2l−1τ
x
2l+1

+ (t − (−1)lδ − γ )τ y
2l−1τ

y
2l+1 + (−1)l J⊥τ z

2l−1

}
, (45)

He = 1

4

N∑
l=1

{
(t − (−1)lδ + γ )μx

2l−2μ
x
2l

+ (t − (−1)lδ − γ )μy
2l−2μ

y
2l + (−1)l J⊥μz

2l−2

}
. (46)

IV. PHASES AND THEIR ORDER PARAMETERS

A. Brane operators and correlators

The string operators and string order parameters were gen-
eralized for two-leg spin ladders in Refs. [56–61]. However it
is more consistent to use the concept of the brane order to go
beyond one spatial dimension [44,62–65].

We define an even brane operator which includes the area
with an integer number of legs:

Bi
e(n) ≡

2∏
α=1

n∏
l=1

σ i
α (l ), i = x, y, z, (47)

and the odd brane operator which includes one “loose” extra
spin at the far right end:

Bi
o,α (n) ≡ Bi

e(n − 1)σ i
α (n), α = 1, 2. (48)

We also define the corresponding brane-brane correlation
functions which are calculated in the following: the even-even
correlator 〈

Bi
e(m)Bi

e(n)
〉
, (49)

the mixed correlators〈
Bi

e(m)Bi
o,α (n)

〉
and e ↔ o, (50)

and the odd-odd correlation function〈
Bi

o,α (m)Bi
o,β (n)

〉
. (51)

These brane-brane correlators are schematically depicted in
Fig. 5. In the following, we will also encounter the brane
correlation function of the operator

Bz
e(n − 1)σ x

1 (n)σ y
2 (n) and x ↔ y, (52)

which is the even z brane with the x and y spins attached to its
far right edge.

The brane order parameters are defined as nonvanishing
limits of corresponding brane-brane correlation functions as
m − n → ∞.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Branes and brane-brane correlation functions: (a) and
(b) depict an even/odd brane, respectively, for (b) another odd
brane may be obtained by reflection with respect to horizontal axis;
(c) even-even brane correlator; (d) even-odd brane correlator; and
(e) and (f) odd-odd brane correlators. The odd-even and odd-odd
brane correlators can also correspond to other graphs obtained form
the cases (d)–(f) by reflections with respect to horizontal/vertical
axes.

B. Staggered ladder

In the previous section, we worked out the mean-field
approximation for the staggered ladder to map its Hamiltonian
onto a sum of two decoupled dual XY chains (36) and (39).
The phase boundaries (23) shown in Fig. 3 are deduced from
the fermionic spectrum (21). Figure 3 can now be more easily
reproduced from superimposing on the (δ, γ ) plane the phase
diagrams of the even and odd XY chains (36,39). The infor-
mation on phases and order parameters of such chain is given
in Appendix B. The dual order parameters (expressed via τ

and μ operators) for each of the nine phases (A)–(I) shown in
Fig. 3, are presented in Table I. From Hamiltonians (36) and
(39), we easily establish the symmetry of the staggered ladder:

δ �→ −δ : even ↔ odd, τ ↔ μ, (53)

γ �→ −γ : even ↔ odd, τ ↔ μ, x ↔ y. (54)

After relabelling ladder’s sites according to the path shown
in Fig. 2, the brane operators introduced in the previous sub-
section can be represented via string operators defined along

TABLE I. Order parameters in terms of dual and original spins,
winding numbers, number of the Majorana zero-energy edge modes
NM for nine phases of the staggered ladder shown in Fig. 3.

Region τ order μ order σ order Ne
w No

w Nw NM

(odd sector) (even sector)

A 〈τx〉 〈μy〉 Oz,3 1 −1 0 4
B 〈τx〉 Oz,μ mx 0 −1 −1 2
C 〈τx〉 〈μx〉 Oz|yx −1 −1 −2 4
D Oz,τ 〈μx〉 mx −1 0 −1 2
E 〈τy〉 〈μx〉 Oz,3 −1 1 0 4
F 〈τy〉 Oz,μ my 0 1 1 2
G 〈τy〉 〈μy〉 Oz|xy 1 1 2 4
H Oz,τ 〈μy〉 my 1 0 1 2
I Oz,τ Oz,μ Oz,1 0 0 0 0
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a given path (say P) as

Oi(n) ≡
∏

l�n,l∈P
σ i

l , i = x, y, z. (55)

We also introduce a short-hand notation for the product of two
sting operators

Dii(L, R) ≡ Oi(L − 1)Oi(R) =
R∏

l=L

σ i
l , (56)

such that its average yields the string-string correlation
function

Dii(L, R) ≡ 〈Dii(L, R)〉. (57)

Now we will find explicitly the order parameters in four re-
gions (A,B,C,I) of the phase diagram in Fig. 3, while the rest
of the phases can be done using the symmetry (53) and (54),
without calculations.

Region (A). The dual magnetizations are found
using (B11):

〈
τ x

1 τ x
2N+1

〉 [N→∞]�−→ 〈τx〉2 = 2
√

t

t + γ + δ

[
(γ + δ)2 − J2

⊥
4

]1/4

,

(58)

〈
μ

y
0μ

y
2N

〉 [N→∞]�−→ 〈μy〉2 = 2
√

t

t + |γ − δ|
[

(γ − δ)2 − J2
⊥
4

]1/4

.

(59)

Using the duality transformations (29), (30), (37), and (38),
we can relate the two-point correlators of the dual spins to the
string-string correlations functions of the spins σ as

τ x
1 τ x

2N+1 = Dxx(2, 2N + 1), (60)

μ
y
0μ

y
2N = Dyy(2, 2N + 1), (61)

resulting in the z-string order parameter in this region of the
phase diagram

〈
τ x

1 τ x
2N+1μ

y
0μ

y
2N

〉 = (−1)NDzz(2, 2N + 1)
[N→∞]�−→ ±O2

z,3,

Oz,3 = 〈τx〉〈μy〉. (62)

Note that the above string correlator is equivalent to the
odd-odd z-brane correlation function (51) shown in Fig. 5:
Dzz � 〈Bz

o,αBz
o,β〉, so Oz,3 defined by Eqs. (62), (58), and (59)

is an exact value of the brane order parameter. It is plotted in
Fig. 6(b) along the path (2) indicated in Fig. 3.

Region (B). The order parameter of μz strings residing in
the even sector is readily obtained from Eq. (B15):〈

N∏
l=0

μz
2l

〉
[N→∞]�−→ O2

z,μ =
[

J2
⊥/4 − (γ − δ)2

J2
⊥/4 − (γ − δ)2 + t2

]1/4

. (63)

The dualities (29), (30), (37), and (38) yield

N∏
l=0

μz
2l = Dxx(1, 2N + 2)), (64)

FIG. 6. Order parameters of the staggered ladder along two paths
indicated in Fig. 3. (a) δ = 0.2 (path 1) and (b) δ = 0.8 (path 2);
t = 1 in both cases.

so the overlapping dual orders amount to a conventional anti-
ferromagnetic order of the original spins σ in this phase:〈

τ x
1 τ x

2N+1

N∏
l=0

μz
2l

〉
= 〈σ x

1 σ x
2N+2

〉 �−→
[N→∞]

±m2
x , (65)

where the explicit formula for magnetization mx = 〈τx〉Oz,μ

is given by Eqs. (58) and (63).
Region (C). The dual magnetization is readily found in this

case as

〈
μx

0μ
x
2N

〉 [N→∞]�−→ 〈μx〉2 = 2
√

t

t + γ − δ

[
(γ − δ)2 − J2

⊥
4

]1/4

. (66)

We use the duality transformations to find

μx
0μ

x
2N = σ x

1 σ x
2 Dyy(2, 2N + 1)σ x

2N+1σ
x
2N+2, (67)

and then we define the order parameter of this phase from the
limit of the overlapping dual correlators as〈
τ x

1 τ x
2N+1μ

x
0μ

x
2N

〉 = (−1)N
〈
σ x

1 σ
y
2 Dzz(3, 2N )σ y

2N+1σ
x
2N+2

〉
�−→

[N→∞]
±(Oz

∣∣y
x

)2
,

Oz

∣∣y
x

= 〈τx〉〈μx〉. (68)

Such quite tricky order parameter Oz|yx is obtained from the
limit of the correlation function of two z stings, which both
have σ y and σ x spins attached to their right ends. Those strings
with attachments are the chain representations of the brane
operators with edge attachments defined by (52). Curiously
enough, such tricky order parameter is given by a simple
analytical expression from Eqs. (58) and (66) [72].
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Region (I). We use again Eq. (B15) from Appendix to
calculate the τ z-string order parameter:〈

N+1∏
l=1

τ z
2l−1

〉
�−→

[N→∞]
O2

z,τ =
[

J2
⊥/4 − (γ + δ)2

J2
⊥/4 − (γ + δ)2 + t2

]1/4

(69)

and the duality transformations to get

N+1∏
l=1

τ z
2l−1 = Dyy(1, 2N + 2). (70)

The order parameter for this phase is found then as〈
N+1∏
l=1

τ z
2l−1μ

z
2l−2

〉
= (−1)N+1Dzz(1, 2N + 2) �−→

[N→∞]
±O2

z,1,

Oz,1 = Oz,τOz,μ, (71)

with the explicit expression given by (63) and (69).
Thus, all order parameters for each phase of the phase dia-

gram of the staggered ladder are found analytically as closed
expressions in terms of the renormalized couplings of the
model. To visualize the results of this subsection, the local and
nonlocal (brane) order parameters are plotted in Figs. 6(a) and
6(b) along two paths indicated in Fig. 3. Note that in the limit
J⊥ → 0 the antiferromagmetic phases shown in Fig. 3 vanish,
although single chains are known to be antiferromagnetically
orderd in the regions (C) and (G) [14]. This proves that the
brane order parameters probe the long-ranged order in both
directions: along the chains and along the rungs.

C. Columnar ladder

The effective Hamiltonian of the columnar ladder is
mapped onto two equivalent dimerized XY chains in a stag-
gered transverse field (45) and (46). Contrary to the previous
case, the columnar ladder has identical spectra in the even and
odd sectors, resulting in the twofold degeneracy of the eigen-
values of the Hamiltonian (40). As a consequence, the phase
diagram of this case is simpler, since there are no regions in
the parametric space where different orders in the even and
odd sectors overlap, resulting in larger variety of phases in
Fig. 3. The phase diagram of the columnar ladder consists of
only three phases of the chain (45) [or (46)], where the same
even/odd order parameters coexist, see Fig. 4.

Region (I) of the phase diagram in Fig. 4 has its the coun-
terpart on the phase diagram of the staggered ladder, discussed
above in detail. The string order parameter of this phase is

Oz,1 = Oz,τOz,μ = O2
z,τ . (72)

The order parameter in the phase (C) is the brane parameter
with the edge spin attachments:

Oz|yx = 〈τx〉〈μx〉 = 〈τx〉2, (73)

and for the phase (G) the parameters are obtained from x � y.
The equivalent even and odd sectors of the dual Hamiltonian
of the columnar ladder lead not only to the degeneracy of the
spectrum, but also, as one can see from (72) and (73) to the
change of the universality class on the lines of continuous
phase transitions (bold red lines in Fig. 4). In the effective

FIG. 7. Brane order parameters in the columnar ladder along the
path indicated in Fig. 4. The tails seen near the critical points are
finite-size effects: the results are obtained numerically from 140 ×
140 Toeplitz matrices.

free-fermionic approximation used in this paper, the order pa-
rameters of all phases of the staggered ladder have the critical
index β = 1/8 (2D Ising universality class), while the critical
index of the order parameters (72) and (73) of the columnar
ladder is twice the 2D Ising value. From the scaling relations,
we find the critical indices (universality class) of the columnar
ladder in the free-fermionic approximation:

β = 1/4, ν = 1, α = 0,

η = 1/2, γ = 3/2. (74)

For the dual chains (45) and (46) with dimerization no
analytical results for the magnetization or the oscillating string
order parameter are available. The parameters 〈τx〉 and Oz,τ

are calculated numerically from the Toeplitz determinants,
using the results for the generating functions and the Toeplitz
matrices given in Ref. [40]. The brane order parameters cal-
culated from the Toeplitz matrices of the size 140 × 140 are
plotted in Fig. 7. The calculations are done along the path
indicated in Fig. 4.

V. BEYOND LANDAU: WINDING NUMBERS,
MAJORANAS, AND DISENTANGLEMENT

In this section, we analyze and calculate several quanti-
ties which are not a part of the standard Landau framework.
However, they provide complementary information helpful to
sharpen our understanding of criticality.

In the mean-field approximation of the effective fermionic
Hamiltonian (free-fermionic approximation), all quantum
phase transitions of the staggered ladder shown in Fig. 3 be-
long to the 2D Ising universality class. The gap equation (22)
leads to the critical index ν = 1; the local and brane order
parameters calculated in Sec. IV B have their critical index
β = 1/8. This implies the critical index of the specific heat
α = 0. The universality class of the quantum phase transi-
tions in the columnar ladder shown in Fig. 4, is different,
cf. Eqs. (74). However the index α = 0 for both types of the
dimerized ladders.
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The singular behavior of specific heat, i.e., the derivative
of the entropy near the thermal phase transition of the second
kind, has its counterpart for the continuous quantum phase
transition at T = 0, and is related to the entanglement. For
reviews, see, e.g., Ref. [73]. In the context of the present study,
it is most convenient to use the global entanglement E [74].
It measures proximity of the given quantum state to a probe
factorized (disentangled or “classical”) state. As follows from
the results of Wei et al. for the free-fermionic Hamiltonian
[74], the derivative of the global entanglement diverges with
the critical index of the specific heat (α = 0)

E ′(ε) ∝ − ln |ε|, |ε| � 1 (75)

while approaching quantum phase transitions shown in Figs. 3
and 4. Here ε stands for the parametric distance to the quan-
tum critical point, cf. Eqs. (22) and (41).

The other important property of the global entanglement
is that it vanishes (E = 0) in the factorized ground state. The
latter is also characterized by vanishing pairwise concurrence
C = 0 [75], which is another measure of entanglement intro-
duced by Wootters [76].

A. Staggered ladder

1. Winding numbers and Majorana modes

After mapping of the effective fermionic Hamiltonian of
the staggered ladder onto the pair of decoupled XY chains
[Eqs. (36) and (39)], the analysis can be done using the re-
sults for the XY chain in transverse fields [40,77]. The four
eigenvalues E±±(k) (21) found from diagonalization of the
8 × 8 Hamiltonian matrix (15), correspond to the two pairs of
eigenvalues of the anisotropic even and odd XY chains with
the anisotropy parameters

γo/e = γ ± δ (76)

and the alternating transverse field

he
a = ho

a = J⊥/2. (77)

The effective dimerization and the uniform transverse field are
absent

δe = δo = 0, he = ho = 0 (78)

in the even and odd dual Hamiltonians (36) and (39).
The fermionic representation of the even/odd sector of the

staggered Hamiltonian yields a 4 × 4 matrix analogous to (15)
with 2 × 2 blocks [40,41]:

Â ≡
(

t cos k J⊥/2
J⊥/2 −t cos k

)
(79)

and

B̂� ≡
(−iγ� sin k 0

0 iγ� sin k

)
, � = e, o. (80)

For the Hamiltonian of this type, the winding number is de-
fined as the following integral over the Brillouin zone [78,79]

N�
w = 1

2π i

∫ π/2

−π/2
dk∂k ln detD̂�, (81)

where D̂�(k) ≡ Â(k) + B̂�(k). To avoid ambiguities related to
the definition of the phase of detD̂�(k) at the ends of the
Brillouin zone [40], one needs to check whether the path of
detD̂�(k) on the complex plane encloses the origin during the
integration. The latter happens if detD̂�(±π/2) and detD̂�(0)
have opposite signs. An explicit calculation with (79) and (80)
yields [80]

N�
w = −sign(γ�)�(γ 2

� − J2
⊥/4), (82)

where �(x) is the Heaviside step function. The winding num-
ber for the ladder is found as

Nw = Ne
w + No

w, (83)

and its values for each phase are given in Table I.
Another angle of analysis can be presented upon ana-

lytical continuation of the wave numbers onto the complex
plane: ei2k = z. Then the winding number (81) becomes the
logarithmic residue of detD̂� :

N�
w =

∮
|z|=1

dz

2π i
∂z ln detD̂�. (84)

It accounts for the excess of the number of zeros over the
number of poles (weighted with their degrees of multiplicity)
of detD̂� inside the unit circle on the complex plane [81].
The zeros of detD̂ are also zeros of the spectra E± of the
XY chain, since (E+E−)2 = detD̂D̂†. Any change of winding
number means that a root (roots) crossed the unit circle |z| =
1, which signals a quantum phase transition [82,83]. For the
Hamiltonians (36) and (39), we find

detD̂�(z) = − (1 − γ�)2

4z
(z − z+)(z − z−), (85)

where z± are the roots of the quadratic equation

(1 − γ�)2z2 + 2(1 − γ 2
� + J2

⊥/2)z + (1 + γ�)2 = 0, (86)

whence the results of Table I are recovered.
The important property of the roots z± is that they are also

the eigenvalues of the transfer matrix which yields the wave
functions of the zero-energy Majorana modes localized near
the opposite ends of the dual (even or odd) chains [77]. More
details and the explicit formulas for those wave functions can
be found in Ref. [77]. The qualitative result is that for each
phase in the even or odd sector with N�

w = ±1, there are two
edge modes in the corresponding sector. With the available
winding numbers N�

w, one easily obtains the total number of
the Majorana edge modes NM for each phase, see Table I.

2. Disorder lines and disentanglement

It was shown recently [77] that the dual chains (36), (39),
(45), and (46) manifest also a special type of weak transition,
called disorder lines (DLs) by Stephenson [84]. The transition
consists in modulation of the exponential decay of correlation
functions and the wave functions of the Majorana zero modes
by the incommensurate (IC) oscillations. Using the correspon-
dence between the parameters of the original ladder and the
dual chains (76)–(78) in the equations for the DLs given in
Ref. [77], we readily find four straight DLs in the staggered
ladder:

γ 2
� = t2 + J2

⊥/4, (87)
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shown in the phase diagram, see Fig. 3.
The DLs (87) bound the regions on the phase diagram

where the functions of the even sector manifest the IC
oscillations at

|γ | > |δ ±
√

t2 + J2
⊥/4|. (88)

The IC oscillating regions for their counterparts of the odd
sector are localized at

|γ | > | − δ ±
√

t2 + J2
⊥/4|. (89)

The wave numbers q� of the IC oscillations are defined in the
reciprocal space of the dual even/odd chains. From the results
of Ref. [77] two distinct even/odd IC wave numbers are found

q� = arcsin
J⊥

2
√

γ 2
� − t2

, (90)

where q� evolves smoothly from π/2 on the DL to q� → 0
when γ� → ∞.

Since the effective Hamiltonian is a sum of two commuting
even and odd terms (36) and (39), its ground state is a direct
product of the even and odd vacuum states:

|GS〉 = |GSe〉 ⊗ |GSo〉. (91)

DLs of the even/odd Hamitonians (36) and (39) are also
the special disentanglement points where their corresponding
ground states |GSe/o〉 are factorized [77]. Instead of using the
results of Ref. [77] for the special case (76)–(78), it is tech-
nically simpler to apply the duality transformation discussed
in Appendix B, and map (36), (39) onto the XY chains with
uniform field. The latter model has the well-known factorized
ground state, see, e.g., Ref. [49]. Then we readily write the
factorized even/odd states on the DLs (87):

|GS�〉 =
N∏

n=1

(cos ϑ� |↑〉2n/2n−1 + sin ϑ� |↓〉2n/2n−1), (92)

where the even/odd parametric angles ϑ� are defined via the
following equation:

cos2 2ϑ� = |γ�| − t

|γ�| + t
. (93)

As a consequence of the factorization of the even or odd
component of the GS (92), the even/odd two-point correlation
functions defined on the dual sites are strictly constant on their
corresponding DLs (87) (up to an obvious antiferromagnetic
sign alternation, implicitly presumed throughout).

Below we provide several examples of the correlators in
two regions (A) and (C) of the phase diagram in Fig. 3, while
the other regions can be worked out using the symmetry (53)
and (54).

Region (A). Using |GSo〉 given by Eq. (92) on the odd DL
in the calculations of average quantities, we find:〈

τ x
2n+1

〉 = ± sin 2ϑo,
〈
τ x

2m+1τ
x
2n+1

〉 = ± sin2 2ϑo, (94)〈
τ z

2n+1

〉 = ± cos 2ϑo,
〈
τ z

2m+1τ
z
2n+1

〉 = ± cos2 2ϑo, (95)〈
τ

y
2n+1

〉 = 〈
τ

y
2m+1τ

y
2n+1

〉 = 0, ∀ n �= m. (96)

The last equation can be also understood as a consequence of
the “classicality” of the GS vector |GSo〉:〈

τ x
2n+1

〉2 + 〈τ z
2n+1

〉2 = sin2 2ϑo + cos2 2ϑo = 1, ∀ n. (97)

Using above results and relation (60) for the string of the
original spins σ x in the ladder, we obtain the constant string
correlation function

Dxx(2, 2n + 1) = ± sin2 2ϑo, ∀ n. (98)

Using |GSe〉 given by Eq. (92), we find the constant dual
correlation functions on the even DL:〈

μ
y
2n

〉 = ± sin 2ϑe,
〈
μ

y
2mμ

y
2n

〉 = ± sin2 2ϑe, (99)〈
μz

2n

〉 = ± cos 2ϑe,
〈
μz

2mμz
2n

〉 = ± cos2 2ϑe, (100)〈
μx

2n

〉 = 〈
μx

2mμx
2n

〉 = 0, ∀ n �= m, (101)

with〈
μ

y
2n

〉2 + 〈μz
2n

〉2 = sin2 2ϑe + cos2 2ϑe = 1, ∀ n, (102)

and constant correlation function of the strings of ladder’s
spins σ y, cf. (61):

Dyy(2, 2n + 1) = ± sin2 2ϑe, ∀ n. (103)

The constant correlation functions are a hallmark of disen-
tanglement. However, the above results imply only the partial
disentanglement on the DLs due to factorization of the even
or odd sectors of the GS (91). Consequently, concurrence C or
global entanglement E do not vanish on the DLs (87), since
the contributions to those quantities from the even and odd
sectors mix up. Instead these quantities attain their minima:

even/odd DLs : C, E �→ min. (104)

The complete factorization of the GS (91) occurs when the
even and odd DLs (87) cross:

Disentanglement : γ = 0, δ2 = t2 + J2
⊥/4. (105)

At this point the correlation functions involving both the even
and odd dual sites are constant. For instance, the zz-string
correlation function (62)

Dzz(2, 2n + 1) = (−1)n
〈
τ x

1 τ x
2n+1μ

y
0μ

y
2n

〉
= ± sin2 2ϑe sin2 2ϑo = ±

(
2t

δ + t

)2

(106)

is constant and equal to the order parameter ±O2
z,3 evaluated

at the special point (105) where the entanglement vanishes
[74,75,77,83]:

C = E = 0. (107)

A useful cross-check: the average quantities calculated in
this subsection using the factorized states |GS�〉 (92), coin-
cide with their counterparts from Sec. IV B, evaluated on the
special lines (87) with the formulas obtained via the duality
transformations and asymptotic limits of the Toeplitz deter-
minants, as it must be.

Region (C). As the odd DL goes through the regions (A)
and (C) of the phase diagram in Fig. 3, the results for the odd
sector are given by the same Eqs. (94)–(98). For the average
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quantities along the even DL in region (C), we need to inter-
change μx � μy in Eqs. (99)–(102) for the even sector. Again,
the even/odd DLs in this region correspond to the partial
disentanglement and the minima (104) of the entanglement
measures.

The complete factorization of the GS and the disentangle-
ment (107) occurs at the point where the even and odd DLs
(87) cross:

Disentanglement : δ = 0, γ 2 = t2 + J2
⊥/4. (108)

At this point, the correlation functions are constant. For in-
stance, the correlator of the z brane with the (x, y) spins at its
edge (68)〈

σ x
1 σ

y
2 Dzz(3, 2n)σ y

2n+1σ
x
2n+2

〉 = (−1)n
〈
τ x

1 τ x
2n+1μ

x
0μ

x
2n

〉
= ± sin2 2ϑe sin2 2ϑo = ±

(
2t

γ + t

)2

(109)

is constant and equal to the order parameter ±Oz|yx evaluated
at the disentanglement point (108).

B. Columnar ladder

The inverse JW transformation of the effective fermionic
Hamiltonian of the columnar ladder yields a pair of the
equivalent decoupled XY chains (45) and (46) with the same
anisotropies, dimerizations, alternating transverse fields

γo = γe = γ , δo = δe = δ, he
a = ho

a = J⊥/2, (110)

and zero uniform transverse fields

he = ho = 0. (111)

The degenerate spectrum ±E±(k) (40) of the 8 × 8
Hamiltonian matrix of the columnar ladder corresponds to the
energy eigenvalues of these two equivalent chains.

The contributions to the winding number (83) from the
even and odd sectors (45,46) trivially doubles. Using either the
2 × 2 matrices Â and B̂ are given in Ref. [40] with ha = J⊥/2
to evaluate (81), or the complex formalism (84) with the
roots z± provided in Ref. [77], we end up with the winding
and Majorana numbers for the three phases (C,I,G) shown in
Fig. 4, equal to their counterparts of the staggered ladder and
given in Table I.

From the results for the modulated XY chains [77], we
readily find two DLs defined by the hyperbolas:

γ = ±
√

1 + 4t2/J2
⊥
√

δ2 + J2
⊥/4, (112)

shown in the phase diagram, Fig. 4. These lines signal the
simultaneous appearance of oscillations in the even and odd
sectors of the Hamiltonian, deep in the phases (C) and (G).3

The IC wave numbers of oscillations are defined in the recip-
rocal space of the dual chains as

q = arctan

√
1 − ξ

1 + ξ
, (113)

3For the ferromagnetic couplings, the so-called DL of the second
kind appears in a certain range of parameters [77], but we will not
discuss this case here.

where

ξ ≡
√

γ 2 − (t + δ)2
√

γ 2 − (t − δ)2

γ 2 − (t2 + δ2 + J2
⊥/2)

. (114)

Similar to the staggered case, the modulation q evolves
smoothly from π/2 on the DL (ξ = −1) to q → 0 (ξ → 1)
when γ → ∞.

As follows from the results [77], the DLs of the dimerized
XY chain are always entangled, thus

At δ �= 0 : C �= 0, E �= 0. (115)

The disentanglement occurs only at the point δ = 0 on the
DLs, which corresponds to the case (108) analysed above.

VI. CONCLUSION

Two-leg spin-1/2 ladders with anisotropy and two differ-
ent dimerization patterns are analyzed at zero temperature.
After fermionization done via the Jordan-Wigner transfor-
mation, the spin model becomes equivalent to the ladder of
interacting spinless fermions, known also as the Kitaev lad-
der. The interacting fermionic model is treated within the
Hartree-Fock mean-field approximation which allows us to
obtain an effective quadratic fermionic Hamiltonian. Its renor-
malized parameters are related to the bare couplings of the
microscopic Hamiltonian via the self-consistent mean-field
equations which need to be solved numerically. (Some exam-
ples of the numerical solutions are given in Appendix A.) The
effective mean-field Hamiltonian is further transformed into a
sum of two decoupled Majorana Hamiltonians, which in their
turn are mapped via an inverse Jordan-Wigner transformation
onto a sum of two even/odd XY quantum chains in the al-
ternating transverse fields. The decoupled Hamiltonians He,o

(H = He + Ho) commute, so the averaging in the even and
odd sectors factorizes.

The ground-state phase diagram of the ladder follows
straightforwardly from solutions for zeros of the eigenvalues
of the effective fermionic Hamiltonian in the parametric space
for each of the two dimerization patterns. The same results
are obtained with more physical insight from the mapping
of the ladder onto a couple of dual spin chains. The anal-
ysis is based on our understanding of the spectrum and the
ground-state phase diagram of the XY chain in the alternating
transverse field: the diagram consists of two conventional
magnetic phases and a phase with nonlocal oscillating string
order [40]. The phase diagram of the staggered ladder follows
then from superposition of the orders in the dual even/odd
XY chains. In the case of columnar dimerization, the two dual
XY chains are equivalent, so the columnar ladder has an extra
degeneracy of the spectrum, different universality class, and
less rich phase diagram which coincides with that of a single
dual (even or odd) chain.

To explore the physical nature of the quantum phases pre-
dicted to occur in the anisotropic spin ladders, we introduced
and calculated the corresponding brane order parameters. The
duality between the effective mean-field Hamiltonian of the
ladders and the pair of decoupled XY chains allowed us to
calculate the brane order parameter as a product of two inde-
pendent order parameters in the even/odd XY chains.
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The ground-state phase diagram of the staggered ladder
contains nine phases, four of which are really distinct, while
the other five can be obtained from the symmetries of the
model. The order parameters for all phases are collected in
Table I. It is straightforward to establish how breaking of the
hidden Z2 ⊗ Z2 symmetry [38] of the spin ladder in each of
the phases is related to the symmetry breaking in the even
or odd dual spin chains. The local order parameters in the
even/odd sectors are the dual longitudinal magnetizations
〈τx,y〉 or 〈μx,y〉 which are accompanied by the spontaneous
breaking of the Z2 symmetry of the corresponding chain
Hamiltonian. The chain nonlocal string order Oz,τ/μ (known
also as the parity order parameter [35,54]) can also be linked
via additional duality transformations to the Z2 ⊗ Z2 symme-
try breaking in superimposed Ising models [58]. The string
order Oz,τ/μ is called oscillating since it appears via nonde-
caying oscillations of the string-string correlation functions
with the period of four dual lattice spacings [40].

The dual order parameters are worked out back to the
order parameters of the original spin ladder. The staggered
ladder possesses four phases with conventional antiferromag-
netism (mx,y �= 0), three phases with the z-brane order, and
two phases where the order parameters are z branes with the
pair of spins σ x, σ y attached to the edge. Since we were able to
find new exact results for the local and string order parameters
in the XY chain with alternating field (see Appendix B),
all the magnetizations and the brane order parameters for
the staggered ladder are found analytically as functions
of the renormalized couplings of the effective mean-field
Hamiltonian.

The ground-state phase diagram of the columnar ladder
does not possess magnetic long-ranged order and demon-
strates only the brane order. The order parameters of the three
columnar phases are of the type presented in Table I and
have their counterparts among the brane-ordered phases of
the staggered ladder. Since the effective Hamiltonian of the
columnar ladder maps onto two (equivalent) XY chains with
alternating field and dimerization, no analytical results are
available for the order parameters in the latter case. The brane
parameters of the columnar ladder are calculated numerically
from the Toeplitz determinants.

All brane-ordered phases of the ladders with two dimer-
ization patterns are spin liquids with distinct nonlocal order
parameters, identified and calculated in this study. In partic-
ular, the phase (I) with the order parameter Oz,1 detected for
both types of dimerization (see Figs. 3 and 4) is the spin-liquid
phase of the SU(2)-invariant homogeneous ladder (the case
γ = δ = 0).

The calculation of topological numbers (winding
number Nw and the number of the Majorana zero-energy
edge modes NM) is straightforward after the effective
Hamiltonian is mapped onto the even and odd XY chains. It
was done for all phases and for both dimerization patterns,
and is particularly simple when evaluated via analytical
continuation onto the complex wave numbers. Nw or NM

can change only when a root (or roots) of zero energy z±
crosses the unit circle |z| = 1 on the complex plane. The latter
coincides with the condition for a quantum phase transition
[82,83]. In this sense the topological numbers Nw are NM

are complementary parameters, i.e., they do not provide
additional information on criticality, which is not encoded in
the complex roots of the model’s spectra, or in its Lee-Yang
zeros, when the temperature is finite [77,83].

The disorder lines (or modulation transitions) for both
dimerization patterns are found as special points on the phase
diagrams, where the complex conjugate roots z± in the even or
odd sectors of the Hamiltonian merge and become degenerate.
The points of disentanglement on the phase diagram where the
ladder’s ground state is factorized, are found on the intersec-
tions of the even and odd disorder lines.

An important conclusion of the present work is that the
spin-Peierls ladders which are expected to dimerise into the
energetically favorable columnar pattern [12], can undergo a
topological quantum phase transition (�NM = ±4) with gap
closure, distinct brane orders (see Fig. 4) when the micro-
scopic parameters (anisotropy, dimerization, rung versus leg
couplings) are varied. We hope that our results will motivate
the search for the real compounds which fit the profile.
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APPENDIX A: MEAN-FIELD THEORY:
TECHNICAL DETAILS

We fermionize the spin ladder Hamiltonian (1) using
the Jordan-Wigner transformation (JWT). There are differ-
ent ways to introduce this transformation when we depart
from a single-chain problem to spin ladder (see, e.g.,
Refs. [43,44,66]. We use the snakelike JWT path used in our
earlier work [14] (see Fig. 2) and proved to be convenient to
deal with the two-leg ladder. Such JWT yields the following
fermionic Hamiltonian:

H = 1

2

∑
n,α

{
ei�̂α (n)

(
Jα (n)c†

α (n)cα (n + 1) + Jγ

2
c†
α (n)c†

α (n + 1)

)
+ 2Jα (n)

(
n̂α (n) − 1

2

)(
n̂α (n + 1) − 1

2

)}

+ 1

2

∑
n

{
J⊥(n)c†

1(n)c2(n) + 2J⊥(n)

(
n̂1(n) − 1

2

)(
n̂2(n) − 1

2

)}
+ H.c. (A1)

The phase operators �̂α (n) appearing in Eq. (A1) are explicitly given in Ref. [14].
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The Hartee-Fock approximation for the fermionic interacting terms in (A1) is based on the general decoupling [85] for the
product of two number operators (n̂l = c†

l cl ):

n̂l n̂m ≈ 1
2 n̂l + 1

2 n̂m − 1
4 + c†

l cm〈cl c
†
m〉 + H.c. + |〈clc

†
m〉|2 + c†

l c†
m〈cmcl〉 + H.c. − |〈clcm〉|2. (A2)

The decoupled Hamiltonian reads

HMF = 2NC + 1

2

∑
n,α

{
Jα (n)

[
ei�̂α (n) + 2〈cα (n)c†

α (n + 1)〉
]

c†
α (n)cα (n + 1)

+ Jγ

[
ei�̂α (n) − 2〈cα (n)cα (n + 1)〉

]
c†
α (n)c†

α (n + 1)

}
+ 1

2
J⊥
∑

n

[1 + 2t⊥]c†
1(n)c2(n) + H.c. (A3)

where

t⊥(n) = 〈c1(n)c†
2(n)〉 = t⊥, (A4)

According to the Lieb theorem [86] the ground state of a quadratic fermionic Hamiltonian on a bipartite lattice at half-
filling is the π -flux phase. Imposing this requirement on the approximate Hamiltonian (A3) amounts to the approximation
ei�̂α (n) ≈ (−1)n+α−1, thus

ei�̂α (n) + 2〈cα (n)c†
α (n + 1)〉 = (−1)n+α−1(1 + 2tα (n)), (A5)

ei�̂α (n) − 2〈cα (n)cα (n + 1)〉 = (−1)n+α−1(1 − 2Pα (n)), (A6)

where we introduce the mean-field averaged parameters

tα (n) =
{
K + (−1)n+αδη, (staggered)
K + (−1)nδη, (columnar) , (A7)

Pα (n) =
{

P − (−1)n+αδηp, (staggered)
P − (−1)nδηp, (columnar) . (A8)

The renormalized couplings (7)-(10) are to be found from the set of self-consistent equations obtained from minimization of the
free-energy. We present the equations for the case γa = γaR = 0.

The sets of the mean-field equations are different for two dimerization patterns.
(1) Staggered dimerization.
Minimization of the ground-state energy evaluated with the spectrum (21) yields the bond average

K = tR
4π

∫ π/2

0
dk cos2 k

{
1

E++
+ 1

E+−
+ 1

E−+
+ 1

E−−

}
(A9)

and the dimerization susceptibility η

δη = 1

4π

∫ π/2

0
dk sin2 k

{
δR

(
1

E++
+ 1

E+−
+ 1

E−+
+ 1

E−−

)
+ γR

(
1

E++
+ 1

E+−
− 1

E−+
− 1

E−−

)

+ J⊥R

2 sin k

(
1

E++
− 1

E+−
− 1

E−+
+ 1

E−−

)}
. (A10)

The anomalous pairing amplitude is found as

P = 1

4π

∫ π/2

0
dk sin2 k

{
γR

(
1

E++
+ 1

E+−
+ 1

E−+
+ 1

E−−

)
+ δR

(
1

E++
+ 1

E+−
− 1

E−+
− 1

E−−

)

+ J⊥R

2 sin k

(
1

E++
− 1

E+−
+ 1

E−+
− 1

E−−

)}
, (A11)

and the transverse bond parameter is

t⊥ = 1

4π

∫ π/2

0
dk

{
1

2
J⊥R

(
1

E++
+ 1

E+−
+ 1

E−+
+ 1

E−−

)
+ δR sin k

(
1

E++
− 1

E+−
− 1

E−+
+ 1

E−−

)

+ γR sin k

(
1

E++
− 1

E+−
+ 1

E−+
− 1

E−−

)}
. (A12)
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(2) Columnar dimerization.
Minimization of the ground-state energy with the spectrum

(40) yields the following set of the mean-field equations:

K = tR
2π

∫ π/2

0
dk cos2 k

{
1

E+
+ 1

E−

}
, (A13)

δη = δR

2π

∫ π/2

0
dk sin2 k

×
{(

1

E+
+ 1

E−

)
+ γR sin k

R

(
1

E+
− 1

E−

)}
, (A14)

P = 1

2π

∫ π/2

0
dk sin2 k

×
{
γR

(
1

E+
+ 1

E−

)
+ R

sin k

(
1

E+
− 1

E−

)}
, (A15)

t⊥ = J⊥R

4π

∫ π/2

0
dk

{(
1

E+
+ 1

E−

)
+ γR sin k

R

(
1

E+
− 1

E−

)}
.

(A16)

where R ≡
√

δ2
R sin2 k + 1

4 J2
⊥R . In the limit J⊥ = 0, the

above equations agree with those we found for the XYZ
chain [41].

From numerical solution of the above mean-field equa-
tions and evaluation of the renormalized couplings (7)–(9),
we find that the renormalized and the bare values differ by a
factor of order of unity. It is important to distinguish these two
sets of couplings for making quantitative comparisons of, e.g.,
phase boundaries, gap values, etc, with the numerical simula-
tions. However to study the qualitative physical properties of
the phases, transitions between them, the local and nonlocal
order parameters, it is convenient to present results directly
in terms of the renormalized parameters, as it is done mostly
in this paper. The ratios of the renormalized and bare param-
eters of the model calculated for several cases are presented
in Fig. 8.

APPENDIX B: DUALITY OF TWO TRANSVERSE-FIELD
XY CHAIN MODELS AND ORDER PARAMETERS

In this Appendix, we will present the canonical transforma-
tions to map the spin-1/2 XY chain with a uniform transverse
field onto the chain in a staggered field. This mapping is used
to get analytical results for the order parameters.

First, we find explicit expressions for the longitudinal mag-
netizations mx,y in the chain with a staggered field. It is an
interesting and useful result, since a brut force calculation of
such parameters in a chain with two lattice-space periodicity,
amounts to evaluation of limiting values of the determinants of
2 × 2-block Toeplitz matrices [40]. The latter problem seems
to be quite hopeless for analytical calculations [87–89], but it
is well amenable via mappings onto the chain with a uniform
field, as shown below.

Second, we calculate for the first time the string order
parameter in a closed form for the XY chain in a uniform
transverse field. Using the mapping we get the explicit formu-
las for the oscillating string order parameter in the topological

(a)

(b)

(c)

FIG. 8. The ratios of the renormalized couplings with respect
to their bare values calculated from the mean-field equations.
The parameters are calculated along two paths of constant δ for the
staggered ladder [(a) and (b)] and one path of constant δ for the
columnar ladder (c). The paths resemble those shown in Figs. 3 and
4, but taken on the plane of bare parameters (δ, γ ).

phase of the staggered model, bypassing a problem of block
Toeplitz matrices.

Since the effective mean-field Hamiltonian of the two-leg
ladder maps onto a sum of two XY chains in the alternating
field, as shown in the main text of the paper, the results of this
Appendix allow us to find analytic expressions for the brane
order parameters of the staggered ladder.
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The Hamiltonian of the XY chain in uniform transverse
field is defined as

H =
N∑

n=1

J

4

{
(1 + γ )σ x

n σ x
n+1 + (1 − γ )σ y

n σ
y
n+1

}+ h

2
σ z

n .

(B1)

In this Appendix, we return to the use of dimensionful units
and restore the exchange coupling J . The properties of this
model (B1) are well known [49,90]. Its spectrum is

E (k) = J

√(
h

J
− cos k

)2

+ γ 2 sin2 k (B2)

with k ∈ [−π, π ]. In the range |h/J| < 1 the model is anti-
ferromagnetically (J > 0) ordered: 〈σ x

Lσ x
L+n〉 → ±m2

x as n →
∞, with the spontaneous longitudinal magnetization

m2
x = 2

1 + γ

{
γ 2

(
1 −

(
h

J

)2)}1/4

, (B3)

when γ > 0. At γ < 0 the order changes: mx ↔ my. In the
polarized phase h/J > 1 (the phase diagram is symmetric
with respect to the sign change of the field), only induced
magnetization mz is present. However one can notice [40,41]
appearance of a continuous monotonous z-string order param-
eter Oz defined from the limit of the string-string correlator

Dzz(L, R) ≡
〈

R∏
n=L

σ z
n

〉
−−−−−→
R−L→∞

O2
z . (B4)

To find Oz, we apply the standard techniques to calculate
Toeplitz determinants using the Szegö’s theorem [91]. The
result is expressed via two roots λ± of the model’s spectra
on the complex momentum plane:

O2
z =

[
(1 − λ2

−)(λ2
+ − 1)

(λ+ − λ−)2

]1/4

, (B5)

where

λ± = h/J ±
√

(h/J )2 + γ 2 − 1

1 + γ
, (B6)

yielding

O2
z =

[
(h/J )2 − 1

(h/J )2 + γ 2 − 1

]1/4

. (B7)

This z-string parameter, known also (up to irrelevant prefac-
tors) as the parity string order parameter [35,54,63], vanishes
at the boundary of the polarized phase with the correct critical
index of the order parameter, i.e., Oz ∝ (h/J − 1)1/8. In the
isotropic limit γ = 0, it becomes a plateau Oz = 1 with a

discontinuity of the phase boundary [40,41], similar to the
plateau of induced magnetization mz.

With the canonical transformations (33)–(35) where τ ⇔
σ , we can map the chain (B1) onto the XY chain with
staggered magnetic field:

H =
N∑

n=1

J̃

4

{
(1 + γ̃ )σ̃ x

n σ̃ x
n+1 + (1 − γ̃ )σ̃ y

n σ̃
y
n+1

}

+ 1

2
(−1)nh̃aσ̃

z
n , (B8)

where the corresponding parameters of two Hamiltonians are
related as

J̃ = γ J,

γ̃ = 1

γ
, (B9)

h̃a = h.

The dimerized XY chain with uniform and staggered fields
was studied recently [40] in great detail, so we can easily
recover some key properties of the model (B8) as a simpler
special case. The spectrum of the fermionized Hamiltonian
(B8) has two eigenvalues

Ẽ±(k) = J̃

√(
h̃a

J̃
± γ̃ sin k

)2

+ cos2 k, (B10)

where the wave numbers lie in the reduced Brillouin zone k ∈
[−π/2, π/2]. Using the correspondence (B9), wave-number
shifts by ±π/2, and the Brullouin zone unfolding, one
can establish the equivalence between the spectra (B2) and
(B10), as well as an equal number of eigenmodes in two
spectra.

The model (B8) has two different phases.
1. At h̃a/J̃ < γ̃ , it has a local magnetic order m̃x. Since

σ x
n = σ̃ x

n and according to (B9): h̃a/J̃ < γ̃ ←→ h/J < 1, the
phase m̃x �= 0 of (B8) corresponds to the phase mx �= 0 of
(B1). From (B3) and (B9), we can calculate the magnetic
order parameter in the staggered model:

m̃2
x = 2

1 + γ̃

{
γ̃ 2 − (h̃a/J̃ )2

}1/4
at γ̃ > h̃a/J̃. (B11)

The magnetization m̃y at γ̃ < −h̃a/J̃ can be calculated from
the symmetry m̃y(−γ̃ ) = m̃x(γ̃ ).

2. In the region −h̃a/J̃ < γ̃ < h̃a/J̃ , the magnetization
disappears, and nonlocal order detected by nonvanishing os-
cillations of the string-string correlation function D̃zz with a
period of four lattice spacings is found from numerical calcu-
lations [40]. This oscillating string order is parameterized as
follows [40]:

D̃zz(L, R) −−−→
R→∞

⎧⎪⎪⎨
⎪⎪⎩

(−1)mO2
z,1, L = 1, R = 2m

(−1)mO2
z,2, L = 2, R = 2m

(−1)m+LO2
z,3, L = 1, R = 2m + 1 or L = 2, R = 2m + 1

. (B12)

094413-15



TOPLAL PANDEY AND GENNADY Y. CHITOV PHYSICAL REVIEW B 106, 094413 (2022)

In a special case of zero dimerization as the Hamiltonian
(B8) under consideration, the string correlator oscillates with
a constant amplitude Oz,1 = Oz,2 = Oz,3 following the pattern
(+ + −−) [40].

One can easily check that the region with the oscillating
string order of the staggered model (B8) corresponds to the
polarized phase of the uniform chain (B1) at |h/J| > 1. The
uniform string order parameter (B4) in that case is dual to the
oscillating string parameters of the staggered model. Indeed,
since σ̃ z

n = (−1)nσ z
n we can easily establish relation between

string correlators in two models:

D̃zz(L, R) = (−1)sDzz(L, R), (B13)

where s ≡ (R + L)(R − L + 1)/2. Taking L = 1 we find the
oscillating string order as

D̃zz(1, R) −−−→
R→∞

{
(−1)mO2

z , R = 2m

(−1)m+1O2
z , R = 2m + 1

(B14)

with

O2
z =

[
(h̃a/J̃ )2 − γ̃ 2

(h̃a/J̃ )2 − γ̃ 2 + 1

]1/4

at − h̃a/J̃ < γ̃ < h̃a/J̃.

(B15)
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