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Atomic-scale spin-wave polarizer based on a sharp antiferromagnetic domain wall
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We theoretically study the scattering of spin waves from a sharp domain wall (DW) in an antiferromagnetic
spin chain. While the continuum model for an antiferromagnetic material yields the well-known result that
spin waves can pass through a wide DW with no reflection, here we show that, based on the discrete spin
Hamiltonian, spin waves are generally reflected by a DW with a reflection coefficient that increases as the DW
width decreases. Remarkably, we find that, in the interesting case of an atomically sharp DW, the reflection of
spin waves exhibits strong dependence on the state of circular polarization of the spin waves, leading to mainly
reflection for one polarization while permitting partial transmission for the other, thus realizing an atomic-scale
spin-wave polarizer. The polarization of the transmitted spin wave depends on the orientation of the spin in the
sharp DW, which can be controlled by an external field or spin torque. Our utilization of a sharp antiferromagnetic
DW as an atomic-scale spin-wave polarizer leads us to envision that ultrasmall magnetic solitons such as DWs
and skyrmions may enable realizations of atomic-scale spin-wave scatterers with useful functionalities.
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I. INTRODUCTION

The propagation of spin waves in one-dimensional mag-
nets is of great fundamental interest and is also relevant for
the transport of information in magnetic nanostructures [1,2].
Compared to conventional electronic spin currents, spin waves
in magnetic insulators hold the promise to reduce the energy
dissipation owing to the absence of Joule heating. In addi-
tion, spin waves in antiferromagnetic materials naturally occur
at higher frequency than ferromagnetic spin waves, raising
hope for fast spintronic applications [3]. In contrast to fer-
romagnetic materials, where spin waves have only one state
of circular polarization [4], antiferromagnetic materials host
all types of polarization, ranging from circular to elliptical
depending on hard-axis anisotropy [5–7].

The interaction between spin waves and spin textures such
as DW has been studied extensively in the continuum micro-
magnetic approximation, where only wide DWs, much larger
than the atomic scale, are considered [8–10]. It has been
shown that in the absence of a magnetic field, spin waves
experience negligible reflection over wide range of frequency
when propagating on a static smooth DW [11,12]. Applying
a magnetic field gives rise to a finite magnetization inside
the DW, which results in a field-controlled reflection of spin
waves from a DW [13]. In many studies the interaction be-
tween the spin wave and a DW is investigated as a new method
to control the transmission of the spin wave [14–20].

The interaction between spin waves and a DW can be
substantially different from that obtained in the contin-
uum model as the DW becomes narrower. When the DW
width is comparable to the lattice constant, the continuum
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approximation breaks down and thus the results obtained with
the assumption of smooth textures can be invalidated [21]. For
example, in a ferromagnetic spin chain, it has been shown
that spin waves experience strong reflection from a narrow
DW, even in the absence of an external field [22]. However,
an analogous investigation has not been conducted for an
antiferromagnetic narrow DW.

Recently, atomically sharp DWs have been observed by
electron microscopy in antiferromagnet CuMnAs, and their
existence is found to be consistent with density functional
theory DFT calculations [23]. These findings motivate us to
pursue the study of the interaction between spin waves and
antiferromagnetic DW within a discrete spin chain model,
which allows us to treat atomically sharp DWs.

The fundamental difference between smooth and sharp
antiferromagnetic DWs is that the latter can be viewed as
a pointlike ferromagnetic insertion in an otherwise regular
antiferromagnetic spin structure. (Similarly, a sharp ferro-
magnetic DW can be viewed as a pointlike antiferromagnetic
insertion in a regular ferromagnetic structure.)

In this paper we find that as the antiferromagnetic DW
becomes atomically sharp, left-handed (LH) and right-handed
(RH) spin waves get reflected with different amplitudes,
depending on the orientation of the spins at the domain bound-
aries. Therefore such a sharp DW can act as a polarizer for
spin waves, allowing spin waves of a given polarization to
be transmitted much more efficiently than spin waves of the
opposite polarization. Furthermore, the selectivity of the po-
larizer can be reversed by reversing the orientation of the spins
at the domain boundaries. Lastly, we show that the selectivity
of the spin polarizer is a function of the magnetic anisotropy
field and tends to vanish when the latter increases.

This paper is organized as follows: The model and the the-
oretical formulation of the problem are outlined in Sec. II. In
Sec. III we present the numerical results for the transmission /
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FIG. 1. (a) Schematic of a Néel DW with a width δ. Red (green)
arrows represent sublattice A (B). Schematic of (b) RH and (c) LH
eigenmode. Notice that in an RH wave the amplitude of oscillations
on the sublattice with up-spin is larger than on the sublattice with
down-spin. This causes the RH wave to carry a small net spin in the
negative z direction. For LH waves the situation is reversed.

reflection probabilities of antiferromagnetic spin waves from
a DW with an easy axis anisotropy. The transmission coeffi-
cients are shown to depend on the spin-wave wave vector and
on its circular polarization. Here we also discuss the impact
of changing magnetic anisotropy on the transmission of spin
waves through the DW. Technical details are presented in the
Appendixes.

II. THEORETICAL FORMULATION

A. Hamiltonian

Our starting point is a quasi-1D antiferromagnetic
nanowire with a lattice spacing a in which a DW separates
two homogeneous antiferromagnetic domains on the y axis. A
sketch of a Néel-type antiferromagnetic DW with two arrows
indicating two oppositely oriented spins on each sublattice
is shown in Fig. 1(a). We consider an atomistic Heisenberg
Hamiltonian of the form

H = J
∑

n

Sn · Sn+1 − D
∑

n

(
Sn

z

)2
, (1)

where Sn is the spin on the site n. The first term describes the
isotropic exchange interaction between neighboring spins: for
J > 0 this favors antiparallel alignment of neighboring spins.
The second term, with D > 0, describes a uniaxial magnetic
anisotropy, which favors the alignment of the spins along the
z axis.

The equilibrium configuration of a DW between two
uniform antiferromagnetic regions can be obtained by mini-
mizing the energy with respect to a set of angles θn describing
the equilibrium orientation of Sn relative to the z axis in
the (z, y) plane (we assume that the DW lies entirely in this
plane). Requiring the energy to be stationary with respect to
infinitesimal variations of θn yields the equations

sin(θn − θn−1) + sin(θn − θn+1) − D

J
sin(2θn) = 0. (2)

To solve Eq. (2), we imposed the boundary condition that
the spins on opposite sides of the DW region are in the z
direction [see Fig. 1(a)]. For small values of the anisotropy,

i.e., D/J � 1, Eq. (2) can be solved analytically using the ap-
proximation ||θn+1 − θn| − π | � 1. The solution has the form
of an antiferromagnetic Walker-type profile. As the anisotropy
increases, the DW starts to shrink, and for D/J = 2/3 the
spins stay close to their anisotropy axis, forming an abruptly
sharp DW.

In order to construct a linearized equation of motion for
spin excitations on top of the DW, it is convenient to write
the Hamiltonian in a local coordinate system which is rotated
about the x axis in such a way that the local Z axis coincides
with the local orientation of Sn at equilibrium.

The relation between the components of the spin in the
local coordinate system (X,Y, Z) and in the global coordinate
system (x, y, z) is⎛

⎝Snx

Sny

Snz

⎞
⎠ =

⎛
⎝1 0 0

0 cos θn sin θn

0 − sin θn cos θn

⎞
⎠

⎛
⎝SnX

SnY

SnZ

⎞
⎠. (3)

We assume that the magnitudes of SnX and SnY (i.e., the
nonequilibrium components of the spin in the local reference
frame) are small in comparison with the magnitude of the spin
on site n: |SnX |, |SnY | � |SnZ |. Expanding to second order in
SnX and SnY , the Hamiltonian takes the form

H = J
∑

n

SnX Sn+1X

+ cos(θn − θn+1)(SnY Sn+1Y + SnZ Sn+1Z )

+ sin(θn − θn+1)(SnY Sn+1Z − SnZ Sn+1Y )

− D(SnZ cos θn − SnY sin θn)2, (4)

Next, we perform the transformation

SnX = Sn+ + Sn−
2

, (5a)

SnY = Sn+ − Sn−
2i

, (5b)

SnZ ≈ S − Sn−Sn+ + Sn+Sn−
4S

, (5c)

where Sn+ and Sn− are the chiral components of the spin
deviation [24]. This leaves us with a quadratic Hamiltonian of
the form

H ≈
∑

nα,n′β

hnα,n′βSnαSn′β, (6)

where α and β take values in {−,+}.
The site diagonal part H matrix is then given by

hnα,nβ =
{
−J

cn−1 + cn

4
+ D

2 cos2 θn − sin2 θn

4

}
[σx]αβ

+ D
sin2 θn

4
δαβ, (7)

and the off-diagonal parts are

hnα,n+1β = J

(
1 + cn

4
[σx]αβ + 1 − cn

4
δαβ

)
(8)

hnα,n−1β = J

(
1 + cn−1

4
[σx]αβ + 1 − cn−1

4
δαβ

)
, (9)

where cn ≡ cos(θn − θn+1) and σi are the Pauli matrices.
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B. Linearized equation of motion

Oscillations of the spin about the equilibrium DW config-
uration are governed by the equation of motion

h̄Ṡn,α = i[H, Snα], (10)

which results in

−ih̄ωSnα = i
∑

n′β,n′′γ

hn′β,n′′γ {[Sn′β, Snα]

× Sn′′γ + Sn′β[Sn′′γ , Snα]}. (11)

By using the Poisson bracket (or commutator) [Snα, Sn′β] =
−2SnZεαβδn,n′ , where εαγ = i[σy]αγ , and replacing SnZ by its
equilibrium value, we obtain the linearized equation of motion
for small oscillation about the equilibrium DW configuration:

h̄ωSnα =
∑
n′αβ

Hnα,n′βSn′β. (12)

Here the diagonal part of the spin-wave Hamiltonian is ex-
pressed as

Hnα,nβ = −JS(cn−1 + cn)[σz]αβ

+ DS(2 cos2 θn − sin2 θn)[σz]αβ

+ DS sin2 θn[iσy]αβ, (13)

and the off-diagonal part is

Hnα,n+1β = JS

{
1 + cn

2
[σz]αβ + 1 − cn

2
[iσy]αβ

}
,

Hnα,n−1β = JS

{
1 + cn−1

2
[σz]αβ + 1 − cn−1

2
[iσy]αβ

}
.

C. Spin waves in a uniform ground state

Before studying spin waves on top of a DW, let us begin
by solving the equations of motion (12) for a homogeneous
antiferromagnetic state, described by θn = 0 for even n and
θn = π for odd n. We find two orthogonal solutions in the
form of plane waves. The right-handed solution (written in
the chiral basis) is

ψ
(RH )
k (n) = {

u(RH )
k,↑ δn̄,0 + u(RH )

k,↓ δn̄,1
}
eikna, (14)

where n̄ ≡ Mod[n, 2] and

u(RH )
k,↑ = Nk,1

(
1
0

)
, u(RH )

k,↓ = −Nk,2

(
0
1

)
. (15)

Similarly, the left-handed solution is

ψ
(LH )
k (n) = {

u(LH )
k,↑ δn̄,0 + u(LH )

k,↓ δn̄,1
}
eikna, (16)

where

u(LH )
k,↑ = Nk,2

(
0
1

)
, u(LH )

k,↓ = −Nk,1

(
1
0

)
. (17)

Here ↑ (↓) refer to direction of the spins at the sublattice

A(B), and Nk,1(2) =
√

4(J+D)±2h̄ωk

h̄ωk
are the amplitudes of the

oscillation on the sites with ↑ (↓) spins in the RH eigenmode.
In the absence of an external magnetic field, the two eigen-
modes are degenerate with eigenvalue

h̄ωk = 2
√

D(2J + D) + J2 sin2 ka. (18)

In the RH mode, both up- and down-spins undergo a coun-
terclockwise precession when viewed from the +z direction
with frequency ωk . In the LH mode, they both undergo a
clockwise rotation with the same frequency. A schematic il-
lustration of two modes is shown in Fig. 1.

D. Scattering problem

We are now ready to formulate the scattering problem.
Deep inside the region I, n � 0, where the spins at even sites
point in the +z direction and the spins at odd sites point in the
−z direction, the solution is taken to be of the following form:

ψk (n) = {
u(RH )

k,↑ δn̄,0 + u(RH )
k,↓ δn̄,1

}
eikna

+ r1
{
u(RH )

−k,↑δn̄,0 + u(RH )
−k,↓δn̄,1

}
e−ikna

+ r2
{
u(LH )

−k,↑δn̄,0 + u(LH )
−k,↓δn̄,1

}
e−ikna. (19)

This is the superposition of an incoming RH wave from the
left and two reflected waves with RH and LH polarizations. r1

and r2 are the two reflection amplitudes.
In region III, n > 2N , where 2N is the number of spins

inside the DW, the spins at even sites point in the −z direction,
and the spins at odd sites point in the +z direction. The
solution in this region is

ψk (n) = t1
{
u(RH )

k,↓ δn̄,0 + u(RH )
k,↑ δn̄,1

}
eikna

+ t2
{
u(LH )

k,↓ δn̄,0 + u(LH )
k,↑ δn̄,1

}
eikna, (20)

i.e., a superposition of two transmitted waves of RH and LH
polarization. t1 and t2 are the two transmission amplitudes.

In the intermediate region II, defined by 0 < n � 2N , the
solution of Eq. (10) (with the known values of θn) is con-
structed numerically with boundary conditions imposed by
the previous two equations (19) and (20) at n = 0 and n =
2N + 1. The reflection and transmission amplitudes are then
obtained by requiring that Eq. (19) and Eq. (20) are satisfied
at the two boundary points n = 0 and n = 2N + 1. In view of
the two-component character of the solution, this gives four
linear equations from which r1, t1, r2, t2 can be determined.

III. RESULTS AND DISCUSSION

A. Scattering of the spin wave from a wide DW

First, let us consider a weak anisotropy, D/J � 1, in which
a DW involves spatially slowly varying spins. In this limit,
the Néel order parameter n = SA−SB

2 is a three-dimensional
unit vector and a continuous function of the coordinate y.
Assuming that, at equilibrium, n lies in the (y, z) plane,
we represent the equilibrium configuration of the DW as
neq = sin(θ )y + cos(θ )z, where the angle between n and the
z axis is θ = 2 arctan[exp(y/δ)], where δ = a

√
J/2D is the

characteristic width of the DW [25].
The equation of motion for the spin wave can be recast as a

Schrödinger equation in an effective (Poschl-Teller) potential
[26]:

h̄2

D2

∂2φ(y, t )

∂t2
= δ2 ∂2φ(y, t )

∂y2
−

[
1 − 2sech 2 y

δ

]
φ(y, t ). (21)

Here φ = nX + inY , and nX , nY are two components of the
Néel order parameter in a local coordinate system such that
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FIG. 2. (a) Exact DW profile with d ≡ D/J = 0.005. The red
dots (green squares) represent the angles of spins at sublattice A
(B). (b) Spin-wave profile for an incoming RH polarization with
k = 0.2 and d = 0.005. The wave emerges with LH polarization
on the other side of the DW. The arrows represent the direction of
the equilibrium spin at sublattice A and B on both sides of the DW.
(c) Spin-wave profile of an incoming RH polarization with k = 0.2
and d = 0.2. (d) Transmission coefficient of an incoming RH spin
wave as a function of k for different values of d .

the Z axis (not to be confused with the absolute z axis) coin-
cides with the direction of neq. The solution of this equation is

φ(y, t ) = �
tanh y

δ
− iδk

−1 − iδk
e−iωt+iky,

h̄2ω2

D2
= 1 + (kδ)2,

(22)
which describes a circularly polarized wave of amplitude �.
The profile of a spin wave on top of a wide DW is shown
in Fig. 2(b). We see that an incoming RH spin wave passes
through the DW without reflection and emerges on the other
side with LH polarization [11,12]. We also notice that, in the
left hand side of the DW, the amplitude of the oscillation
on sublattice with up-spin (green square) is larger than that
of sublattice with down-spin (red dots). The situation be-
comes reversed in the right-hand side of the DW, indicating a
change of the polarization of the transmitted spin wave. Com-
pletely analogous results are obtained for an incoming LH
polarization.

As D/J increases, the DW becomes progressively nar-
rower and the continuum approximation breaks down. The
numerical spin-wave solutions of an incoming RH spin wave
for D/J = 0.2 and k = 0.2 are shown in Fig. 2(c). The RH
spin wave is partially reflected without change in polariza-
tion. However, the transmitted spin wave absorbs spin angular
momentum from the DW and reverses its polarization upon
transmission [11,12]. The scenario for an incoming LH spin
wave is similar. In this case the LH spin wave transfers spin
angular momentum to the DW and emerges as a RH spin wave
on the other side of the DW.

FIG. 3. (a) Spin-wave profile of an incoming LH polarization
which scatters from an abruptly sharp DW with two up-spins at the
domain boundaries at d = 0.67. The wave is transmitted with small
reflection. (b) Same as in (a) for an abruptly sharp DW with two
down-spins at the domain boundaries. Only a small portion of the
wave is transmitted. (c) Transmission coefficient of an incoming LH
spin wave scattered by two up-spins at the domain boundaries for
different values of D/J ≡ d . (d) Transmission coefficient of an RH
spin wave (red triangles) and an LH spin wave (green triangles) for
an abruptly sharp DW with two down-spins at the domain boundaries
as a function of k at d = 0.7.

The k-dependent transmission coefficient of an incoming
RH spin wave is shown in Fig. 2(d) for different values of
D/J . When D/J � 1, the transmission coefficient is |tk|2 ≈ 1
for a wide range of k. For larger D/J the wave is partially
reflected, and the transmission coefficients has a Gaussian-
type shape with full width at half maximum in the range
of 0.2 < k < 0.5. This suggests that magnons with relatively
large wave vector will dominate the spin transport in an uni-
axial antiferromagnetic with large anisotropy.

B. Scattering of the spin wave from a sharp DW

Starting at D/J = 2/3 and for all larger values of D/J
the equilibrium configuration of the DW becomes abruptly
sharp and the scattering pattern of spin waves becomes dif-
ferent [27–30]. See Fig. 3 for the spin configurations of an
abrupt DW. First of all, we notice that an abrupt DW, unlike
a smooth one, has a net spin associated with it: we can regard
it as a small ferromagnetic insertion in an antiferromagnetic
background, and the spin of this insertion can point up or
down. Second, the DW configuration is now invariant under
rotations about the z axis, implying that different polarizations
do not mix: an RH wave cannot be converted to an LH wave
and vice versa; reflection and transmission amplitudes are
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strictly diagonal in the polarization index. We will see that the
transmission coefficient depends strongly on the polarization
of the incoming wave relative to the orientation of spins at the
domain boundaries.

The appeal of the sharp DW configuration is that it admits a
completely analytical solution for the reflection and transmis-
sion amplitudes of spin waves. By substituting the Ansätze
tze from Eq. (19) and Eq. (20) into Eq. (12) for an abrupt DW
with two up-spins, the reflection and transmission amplitudes
of an RH wave work out to be

rRH
k = −1 + |ρke−ika − 2D/J + h̄ωk/J|2

1 − (ρkeika − 2D/J + h̄ωk/J )2 (23)

and

tRH
k = (

rRH
k + e−2ika

)
ρk − e−ika

(
2

D

J
− h̄ωk

J

)(
rRH

k + 1
)
,

(24)
where ωk is the frequency of the incoming wave and ρk =
Nk,2/Nk,1. For the same DW with two up-spins the reflec-
tion and transmission amplitudes of a LH wave are obtained
by simply replacing ωk → −ωk in the above formulas, i.e.,
explicitly,

rLH
k = −1 + |ρ−1

k e−ika − 2D/J − h̄ωk/J|2
1 − (

ρ−1
k eika − 2D/J − h̄ωk/J

)2 (25)

and

tLH
k = (

rLH
k + e−2ika

)
ρ−1

k − e−ika

(
2

D

J
+ h̄ωk

J

)(
rLH

k + 1
)
.

(26)
The reflection and transmission amplitudes for a sharp DW
with two down-spins at the boundaries can be obtained from
the above results by interchanging the right-hand and the
left-hand polarizations. The analytic expressions (23)–(26) for
the reflection and transmission amplitudes of spin waves of
two polarizations interacting with an abrupt antiferromagnetic
DW are one of the main results of this paper.

Armed with these analytical results, we can easily plot the
profile of spin waves as they get scattered by an abrupt DW.
Let us first consider an incoming LH spin wave. As we can
see in Fig. 3(a), for k = 0.2 and D/J = 0.67 the spin wave is
transmitted through the DW without change in polarization.
As D/J becomes larger, the transmission coefficient becomes
smaller until, at D/J ≈ 4, it becomes almost zero for the entire
range of k [see Fig. 3(c)]. In contrast, for a sharp DW with
two down-spins at the domain boundaries, the LH spin wave
is mostly reflected for all values of k [Fig. 3(d)].

In the case of an incoming RH spin wave, the wave can
be partially transmitted to the other side of a DW with two
down-spins at the domain boundaries but is mostly reflected
by a two up-spin DW. We see that changing the polarization
of the incoming spin wave while simultaneously flipping the
spins in the DW is a symmetry of the system.

We gain some insight into this surprising polarization de-
pendence of the transmission coefficient by considering the
analytic structure of the transmission amplitude for complex
k (see Fig. 4). In the case of a DW with two up-spins at the
domain boundaries the transmission amplitude for RH waves
has two poles on the positive imaginary axis k → iκ with

FIG. 4. (a, b) Real part of transmission amplitude of an incoming
RH and LH spin waves in a complex plane respectively, i.e., k =
k′ + ik′′ for D/J = 1.

κ > 0, which correspond to bound states, i.e., spin oscillations
that are strongly localized on top of the sharp DW and decay
exponentially away from the DW. These bound states are
RH polarized, and their frequencies—obtained by substituting
k → iκ in the formula for the spin-wave frequency—are given
by

h̄ωS = 2
√

D(J + D) (27)

and

h̄ωAS = −4J + √
36D2 + 12DJ − 8J2

3
, (28)

where the subscript S refers to symmetric oscillation of the
spins (i.e., the two spins at the domain boundaries rotate in
phase), while the subscript AS refers to antisymmetric oscilla-
tions of the spins (i.e., the two spins at the domain boundaries
rotate with a π phase difference between them). Notice that
the antisymmetric mode frequency vanishes at D/J = 2/3.

The transmission amplitude for LH waves has no simple
poles on the positive imaginary k axis, but it does have two
poles on the negative imaginary k axis, i.e., at k = iκ , with
κ < 0. The associated frequencies of these two poles are

h̄ωR1 = 4J + √
36D2 + 12DJ − 8J2

3
, h̄ωR2 = h̄ωS. (29)

What is the physical meaning of these two poles on the
negative imaginary k axis? They are not bound states, be-
cause the associated solution of the equation of motion would
diverge exponentially away from the DW. Nevertheless, the
existence of such poles can have a large impact on the trans-
mission coefficient if the pole occurs sufficiently near to the
real axis [31–34]. When this happens, the pole is described
as a resonance, meaning that it can cause a rapid increase of
the transmission coefficient in a relatively narrow range of real
wave vectors close to the pole. How narrow this range depends
on how close the pole is to the real axis. In the present case, the
pole at ωR1 is associated with an imaginary wave vector that
occurs extremely near to the real axis when D/J approaches
2/3. This is the mathematical origin of the sharp peak in the
transmission coefficient of LH waves for small real k and for
D/J close to 2/3. For larger real k and/or for D/J 
 2/3,
the resonance disappears, as we clearly see in the numerical
results [Fig. 3(c)].

A more physical description of the phenomenon can be
achieved by noting that for D/J → 2/3 the resonant fre-
quency ωR1 approaches the real spin-wave frequency ωk=0

(see Fig. 5). We can therefore say that for D/J ≈ 2/3 and
k ≈ 0 the frequency of the incoming spin wave matches the
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FIG. 5. Spin-wave frequency of a sharp DW as a function of
D/J . Red squares show antisymmetric bound states, and purple
circles show symmetric bound states. The yellow solid line shows
the resonance frequency (ωR1). The purple dashed line represents the
lower bound of the continuous spin-wave frequency range, while the
green dashed line represents the upper bound of that range.

frequency of the LH resonant state, resulting in a peak of the
transmission coefficient.

To corroborate this point of view, we have derived an
expression for the transmission probability of a spin wave in
terms of bound states and resonance frequencies:

|tk|2 = J2
[
(2D + 2J )2 − h̄2ω2

k

][
h̄2ω2

k − 4D(D + 2J )
]

3h̄4
( ± ω2

k − ω2
S

)
(±ωk − ωAS )(±ωk + ωR1)

,

(30)
where the upper sign applies to RH waves and the lower sign
to LH waves. We emphasize that this expression is positive
with values in the range 0 < |tk|2 < 1 for all real k.

Now we can understand the selective transmission of spin
waves according to their polarizations. In the case of incoming
LH spin waves, and for D/J ≈ 2/3, the spin-wave frequency,
ωk , stays close to the resonance frequency, i.e., for ωk ≈ ωR1.
Therefore the transmission probability becomes large [how-
ever, the vanishing numerator of Eq. (30) prevents divergence
when ωk = ωR1]. As D/J increases, the difference between
ωk and ωR1 becomes larger, which results in a decreasing
transmission probability. In contrast to LH, an RH spin wave
of frequency ωk never gets close to resonance due to the
different sign in the denominator of Eq. (30): this explains
the negligible transmission probability of RH spin waves.

Before concluding, a few comments are in order.
First of all, we note that in typical antiferromagnetic mate-

rials the anisotropy energy D tends to be quite smaller than
2/3 of the exchange energy J , which is the critical value
required for the appearance of abrupt DWs in our model.
However, this is not a general rule. In fact, there are mate-
rials in which the anisotropy is much larger than exchange
interaction. For example, the single ion anisotropy constant
in FeI2 has been experimentally measured to be one order of
magnitude larger than the exchange constant [35].

Perhaps more importantly, in our work we focused on a
simple model with uniform material constants to study the
interaction of a spin wave with a sharp DW. In this model
D/J is just the “knob” we turn to generate an abruptly sharp
DW. However, a sharp DW can be formed when spatial in-
homogeneities are present, e.g., where the spin environment
spatially changes. In this latter case, our model is not suit-
able for a quantitative prediction of the interaction of spin
waves and a DW, but we expect that our results will remain

qualitatively valid regardless of the details of the DW forma-
tion mechanisms. In particular, we believe that the theoretical
formalism developed in this work can be generalized to more
complicated situations involving inhomogeneous material pa-
rameters, which we leave as a future research topic.

Lastly, we note that in an antiferromagnet the quantum
fluctuations in the ground state can also be important, since
the staggered magnetization is not a constant of the motion.
However, in our model the large anisotropy produces a gap in
the spin-wave frequency spectrum, which should ensure, even
in a strictly one-dimensional case, that the fluctuation remains
small.

IV. SUMMARY AND OUTLOOK

In conclusion, we have theoretically demonstrated that a
sharp antiferromagnetic DW can act as a filter for the polar-
ization of spin waves. As the DW becomes abruptly sharp, the
state of circular polarization of an incoming wave (RH or LH)
remains unchanged in the transmission/reflection process. For
suitable values of the anisotropy parameter, the DW allows
one of the two polarizations to pass while largely reflecting
the other. A RH-polarized incoming spin wave gets mostly
reflected by an abruptly sharp DW with two up-spins at the
center, but it can be partially transmitted through a DW with
two down-spins. Conversely, a LH-polarized incoming spin
wave gets totally reflected by an abruptly sharp DW with
two down-spins, but it can be partially transmitted through a
DW with two up-spins. We understand these results in terms
of resonant states (i.e., poles of the transmission amplitude
for k close to the real axis but on the negative imaginary
axis) whose frequency almost matches the frequency of the
incoming wave. These resonances occur for one polarization
but not for the other.

With an eye towards applications, these findings suggest
that atomically sharp DWs can be used in magnonic circuits
as spin polarizers.
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APPENDIX A: ANTIFERROMAGNETIC SPIN
WAVE—THE HOMOGENEOUS SOLUTION

In this Appendix we find the eigenfunctions and eigenval-
ues of a homogeneous antiferromagnetic structure. To do so,
we set θn = π n̄, where n̄ ≡ Mod[n, 2]. This is 0 on the even
sites and π on the odd sites. Then the spin-wave Hamiltonian
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takes the form

Hnα,nβ = {2J + 2D}S[σz]αβ

Hnα,n+1β = JS[iσy]αβ

Hnα,n−1β = JS[iσy]αβ. (A1)

The solution has the form

ψk (n) = uk (n)eikna, (A2)

where uk (n) is a two-component spinor which satisfies the
periodicity condition uk (n + 2) = uk (n) and k is in the range
− π

2a < k < π
2a . This means that uk (n) has only two distinct

values, which we denote by uk,0 ≡ uk (0) and uk,1 ≡ uk (1).
This function can be written as

uk (n) = uk,0δn̄,0 + uk,1δn̄,1. (A3)

Notice that, with these definitions, we have

ψk (0) = uk,0, ψk (1) = uk,1eika, (A4)

where uk,0 and uk,1 are determined by applying the equation of
motion to the sites n = 0 and n = 1 in the unit cell. Thus we
get

h̄ωkuk,0 = 2(J + D)σzuk,0 + 2J cos(ka)(iσy)uk,1, (A5)

and

h̄ωkuk,1 = 2(J + D)σzuk,1 + 2J cos(ka)(iσy)uk,0 . (A6)

We have two doubly degenerate eigenvalues

h̄ωk = ±2
√

D(2J + D) + J2 sin2 ka. (A7)

A possible choice of degenerate eigenvectors (for positive
frequency) is

u(RH )
k,0 ≡ u(RH )

k,↑ = Nk,1

(
1
0

)
(A8a)

u(RH )
k,1 ≡ u(RH )

k,↓ = −Nk,2

(
0
1

)
, (A8b)

and

u(LH )
k,0 ≡ u(LH )

k,↑ = Nk,2

(
0
1

)
(A9a)

u(LH )
k,1 ≡ u(LH )

k,↓ = −Nk,1

(
1
0

)
. (A9b)

APPENDIX B: SPIN-WAVE SOLUTION
FOR INHOMOGENEOUS SPIN CHAIN

Here we illustrate the numerical method for solving the
equation of motion in the inhomogeneous region (DW). The
DW includes the sites n = 1, ..., 2N , where the values of θn

are already determined from Eq. (2). We first show that the
amplitudes ψ1, ..., ψ2N can be expressed as linear functions
of ψ0 and ψ2N+1.

To this end we define the propagator

G = (h̄ω1̃ − H̃ )−1, (B1)

where 1̃ is a 4N × 4N identity matrix and H̃ (also a 4N × 4N
matrix) is the restriction of the Hamiltonian to the subspace of

the transition sites 1, ..., 2N . Then, for 1 � n � 2N we have

ψn = Gn,2N H2N,2N+1ψ2N+1 + Gn,1H1,0ψ0, 1 � n � 2N.

(B2)
In addition, the solutions for ψn in the n� 0 and n� 2N+1

are given by Eqs. (19) and (20), respectively.
These formulas guarantee that the equation of motion is

satisfied identically (i.e., for any choice of r1, t1, r2, t2) at
almost every site, with the exception of the two sites n = 0 and
n = 2N + 1. On these special “frontier” sites the equation of
motion is satisfied only for a specific choice of r1, t1, r2, t2.
Thus the equations that determine the four scattering ampli-
tudes are

(h̄ω − H0,0)ψ0 − H0,−1ψ−1 − H0,1ψ1 = 0 (B3a)

and

(h̄ω − H2N+1,2N+1)ψ2N+1 − H2N+1,2Nψ2N

− H2N+1,2N+2ψ2N+2 = 0. (B3b)

Let us insert the formulas for ψ1 and ψ2N :

ψ1 = G1,2N H2N,2N+1ψ2N+1 + G1,1H1,0ψ0, (B4a)

ψ2N = G2N,2N H2N,2N+1ψ2N+1 + G2N,1H1,0ψ0. (B4b)

This gives us the equations

(h̄ω − H0,0 − H0,1G1,1H1,0)ψ0 − H0,−1ψ−1

− H0,1G1,N HN,N+1ψN+1 = 0

and

(h̄ω − H2N+1,2N+1

− H2N+1,2N G2N,2N H2N,2N+1)ψ2N+1

− H2N+1,nG2N,1H1,0ψ0 − H2N+1,2N+2ψ2N+2 = 0.

All the quantities that appear in these equations are expressed
in terms of r1, t1, r2, t2, and there are four equations because
ψ is a two-component spinor. These equations can be solved
to yield the scattering amplitudes.

APPENDIX C: BOUND STATES

In order to obtain an expression for each of the two bound-
state frequencies, first we introduce the Ansatz for n � 0:

ψn(κ ) = r1
{
u(RH )

k,↑ δn̄,0 + u(RH )
k,↓ δn̄,1

}
eκna

+ r2
{
u(LH )

κ,↑ δn̄,0 + u(LH )
κ,↓ δn̄,1

}
eκna, (C1)

and for n � 1,

ψn(κ ) = t1
{
u(RH )

κ,↓ δn̄,0 + u(RH )
κ,↑ δn̄,1

}
e−κna

+ t2
{
u(LH )

κ,↓ δn̄,0 + u(LH )
κ,↑ δn̄,1

}
e−κna.

These are obtained by replacing k → iκ in Eq. (19).
By substituting Eq. (C1) as well as the dispersion relation

of an evanescent wave, h̄ωκ = 2
√

D(2J + D) − J2 sinh2 κa,
in Eq. (12) with n = 0 we obtain

H0α,0βψ0 + H0α,−1βψ−1 + H0α,1βψ1 = h̄ωψ0. (C2)

The two spins at the domain boundaries can oscillate sym-
metrically or antisymmetrically relative to each other. In the
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symmetric mode, the two spins oscillate with the same am-
plitude and with the same phase (ψ0 = ψ1), while in the
antisymmetric mode they oscillate with the same amplitude
but with opposite phase (ψ0 = −ψ1). Then Eq. (C2) can be
simplified to

2
D

J
σzψ0 + iσyψ−1 ± σzψ0 = h̄ω

J
ψ0, n = 0, (C3)

where (+) and (−) refer to symmetric and antisymmetric
modes, respectively. Finally, the solution of Eq. (C3) gives the

following expressions for the frequencies of the bound states:

h̄ωAS = −4J + √
36D2 + 12DJ − 8J2

3
(C4)

and

h̄ωS = 2
√

D(J + D), (C5)

which agree with the numerical results shown in Fig. 5.
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