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Purity of thermal mixed quantum states
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We develop a formula to evaluate the purity of a series of thermal equilibrium states that can be calculated
in numerical experiments without knowing the exact form of the quantum state a priori. Canonical typicality
guarantees that there are numerous microscopically different expressions of such states, which we call thermal
mixed quantum (TMQ) states. Suppose that we construct a TMQ state by a mixture of Nsamp independent pure
states. The weight of each pure state is given by its norm, and the partition function is given by the average
of the norms. To qualify how efficiently the mixture is done, we introduce a quantum statistical quantity called
“normalized fluctuation of partition function (NFPF).” For smaller NFPF, the TMQ state is closer to the equally
weighted mixture of pure states, which means higher efficiency, requiring a smaller Nsamp. The largest NFPF
is realized in the Gibbs state with purity-0 and exponentially large Nsamp, while the smallest NFPF is given for
thermal pure quantum state with purity-1 and Nsamp = 1. The purity is formulated using solely the NFPF and
roughly gives N−1

samp. Our analytical results are numerically tested and confirmed by the two random sampling
methods built on matrix-product-state-based wave functions.

DOI: 10.1103/PhysRevB.106.094409

I. INTRODUCTION

According to modern theories, the density matrix that rep-
resents the macroscopic state of a physical system in thermal
equilibrium is not uniquely determined. By the same token,
there are numerous variants of the microscopic descriptions of
thermal equilibrium states while they are regarded as the same
macroscopic state as far as they yield the same measurement
outcomes of the local physical quantities. Here, we call them
“thermal mixed quantum (TMQ) states.”

In a conventional statistical ensemble framework, thermal
equilibrium is described by the Gibbs state, which is the clas-
sical mixture of exponentially large numbers of pure states.
Let us consider purifying the Gibbs state on system A; by
attaching sufficient degrees of freedom called ancilla or a bath
to any mixed state and by entangling them with each other, a
single pure state is realized on a whole. For larger degrees of
classical mixtures in A, a larger entanglement with the ancilla
is required to purify it. This means that the Gibbs state has the
density matrix representation which is maximally entangled
with the outside.

A single pure quantum state, on the other hand, can repre-
sent the density matrix of a thermal equilibrium without the
aid of a classical mixture [1–5], which is called the thermal
pure quantum (TPQ) state [6–8]. When dividing the pure state
system into small subsystem A′ and the rest B′, the local
entanglement of the TPQ state between the two parts takes the
role of the entanglement of the aforementioned Gibbs state in
A and the bath B, and the physical quantities measured within
subsystem A′ match those obtained by the Gibbs state in A.
It is a paraphrase of the concept called “canonical typicality”
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[1–5], mentioning that the density matrices are elementwise
equal between almost all states within an energy shell.

The macroscopically equivalent thermal equilibrium states
are thus described as various microscopically different states.
One of the measures to distinguish them is purity,

P = Tr
(
ρ2

β

)
, (1)

where ρβ is the density matrix of a TMQ state at temperature
β−1. The purity of the Gibbs state is the smallest among all
possible choices of TMQ states and approaches zero in the
thermodynamic limit. Whereas, the TPQ state has P = 1 by
definition. Indeed, P−1 is known as an effective dimension
of the quantum state [9,10], and it measures how many pure
states must be mixed to describe the quantum state in question.
As shown in Fig. 1(a), the Gibbs state and the TPQ state are
the two limiting cases representing the same thermal equilib-
rium, and there are numerous intermediate TMQ states with
0 < P < 1.

To visualize the difference between TPQ, TMQ, and Gibbs
states, we consider dividing a single TPQ state of size N into
two parts, A and B, and focus on the quantum state realized
in subsystem A of size NA. The second Rényi entropy of
subsystem A is given as

S2(NA) = − ln TrA
(
ρ2

A

) = − lnPA, (2)

with ρA being the local density matrix and PA being the purity
of subsystem A. Using the fact that S2(NA) follows a Page
curve [11–13] shown in Fig. 1(b), the corresponding PA is
derived, which is shown in Fig. 1(b); when NA is sufficiently
large but smaller than N/2, we find a volume law entangle-
ment, S2(NA) ∝ NA, which means that the purity is bounded
exponentially as PA = e−�(NA ). When the subsystem A is in
a Gibbs state, the thermal entropy sth is equivalent to the von
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FIG. 1. (a) Purity of Gibbs, TPQ, and TMQ states. (b) Second
Rényi entropy of the subsystem A as a function of the subsystem size
NA, when we divide the pure state of size N into A and B. Schematic
graph of the purity of thermal equilibrium states. The lower panel
is the purity of subsystem A, measured from the purity of the Gibbs
state of size NA. Depending on NA, a Gibbs, a TMQ, or a TPQ state
is realized in subsystem A.

Neumann entropy of subsystem A as

SvN(ρA) = −Tr(ρA ln ρA) = NAsth (1 � NA � N ) (3)

and the volume law guarantees that each constituent of a
mixed state in A is minimally entangled inside A, while
maximally entangled with bath B. If we take NA → N , the
purity becomes PA → 1 by definition and consistently with
S2(NA) → 0.

We may thus regard the state in A in the intermediate region
N/2 � NA < N as one of the constructions of a TMQ state
with 0 < PA < 1. It is known that the entanglement entropy
of a pure state is equivalent to the thermal entropy [14]. If
the entanglement inside A is not enough to cover the whole
thermal entropy of the thermal state that should be realized in
A, a series of quantum states in A needs to entangle with its
bath B in order to offset the deficiency.

Naively, the purity controls the ratio of the thermody-
namic entropy assigned to the internal entanglement and to
the classical mixture. However, in exploring a state whose
density matrix is unknown a priori, there is no clue to find the
necessary and sufficient number of pure states to be mixed.
This is because there is no way of measuring the ratio of the
two contributions to the thermodynamic entropy in a mixed
state. If the number of mixtures is unavailable neither the
thermal equilibrium state nor the purity in Eq. (1) using the
density matrix is defined. Therefore we need alternative ways
to evaluate the purity and to characterize the TMQ state.

In this paper, we consider a series of TMQ states gener-
ated by random sampling methods and obtain an analytical
formula that describes the purity by a measurable quantity.
Although the constructions differ between such stochastic
TMQ state and the TMQ state obtained as a subsystem of
a TPQ state in Fig. 1(b), these two can be identified as the
same, which we will discuss shortly in Sec. II B. Here, in
stochastiacally constructing a TMQ state, the random sam-
pling average corresponds to entangling the target region A
with B in Fig. 1(b). There are various stochastic finite tem-
perature numerical solvers for quantum many-body systems.
The quantum Monte Carlo method makes use of the Markov
chain process to efficiently select a series of states, and the
snapshots realized at each Monte Carlo step altogether form
a mixed state. Random sampling methods approximating the
finite temperature state by the mixture of matrix product states
(MPS) or tensor network states are also developed [14–18].
The common strategy of random sampling methods is to gen-
erate a series of states based on independent sampling and
average them to calculate physical quantities. The law of large
numbers guarantees that the result coincides with the exact
quantity for a large enough number of samples. However, the
variance of a physical quantity is the only measure to judge the
quality of the wave functions, and a necessary and sufficient
number of samples are observed only empirically. We show
that the purity can be evaluated using “normalized fluctuation
of partition function (NFPF),” which is a key quantity we in-
troduce in this paper. The NFPF is proportional to the number
of samples mixed.

Previously, purity has been measured directly using Eq. (1)
experimentally in ultra-cold atom systems for only a few
numbers of atoms, which is used to judge whether the system
keeps its isolated nature during the time evolution [19]. The
bulk TMQ state we consider is far difficult to deal with both in
theory and experiments because the Hilbert space dimensions
grow exponentially with the number of degrees of freedom.
Even in such a case, our theory enables us to calculate the
purity without using Eq. (1).

We add some remarks that there is a necessity of obtaining
a TMQ state rather than TPQ state in quantum condensed
matter. In these systems, the TPQ state is basically obtained by
operating the nonunitary imaginary time evolution to the Haar
random initial state. In the context of quantum information,
there has been a development to efficiently construct a unitary
2-design that reproduces the second moment of the finite
dimension Haar random state, which may even amount to N
of a few hundred [20–28]. This indicates that the high-quality
initial state for the thermal state is available. However, the
nonunitary operation to such a state is still difficult to attain,
and there is a need to deal with a lower-purity TMQ state
which can be much easily realized. The present framework
can be applied to the studies of quantum information that
considers a general nonunitary operation.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the definitions of the related physi-
cal quantities and explain the overall physical implication
of obtaining the form of purity. In Sec. III, we develop
an analytical framework for measuring NFPF and purity in
the random sampling methods. Section IV is devoted to the
demonstration to verify the formula given in Sec. III using two
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numerial methods, and we summarize our framework finally
in Sec. V.

II. PRELIMINARIES

In this section, we introduce some basic notations and
preliminary concepts relevant to our theory, rephrasing the
context in the introduction.

A. TMQ states

In the conventional framework of statistical mechanics, the
density matrix operator of a Gibbs state for a given Hamilto-
nian Ĥ is

ρG
β = e−βĤ

Z (β )
, (4)

where Z (β ) = Tre−βĤ is the partition function at temperature
β−1. The von Neumann entropy SvN evaluated using the den-
sity operator is equivalent to the thermodynamic entropy,

Sth(β ) = SvN
(
ρG

β

) = −Tr
(
ρG

β ln ρG
β

)
. (5)

Since the Gibbs state is a mixture of an exponentially large
number of pure states, its purity is as small as

PGibbs = Tr
[(

ρG
β

)2] = Z (2β )

Z (β )2

= exp[−Nsth(β̃ )] (β �∃ β̃ � 2β ), (6)

and approaches zero exponentially with increasing system
size N . A Gibbs ensemble average of a local operator Ô acting
on a D-dimensional Hilbert space spanned by an orthonormal
set of states {|r〉} for a system of size N is given by

〈Ô〉β = Tr
(
ρG

β Ô
) = 1

Z (β )

D∑
r=1

〈r| e−βĤ/2Ôe−βĤ/2 |r〉 , (7)

Z (β ) =
D∑

r=1

〈r| e−βĤ |r〉 . (8)

Contrarily, the TPQ state describes the thermal equilibrium
solely by itself. One way to construct it in a D-dimensional
Hilbert space is to prepare an initial state |0〉 = ∑D

r=1 cr |r〉
using a randomly chosen D complex numbers {cr} generated
independently from the complex Gaussian distribution, and
perform an imaginary time evolution as

|β〉 = e−βĤ/2 |0〉 . (9)

The physical quantities 〈Ô〉TPQ
β = 〈β|Ô|β〉 / 〈β|β〉 matches

the Gibbs ensemble average within the fluctuation as(〈Ô〉TPQ
β − 〈Ô〉β

)2 � (const.) × ‖Ô‖2e−Nsth (β̃ ), (10)

where · · · represents a random average and (const.) is a
constant independent of system size N . Since the density
operator for the TPQ state is ρ

TPQ
β = |β〉 〈β| /〈β|β〉, we find

P = Tr[(ρTPQ
β )2] = 1. As a consequence of typicality, for a

local density matrix of subsystem A given as

ρA = TrBρ
TPQ
β , (11)

the entanglement entropy follows a volume law in Eq. (3).
Since Eq. (10) is the random fluctuation which decreases
exponentially with increasing N , the TPQ state obtained in
the form Eq. (9) is basically regarded as pure. We use the
TPQ state at size N as a quantitative criterion for P = 1 to
determine the purity of the mixed state of the same size.

In obtaining the actual form of TMQ states in a quan-
tum many-body state of finite size and at finite temperature,
numerical methods with some approximations are used. The
following section focuses on the random sampling method as
the most frequently used approach.

B. Random sampling methods

Although we want a standard ensemble average in classical
computers, performing the Gibbs ensemble average in Eq. (7)
is practically difficult, since D grows exponentially with sys-
tem size N . For a TPQ state in Eq. (9) the full description
of a D-dimensional quantum many-body state is limited to
N � 30. Therefore one needs to approximate the state in
the intermediate form of Eqs. (7) and (9) by sampling over
M � D different appropriately chosen states.

Random sampling method begins by preparing M-
independent set of states, {|ψ (i)

0 〉}M
i=1. These states are

generated from some given random distribution, which form
an identity operator when averaged over the distribution as

|ψ0〉 〈ψ0| = cÎ, (12)

with a positive constant c = 〈ψ0|ψ0〉/D. We obtain {|ψ (i)
β 〉}

from {|ψ (i)
0 〉}. Here, the condition for these method to work is

to have

|ψβ〉 〈ψβ | = ce−βĤ (13)

or, equivalently, ∣∣ψ (i)
β

〉 = e−βĤ/2
∣∣ψ (i)

0

〉
. (14)

For such states, the random averages of physical quantities
should coincide the Gibbs ensemble average as

〈Ô〉β = 〈ψβ |Ô|ψβ〉
〈ψβ |ψβ〉 , (15)

and free energy as

F (β ) = −β−1 ln 〈ψβ |ψβ〉 + β−1 ln c. (16)

If we sample enough large M, the law of large numbers gu-
rantees that the sample average

〈Ô〉samp
β,M =

∑M
i=1

〈
ψ

(i)
β |Ô|ψ (i)

β

〉∑M
j=1

〈
ψ

( j)
β |ψ ( j)

β

〉 , (17)

should match Eq. (15) with arbitrary precision. The density
matrix representing the corresponding TMQ state is given as

ρ(M ) =
∑M

i=1

∣∣ψ (i)
β

〉 〈
ψ

(i)
β

∣∣∑M
j=1

〈
ψ

( j)
β

∣∣ψ ( j)
β

〉 . (18)

We show that the necessary and sufficient M = Nsamp, can
be determined not empirically but based on the analytical
formula.
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We briefly mention that the random sampling method is
a basic operation to construct the quantum thermal equilib-
rium state, and the TMQ state described in Eq. (18) can be
regarded as one of the examples of the TMQ state we natu-
rally constructed in Fig. 1(b) as gedankenexperiment. Suppose
that we have a TMQ state in system A of size NA, which
can be interpreted in two ways; one is to regard this TMQ
state as a subsystem of a TPQ state in a larger-size system,
N = NA + NB. This is because it is known that any mixed
state can be purified by attaching proper extra degrees of
freedom. Therefore we can always find another subsystem
B that can form a TPQ state together with the numerically
generated TMQ state in A following Eq. (18), although there
is a facultativity in the choice and the size of B.

The other interpretation is to prepare some ideal TMQ
state A as a subsystem of a TPQ state (A + B). We can al-
ways perform a spectral decomposition of a TMQ state in
A to be described by

∑
i λi|i〉〈i|, for a given basis {|i〉}, and

by sampling the states following the distribution function
{λi}, one is able to approximately construct TMQ state as
a weighted stochastic mixture of {|i〉} in a computer. In our
random sampling method, the weight {wi,M}(M → ∞) im-
plicitly included in Eq. (18) and explicitly shown in Eq. (27)
corresponds to the distribution function {λi}.

C. Proper choice of sample average

The standard way of taking the averages over M samples is
often recognized as

〈Õ〉samp
β,M = 1

M

M∑
i=1

〈
ψ

(i)
β

∣∣Ô∣∣ψ (i)
β

〉〈
ψ

(i)
β

∣∣ψ (i)
β

〉 , (19)

where we use the normalized expectation values for all i =
1–M samples instead of evaluating the denominator and the
numerator separately as in Eq. (17). In such a case, the density
matrix of the mixed state is given as

ρ̃(M ) = 1

M

M∑
i=1

e−βH/2
∣∣ψ (i)

0 〉 〈
ψ

(i)
0

∣∣ e−βH/2〈
ψ

(i)
0

∣∣ e−βH |ψ (i)
0

〉 . (20)

Unfortunately, this seemingly widely accepted formulation is
wrong, since its M → ∞ limit does not extrapolate to the
proper canonical ensemble average, which we show in the
following.

Suppose we have a set of data
(
x(i) = 〈ψ (i)

β |Ô|ψ (i)
β 〉 , y(i) =

〈ψ (i)
β |ψ (i)

β 〉 )
, i = 1 ∼ M, where taking the random average,

we find x0 = x(i) = cTr(Ôe−βĤ ) and y0 = y(i) = cTr(e−βĤ ),
and the ensemble average of operator is given by 〈Ô〉β =
x0/y0. We now take

∑M
i=1 · · ·, which is the random average

of summation for M-samples generaged from the random
distribution (see Sec. III B using the same treatment).

Then, the random average of Eq. (17) is evaluated up to the
second moment of δx = x − x0 and δy = y − y0 becomes

(∑M
i=1 x(i)∑M
i=1 y(i)

)
= x0

y0
+ 1

M

(
x0

y3
0

δy2 − 1

y2
0

δxδy

)
. (21)

As for Eq. (19), the random average is given as

M∑
i=1

x(i)

y(i)
= x0

y0
− 1

y2
0

δxδy. (22)

Comparing these two, we find that the M → ∞ limit of the
former is x0/y0, but for the latter, the second moment remains
finite regardless of how large we take M.

To briefly summarize, the sample average that properly ap-
proximates the canonical ensemble average needs to be taken
as Eq. (17) using a set of data generated from the random
distribution. Although Eq. (19) may approximate x/y with
sufficient accuracy, it does not converge to the correct value.
Accordingly, the TMQ state should be represented by Eq. (18)
and not by Eq. (20).

D. What is the purity of the
random sampling method?

For a generalized ensemble average, we usually prepare a
set of normalized states {|φ(i)〉}Nsamp

i=1 that are generated by the
physically meaningful distribution function of that ensemble,
and for a given Nsamp, the physical quantities can be calculated
as

1

Nsamp

Nsamp∑
i=1

〈φ(i)| ÔA |φ(i)〉 , (23)

with sufficient accuracy. For example, the microcanonical en-
semble average is chosen from a uniform distribution in the
corresponding energy shell. The quantum state consisting of a
classical mixture of {|φ(i)〉}Nsamp

i=1 is represented by the density
operator

ρ(Nsamp) = 1

Nsamp

Nsamp∑
i=1

|φ(i)〉 〈φ(i)| . (24)

By assuming that the sampled states are orthogonal to each
other as 〈φ(i)|φ( j)〉 = δi j , we can determine the purity as

Pens = Tr[ρ(Nsamp)2] = 1

Nsamp
. (25)

This form suggests that P−1 is a quantitative measure of
how much the pure state is mixed in a TMQ state. However,
the purity in Eq. (25) does not hold in the random sampling
approach described in the preceding section. This is due to
the fact that the ensemble’s information is contained in the
imaginary time evolution; in Eq. (17) the norm of sampled
states 〈ψ (i)

β |ψ (i)
β 〉 depends on i, and the numerator incorporates

the weight of each sample. As a result, it differs from an
equally weighted sample average in Eq. (24). In other words,
although Eqs. (23) and (24) formally resemble Eqs. (19) and
(20), respectively, the former is physically meaningful but the
latter is not. Whilst, Eqs. (24) and (18) built on different dis-
tribution function, equivalently serve as approximate forms of
〈Ô〉β . Aside from that, the foregoing discussion is incomplete
because we do not know the actual value of Nsamp a priori nor
the purity.

In numerical simulations, Nsamp are typically determined
to suppress the variance of physical quantities within a
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predetermined error. The variance depends on the types of
physical quantities, for example, the variance of energy is sub-
stantially smaller than the variance of correlation functions. It
is also possible that Nsamp is overdetermined in order to ensure
accuracy. We want to obtain the necessary and sufficient value
of Nsamp which can serve as an effective dimension. Our goal
is to create a formula that starts with Eq. (1), and replaces
Eq. (25) with an explicit definition of purity. There, the def-
inition relies on the numerically measurable quantities rather
than on Nsamp. On top of that, we discuss the necessary and
sufficient sample number Me in the numerical calculation in
Sec. IV E.

III. PURITY AND EFFICIENCY
OF RANDOM SAMPLING METHODS

In this section, we start from the physical quantity called
“efficiency” denoted as η. It measures the degree of unifor-
mity of distribution of the weight of the samples. If all the
samples equally contribute to the averages, we find η = 1,
whereas if only a few of the samples contribute, η approaches
zero. We derive the formula that describes η by the normal-
ized fluctuation of partition function (NFPF). This NFPF is
found to be proportional to the number of samples Nsamp,
and finally, the purity of the TMQ state is described by
NFPF.

A. Efficiency

There was previously no criterion for evaluating and com-
paring different types of random sampling methods. Recently,
Goto et al. introduced the measure of efficiency of random
samplings for a general set of {|ψ (i)

β 〉}M
i=1 [18]. When M =

Nsamp, physical quantities are measured by a sample average
with sufficient accuracy, and a set of the state forms a TMQ
state. The sample average of observable Ô is written as [see
also Eq. (17)]

〈Ô〉samp

β,M
=

M∑
i=1

〈
ψ

(i)
β |Ô|ψ (i)

β

〉〈
ψ

(i)
β |ψ (i)

β

〉 〈
ψ

(i)
β |ψ (i)

β

〉∑M
j=1

〈
ψ

( j)
β |ψ ( j)

β

〉 , (26)

which takes the form of a weighted average of physical quan-
tities 〈ψ (i)

β |Ô|ψ (i)
β 〉 / 〈ψ (i)

β |ψ (i)
β 〉 with its weight given as

wi,M =
〈
ψ

(i)
β |ψ (i)

β

〉∑M
j=1

〈
ψ

( j)
β |ψ ( j)

β

〉 . (27)

Using the Shanon entropy of wi,M ,

SM = −
M∑

i=1

wi,M ln wi,M , (28)

the efficiency of random sampling methods is defined as

η = eSM

M
. (29)

If the weight {wi,M}M
i=1 has a uniform distribution we find

SM = ln M and η = 1, and otherwise we have η < 1. The
larger variance of wi,M the smaller η becomes. Therefore η

gives a quantitative measure of how uniformly the samples
contribute to give a higher efficiency in the calculation.

We illustrate the physical implications of efficiency η using
the analytical calculation, finally proving that it is connected
to the purity of a TMQ state. For the sake of clarity, we
introduce simplified notations of variables as

x(i) = 〈
ψ

(i)
β |Ô|ψ (i)

β

〉
, (30)

x0 = x = cTr(e−βĤ Ô), (31)

y(i) = 〈
ψ

(i)
β |ψ (i)

β

〉
, (32)

y0 = y = cZ (β ), (33)

where we sometimes abbreviate the superscript (i) when it is
not explicitly needed. The weight is rewritten as

wi,M = y(i)∑M
j=1 y( j)

. (34)

The goal of this section is to expand η up to the second order
of the fluctuation of random variables given as

δy = y − y0, δx = x − x0. (35)

For this purpose, we consider wi,M and take the average over
M → ∞ samples;

wi,M = y0 + δy(i)

y0M

1

1 + 1
y0M

∑
j δy( j)

= 1

M

(
1 + δy(i)

y0

)
+ O

(
1

M2

)
. (36)

Since
∑

i wi,M = 1, we find

wi,M = 1

M
, (37)

δwi,M = wi,M − wi,M = δy(i)

y0M
+ O

(
1

M2

)
, (38)∑

i

δwi,M = 0. (39)

In random sampling methods, y(i) takes the value independent
of i, which allows us to apply the relationship δy(i)δy( j) =
δi jδy2. Accordingly, we find

δwi,Mδw j,M = 1

y2
0M2

δy(i)δy( j) + O
(

1

M3

)
= δi j

y2
0M2

δy2 + O
(

1

M3

)
= δi j

M2
δz2 + O

(
1

M3

)
.

(40)

Here, we introduce a key quantity, δz2, of the present frame-
work defined as

δz2 = 1

y2
0

δy2 = Var(〈ψβ |ψβ〉)(〈ψβ |ψβ〉)2 , (41)

where Var(· · · ) is the sample variance of a variable (· · · ). We
denote δz2 as normalized fluctuation of partition function and
abbreviate it as NFPF.
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The entropy of weights is expanded up to the second order
of δwi,M as

SM = −
∑

i

wi,M ln wi,M

= −
∑

i

(
1

M
+ δwi,M

)
ln

(
1

M
+ δwi,M

)

= ln M − 1

M

∑
i

(1 + Mδwi,M ) ln(1 + Mδwi,M )

= ln M − 1

2M

∑
i

(Mδwi,M )2 + O(δ3), (42)

and using this, the efficiency η in Eq. (29) is given as

eSM

M
= exp

[
− 1

2M

∑
i

(Mδwi,M )2 + O(δ3)

]

= 1 − 1

2M

∑
i

(Mδwi,M )2 + O(δ3), (43)

whose random average becomes

eSM

M
= 1 − δz2

2
+ O

(
1

M

)
+ O(δ3), (44)

where we applied the relationship in Eq. (40). By taking the
limit M → ∞, we finally obtain

η = 1 − δz2

2
+ O(δ3) = exp

(
−δz2

2

)
+ O(δ3). (45)

This equation shows that the efficiency of the random sam-
pling method is an inverse exponential of NFPF. Intuitively, a
larger fluctuation of the norm means a larger variance in the
weights of random sampling, since NFPF represents the de-
gree of fluctuation of the norm of the finite temperature wave
function.

B. Random fluctuation

We now analytically evaluate the variance of physical
quantities in the random sampling method against the value
obtained by the Gibbs ensemble average and relate it to NFPF.
In the previous section, we assumed M → ∞ and expanded
the efficiency up to several leading orders of 1/M. However,
the following formula does not require M to be infinitely
large, and the equations are satisfied under the random average∑M

i=1 with the finite M samples generated from the random
distribution. Similarly to the process given in the previous
section, we expand the variance in terms of δx and δy up to
second order as( 〈ψβ |Ô|ψβ〉

〈ψβ |ψβ〉 − 〈Ô〉β
)2

=
(

x

y
− x0

y0

)2

=
(

1

y0
δx − x0

y2
0

δy + O(δ2)

)2

= 1

y2
0

δx2 − 2x0

y2
0

δxδy + x2
0

y2
0

δy2 + O(δ3)

� 1

y2
0

δx2 + 2‖Ô‖
y0

∣∣δxδy
∣∣ + ‖Ô‖2

y2
0

δy2. (46)

Here, ‖ · ‖ is an operator norm. Then, using the Cauchy-
Schwarz inequality we find∣∣δxδy

∣∣ =
∣∣∣∣∫ δxδydμ

∣∣∣∣ � ∫
|δxδy|dμ

�
(∫

|δx|2dμ

)1/2(∫
|δy|2dμ

)1/2

=
√

δx2

√
δy2.

(47)

The variance is rewritten as(
x

y
− x0

y0

)2

� 1

y2
0

δx2 + 2‖Ô‖
y0

√
δx2

√
δy2 + ‖Ô‖2

y2
0

δy2. (48)

Next, to further develop this inequality, we introduce the fol-
lowing important assumption;

Var(〈ψβ |Ô|ψβ〉) � (const.) × ‖Ô‖2Var(〈ψβ |ψβ〉), (49)

which is rewritten using δx and δy as

δx2 � (const.) × ‖Ô‖2δy2. (50)

Here, (const.) is a constant of order O(N0).
When we refer to the original random state as “Haar ran-

dom” in numerical calculations, it means the normalized state.
In general, the normalization of the initial state is quite com-
monly adopted in numerical calculations. Such normalized
initial states have the zero-variance of the norm by definition,
and accordingly, Eq. (49) breaks down at the relevant high-
temperature limit. Even in such a case, after the imaginary
time evolution, we acquire thermal states that typically ful-
fill Eq. (49). Here, we notice that the unnormalized initial
random states naturally apply to standard calculations, which
could provide superior results, although its implication had
not been examined so far. We notice in Appendix A the two
particular and exceptional cases where the assumption breaks
down at all temperatures; they utilize the energy eigenstates
to build random states. Such choice is rather unusual and for
the general choices of the basis for constructing a random
state, Eq. (49) naturally holds from low to extremely high
temperatures.

Now, by utilizing Eq. (49), Eq. (48) is converted to(
x

y
− x0

y0

)2

� (const.) × ‖Ô‖2

y2
0

δy2 = (const.) × ‖Ô‖2δz2,

(51)

or equivalently to( 〈ψβ |Ô|ψβ〉
〈ψβ |ψβ〉 − 〈Ô〉β

)2

� (const.) × ‖Ô‖2δz2. (52)

A similar evaluation can be given for the partition function
〈ψβ |ψβ〉 as ( 〈ψβ |ψβ〉

cZ (β )
− 1

)2

= δz2. (53)
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These equations show that the variance of physical quantities
is bounded by the NFPF. By using the relationship between
the efficiency and the NFPF in Eq. (45), we obtain( 〈ψβ |Ô|ψβ〉

〈ψβ |ψβ〉 − 〈Ô〉β
)2

� (const.) × ‖Ô‖2 ln

(
1

η

)
, (54)

( 〈ψβ |ψβ〉
cZ (β )

− 1

)2

� 2 ln

(
1

η

)
. (55)

The relationship between the variance of physical quantities
and the efficiency η in random sampling methods is thus
clarified using NFPF.

In the TPQ state, the assumption (49) is satisfied with
(const.) = 1 and the NFPF can be evaluated as

δz2
TPQ = Z (2β )

Z (β )2
= PGibbs = e−Nsth (β̃ ). (56)

Then, from Eq. (52), we immediately see that the random
fluctuations of the TPQ method decreases exponentially with
N and is easily suppressed to negligibly small values. In this
way, our formulation provides an alternative of Ref. [7] to
evaluate Eq. (10). Accordingly, the efficiency is calculated as

η � 1 − 1

2
e−Nsth (β̃ ), (57)

where we find η → 1 in the thermodynamical limit. The TPQ
method thus has the highest efficiency, e.g. for entropy density
of sth ∼ 0.1J at temperatures 0.1 � kBT/J � 1, where J is the
typical energy scale of the model, it is roughly η � 0.9 for
N � 20.

In Figs. 2(a) and 2(b), we show the NFPF of TPQ states
obtained for the two models with N = 16, 20, and 24 (for
numerical details, see Sec. IV B). We use the definition (41)
to obtain the data points and compare them with the solid
line derived by the analytical form (56) using the numeri-
cally obtained sth(β̃ ). The two are nearly identical. In the
low-temperature limit, we find δz2 → 1, which is verified
analytically.

In this way, the random fluctuation is exponentially small
which yields P ∼ 1, meaning that a single TPQ state can rep-
resent the thermal equilibrium. In the following, we evaluate
Prand of other methods by relying on the purity-1 of the TPQ
state of the same system size N .

C. Definition of purity

We start by introducing the density operator for a mixed
state consisting of M samples {|ψ (i)

β 〉}M
i=1, which gives the

expectation value in the form of Eq. (26),

ρ(M ) =
M∑

i=1

wi,M

∣∣ψ (i)
β

〉 〈
ψ

(i)
β

∣∣〈
ψ

(i)
β |ψ (i)

β

〉 . (58)

Then, the purity of this mixed state is given as

Tr[ρ(M )2] =
M∑
i j

∣∣ 〈ψ (i)
β

∣∣ψ ( j)
β

〉 ∣∣2
wi,Mw j,M〈

ψ
(i)
β

∣∣ψ (i)
β

〉 〈
ψ

( j)
β

∣∣ψ ( j)
β

〉 . (59)

FIG. 2. NFPF δz2 of the TPQ states for (a) transverse Ising model
in the Neél state (we have critical points at g = 1.0) and (b) Heisen-
berg model both in one-dimension. We take M = 20, 15, 8 samples
for N = 16, 20, 24, respectively. Data points with error bars are
directly calculated using Eq. (41) and solid lines are obtained by
using Eq. (56) and sth obtained in the same numerical calculations.

We now newly define random vaiables

Y (i j) = ∣∣ 〈ψ (i)
β

∣∣ψ ( j)
β

〉 ∣∣2
(i = j), (60)

Y0 = Y (i j), (61)

and rewrite Eq. (59) as

Tr[ρ(M )2] =
M∑

i=1

w2
i,M +

M∑
i = j

Y (i j)wi,Mw j,M

y(i)y( j)
. (62)

The first term is evaluated in the same manner as in Sec. III B
as

(first term) =
M∑

i=1

(
1

M
+ δwi,M

)2

= 1

M
+

M∑
i=1

(
2δwi,M

M
+ δw2

i,M

)
, (63)
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and by further taking a random average, we obtain

(first term) = 1

M
+ Mδw2

i,M

= 1

M

[
1 +

(
1 − 1

M

)
δz2

]
+ O(δ3). (64)

The second term of Eq. (62) is generally as small as the purity
of the Gibbs state, although it is difficult to derive analytically
its exact form. Still, to estimate its magnitude, the zeroth order
of expansion is sufficient, and by replacing all the variables
with their mean values we find,

(second term) =
M∑

i = j

Y0

M2y2
0

+ O(δ)

=
(

1 − 1

M

)
Z (2β )

Z (β )2
+ O(δ)

=
(

1 − 1

M

)
e−Nsth (β̃ ) + O(δ), (65)

which is indeed comparable to PGibbs in Eq. (6). Since they
serve as the lower bound of purity and approach zero expo-
nentially with N , we consider the second term as an offset,
and consider the purity Prand as those measured from this
offset. By considering only the first term, the random average
of Eq. (62) is reduced to

Tr[ρ(M )2] = 1

M

[
1 +

(
1 − 1

M

)
δz2

]
+ O(δ3) + e−�(N ).

(66)

Finally, we choose a number of random sampling M to a
physically meaningful “appropriate” value Nsamp and rewrite
the purity of the obtained mixed state as

Prand = 1

Nsamp

[
1 +

(
1 − 1

Nsamp

)
δz2

]
. (67)

Next discussion is about how the “appropriate” value Nsamp

is determined. For simplicity, we consider the random state at
finite temperature |ψβ〉, which satisfies

|ψβ〉 〈ψβ | = ρβ. (68)

The fluctuation of physical quantities is decomposed into two
terms.

〈(Ô − 〈Ô〉β )2〉β
= 〈ψβ |(Ô − 〈ψβ |Ô|ψβ〉)2|ψβ〉 + (〈ψβ |Ô|ψβ〉 − 〈Ô〉β )2.

(69)

The first term is the random average of quantum fluctuation
and the second term is the random fluctuation. In random
sampling methods, we try to decrease the random fluctuation.
The TPQ state maximizes the quantum fluctuation for arbi-
trary operators and suppresses the random fluctuation, and in
that sense, it is an ideal random state at finite temperature.
As a result, one can set Nsamp = 1 conceptually for TPQ
states. Then, Nsamp can be defined as the number of samples
required to obtain physical quantities with the same degrees
of accuracy as the TPQ state. Since the random fluctuation
of a physical quantity is inversely proportional to Nsamp, and

since the random fluctuation is bounded by NFPF, we reach
the representation,

Nsamp = δz2

δz2
TPQ

, (70)

where δz2
TPQ is the NFPF of the TPQ method.

By substituting Eq. (70) for Eq. (67), an explicit represen-
tation of the purity is obtained as

Prand = δz2
TPQ

δz2

(
1 + δz2 − δz2

TPQ

)
. (71)

Since we find δz2
TPQ → 1 for β → ∞, Prand = 1 is fulfilled

at zero temperature for any random sampling methods. This
property legitimates the definition of purity in Eq. (71) be-
cause all sampled states generated by the imaginary time
evolution approach the pure ground state. The form in Eq. (71)
allows us to evaluate the purity from the numerically mea-
surable quantities. This form is self-contained since δz2

TPQ is
obtained using Eq. (56) without knowing the TPQ state itself.
We note that it does not necessarily exclude the possibility of
other ways of describing purity.

So far, we have developed a set of formulas assuming that
{|ψ (i)

β 〉} are pure states. However, depending on numerical
methods the sampled states can sometimes be mixed states.
In such a case, it may be physically meaningful to consider
the corrections to Prand by measuring the purity for each
sampled state. The details will be discussed in Appendix B
using TPQ-MPS as an example.

IV. NUMERICAL DEMONSTRATION

In this section, we demonstrate that purity can be obtained
by evaluating the NFPF and using Eq. (71) for two different
random sampling methods, the RPMPS + T method and the
TPQ-MPS method.

A. MPS based methods

We consider two representative one-dimensional spin-1/2
models on a chain of length N ; a transverse Ising model whose
Hamiltonian reads

Ĥ = −4
N−1∑
i=1

Ŝz
i Ŝz

i+1 − 2g
N∑

i=1

Ŝx
i , (72)

and a Heisenberg model with

Ĥ =
N−1∑
i=1

Ŝi · Ŝi+1, (73)

where Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) is the spin operator at site i.

The two methods we apply are based on the MPS repre-
sentation of the wave functions. The MPS was first proposed
[29] and developed as a variational wave function [30–32]
for the density matrix renormalization group (DMRG) method
[33,34]. The general form of MPS in one-dimensional quan-
tum system with open boundary condition (OBC) is

|ψ〉 =
∑
{α}

∑
{i}

A[1]i1
α1

A[2]i2
α1α2

· · · A[N]iN
αN−1

|i1, i2, . . . , iN 〉 , (74)
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where the matrix A[m]im has χ × χ for each local degrees of
freedom i = 1, · · · , d , with d = 2 for the spin-1/2 models.
For edge sites, A[1]i1 and A[N]iN are 1 × χ and χ × 1, respec-
tively.

Since the computational memory for the description of
MPS scales linearly with Ndχ2, the methods using MPS can
afford a much larger system size compared to the diagonaliza-
tion method using the full Hilbert space. However, because of
the limited dimension of matrices χ , the entanglement entropy
of the subsystem is bounded as SA � ln χ ∝ N0

A , which is the
area law in one dimension. The ground state of a gapped
one-dimensional quantum many-body systems [35–38] or the
excited state with many-body localization [39–44], both hav-
ing the area law entanglement, are efficiently described by
a single MPS. Whereas it is evident that a single MPS in
Eq. (74) cannot cover the full entanglement in a finite temper-
ature state with the volume law entanglement. Therefore one
needs to mix large numbers of MPS, which is efficiently done
in the RPMPS + T method. The TPQ-MPS, on the other hand,
stores the volume law entanglement by a few sampled pure
states; they can hold more entanglement by using a special
type of MPS in which the auxiliaries are attached to both
edges of the open boundary.

A time-evolving block decimation (TEBD) [45] or time-
dependent DMRG (tDMRG) [46,47] can be used for the
imaginary time evolution of MPS, which is incorporated in
the core framework of the random sampling methods for finite
temperatures. Technically, the local Hamiltonian can be rep-
resented by a simple matrix product operator (MPO) [48] of
bond dimension χop, which allows for continuous operation
of the Hamiltonian and simplifies the procedure. The trans-
verse Ising and the Heisenberg models have χop = 3 and 5,
respectively.

Previously, major numerical approaches for finite tem-
perature utilizing MPS or tensor network were designed to
approximate the density matrix operator or a Gibbs state.
The matrix product density operator (MPDO) [49,50] approx-
imates the density operator of Gibbs state by the MPO. The
matrix product purification (MPP) [51] combines the physical
system and the auxiliaries of the same size and describes that
doubled system at finite temperature in an MPS form. The
minimally entangled typical thermal state (METTS) [52,53]
has a structure similar to the quantum Monte Carlo method,
successively generating a Markov chain of MPS. At each step,
the pure MPS state is obtained from the classical product state
by imaginary time evolution. To further accelerate the Markov
relaxation of METTS another algorithm that gives a better
projection to initial state is proposed [54]. These methods are
schematically shown in Fig. 3. The direct comparison of MPP
and METTS is given in Ref. [55], which showed that METTS
is more efficient at low temperatures.

Here, we briefly mention the adequacy of using MPS based
method for finite temperature calculation. It is established that
mutual information of the Gibbs state follows an area law
[56]. Since the mutual information is a quantity that includes
both the classical and quantum correlation [57], the quantum
correlation are localized and shall also follow the area law.
Consequently, the bond dimension of the MPO representa-
tion of the Gibbs state used in MPDO becomes moderately
small.

FIG. 3. Schematic illustration of the way how the imaginary
time evolutions in the MPS-based methods for finite temperature
are performed. (a) The initial state of MPP is maximally entangled
with an ancilla system at each site. The imaginary time evolution is
performed only on the physical system which is expected to reach the
purified form of the Gibbs state, and finally, the ancilla is traced out.
(b) In METTS, for each step, a classical product state is prepared as
an initial state that undergoes an imaginary time evolution. Then, by
performing an appropriate projective measurement, another classical
product state is generated, which is used as the initial state of the
next step. These processes form a Markov chain. (c) In the TPQ-MPS
method, the highly entangled random matrix product state connected
to the auxiliaries is chosen as the initial state and after the imaginary
time evolution of the physical system, the auxiliaries are finally
traced out.

Recently, the random sampling methods based on MPS
have been actively studied [14–18]. Their standard initial
state is the random matrix product state (RMPS) for OBC,
which takes the form of Eq. (74) by using the dχ × dχ

random unitary matrix as A[m]i
αβ = U(i,α)(1,β ) or U(1,α)(i,β )

[58,59]. These matrices fulfill the left or right canonical
form, respectively, and are shown schematically in Fig. 4(a).
The random phase product state (RPPS) is the RMPS with
χ = 1, described in other way round as |ψRPPS

0 〉 = ∑
{i}

exp(iθ [1]i1 ) exp(iθ [1]i2 ) . . . exp(iθ [1]iN ) |i1, i2, . . . , iN 〉, where
θ [m]im is chosen uniformly from [0, 2π ) [see Fig. 4(b)].

Unlike MPDO and MPP, these methods do not need to
increase the size of the Hilbert space by orders of magnitude,
and unlike the importance sampling used in METTS, the
process of samplings is parallelized. However, the efficiency
of the random sampling methods depends sensitively on how
the initial random states are chosen. For example, in RPPS
[17], the efficiency of the Heisenberg model with N = 100
is less than 0.05, which corresponds to δz2 ∼ 6, and since
δz2

TPQ is less than 10−8 from our evaluation (see Fig. 2),
Nsamp = δz2/δz2

TPQ can be huge. In contrast, by constructing
MPS wave functions with a relatively higher entanglement,
RPMPS + T and TPQ-MPS methods are able to efficiently
reduce the number of samplings. We demonstrate it quantita-
tively by using our framework in the following Secs. IV C and
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FIG. 4. Schematic diagrams of initial random states. (a) Standard
RMPS with OBC given in the form of Eq. (74) with A[m]i

αβ = U [m]
(1,α)(i,β ).

(b) RPPS with each triangle being a single local state, where the
system consists of their classical product state. (c) RPMPS + T
operating Trotter gate to the RPPS. (d) TPQ-MPS constructed by
replacing the 1 × χ and χ × 1 matrices A[1] and A[N] to χ × χ

matrices at left and right edges by adding the auxiliaris of χ × χ .

IV D. The schematic illustrations of these highly entangled
MPS wave functions are shown in Figs. 4(c) and 4(d) which
will be explained shortly.

B. Full-TPQ method

There are several methods to obtain the finite temperature
states equivalent to full-TPQ states, such as the quantum trans-
fer Monte Carlo method [60], the finite temperature Lanczos
methods [61], and the TPQ methods [6,7,62]. The variations
among them depend on how the initial random states are
prepared, and the comparative studies are given in Ref. [63].
Here, we adopt the unnormalized initial random states |ψ0〉,
slightly different from the Haar measure used in Ref. [6],
and apply the protocol called microcanonical TPQ (mTPQ)
method [6]. Instead of directly calculating the time evolutions
in Eq. (9), this method successively applies (l − ĥ) to the
initial state where l is a real number larger than the maximal
eigenvalue of ĥ = Ĥ/N . The k-th mTPQ state, |ψk〉 = (l −
ĥ)k |ψ0〉, is one of the TPQ states belonging to the energy shell
of energy density uk = 〈ψk|ĥ|ψk〉 / 〈ψk|ψk〉. The temperature
of this energy shell is given within the accuracy of O(1/N )
[6,64] as

kBTk = 1

βk
= N (l − uk )

2k
, (75)

which decreases roughly inversely proportional to k. The full-
TPQ state is written using a set of |ψk〉 as

|ψβ〉 = e−Nβl/2
∞∑

k=0

1

k!

(
Nβ

2

)k

|ψk〉 . (76)

We prepare a set of mTPQ states k = 1, . . . , kmax, to obtain
the physical properties within the temperature range of kBT �
kBTkmax . The NFPF in Fig. 2 are obtained using this protocol.

C. RPMPS + T method

The RPMPS + T approach chooses RPPS as initial random
states [17]. If one straightforwardly performs an imaginary
time evolution to RPPS, the lack of important sampling makes
the result inefficient by several orders of magnitude than the
other approaches. The RPMPS + T overcomes this issue by
operating a Trotter gate to RPPS, which is the unitary trans-
formation making the state entangled [18]. The schematic
diagram of the RPMPS + T is shown in Fig. 4(c). The Trotter
gate is described as a unitary operator

Û = e−iτ Ĥ ′
even e−iτ Ĥ ′

odd , (77)

where τ is a real number which we choose as 0.5 and
Ĥ ′

even(odd) is a sum of even(odd)-bond interactions of Trot-
ter Hamiltonian. Following Ref. [18], for the Heisenberg
model we apply a spin-1/2 XXZ chain Hamiltonian as Trotter
gate,

Ĥ ′ =
N−1∑
i=1

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + JzŜ

z
i Ŝz

i+1

)
, (78)

with Jz = 9.0 and take the number of gates to operate as
n = 1. For the calculation of the Heisenberg model with
N = 64 we take M = 500, which reproduced the results of
purification in Ref. [18]. We plot the energy and specific
heat of RPMPS + T down to kBT = 0.1J in Fig. 5 together
with the results of TPQ-MPS which we see shortly. These
RPMPS + T data reproduces the N = ∞ result of the exact
solution [65,66]. For the same RPMPS + T states, we calcu-
late δz2, η and Prand as shown in Fig. 5. We find a high enough
efficiency η � 0.6 that reproduces Ref. [18]. At kBT ∼ 0.5,
we find δz2 ∼ 1, while since δz2

TPQ ∼ 10−6 for the correspond-
ing full-TPQ state, the purity is suppressed to P � 10−6.

D. TPQ-MPS method

The TPQ-MPS shown in Fig. 4(d) is proposed by the
authors [14]. There, we confirmed that TPQ-MPS fulfills the
entanglement volume law in Eq. (3) throughout the whole
system at low temperature when the entropy density is sth �
(2 ln χ )/N , e.g., kBT � 0.5 with sth � 0.1J for N = 64, while
the volume law is satisfied for shorter length scale for higher
temperatures. Since typicality and the entanglement volume
law are two sides of the same coin, TPQ-MPS is regarded
as a good approximation of the TPQ state. To overcome the
small area-law bound of the entanglement, the TPQ-MPS
abandoned the standard expression of MPS in Eq. (74) and
attaches the auxiliary systems at both edges, having the same
degree of freedom as χ . These auxiliaries are the order-1
physical degrees of freedom that are not interacting with the
physical system, and thus can be practically neglected when N
is large enough. However, this small modification prevents the
entanglement entropy from going to zero at both edges of the
system: the entanglement entropy can grow with subsystem
size up to NA → N without “feeling” the bounds of entan-
glement, SA � 2 ln χ . This allows us to successfully extract
the thermal entropy from the entanglement entropy [14]. By
contrast, the Page curve of the standard MPS decreases to zero
near the boundary, significantly deteriorating the volume law
behavior.
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FIG. 5. (a) Energy density E/N and (b) specific heat C/N for the Heisenberg chain of N = 64 calculated using RPMPS + T method
and TPQ-MPS method. We take M = 500 samples for RPMPS + T method and TPQ-MPS method with χini = 1, and M = 100 samples
for TPQ-MPS method with χini = 10, 40. The exact solution of N = ∞ obtained by the quantum transfer matrix method [66] is shown for
reference. Regions highlighted in purple(χini = 1), green(10) and blue(40) are the range of distribution of the sampled data. (c) NFPF δz2 and
(d) efficiency η evaluated from Eq. (29) for the Heisenberg model with N = 64. (e) Relationships between η and δz2 for the data points of all
temperatures. (f) The purity of RPMPS + T and TPQ-MPS Prand, forming a TMQ state from Nsamp × χ 2

ini effective samples.

In the TPQ-MPS method, we start from RMPS with auxil-
iaries at both edges,

|ψ0〉 =
∑
{α}

∑
{i}

A[1]i1
α0α1

A[2]i2
α1α2

· · · A[N]iN
αN−1αN

|α0, i1, i2, . . . , iN , αN 〉 ,

(79)

where we take the bond dimension χ = χini for all matrices.
We perform the same set of calculation as mTPQ in Sec. IV B,
generating |ψk〉 = (l − ĥ)k |ψ0〉 successively. During the cal-
culation, the bond dimension χ becomes larger than χini,
which is decided so as to keep the truncation error less than
a given constant. Since χ varies depending on k and l , but
its denendence is ruled by the initial choice χini, the plots
we made are classified according to χini. The N dependence
of the results is negligibly small as we demonstrated in Ref.
[14]. Some details updated from Ref. [14] is given in Ap-
pendix C. To evaluate the quality of the TPQ-MPS, we first
perform the same set of calculation of as RPMPS + T for the
Heisenberg model with N = 64. Here, we take χini =
1, 10, 40, l = 1.0, and kmax = 500 which allows us to reach
kBTmin ∼ 0.1. The number of sample average is taken as M =
500 for χini = 1 and M = 100 for χini = 10 and 40 to suffi-
ciently suppress the sample variance of NFPF. However, for
standard physical quantities such as energy, the reduced M for
χini � 10 do not change the variance much. Here, notice that
M used for each calculation generally depends on the quan-
tities and is different from Nsamp defined to qualify the TMQ
states. Here, TPQ-MPS with χini = 1 exactly corresponds to
RPPS.

Figures 5(a) and 5(b) show the energy and the specific
heat. These results are shown to confirm that they overall
agree with each other, where we judge that they converge to

the values with visible but small differences due to different
χini or to different methods. We have previously shown in
Ref. [14] that energy density, specific heat, and susceptibility
calculated by TPQ-MPS for N = 16 with χ = 20 agrees well
with those obtained by the exact (full) diagonalization of the
same system size. Here, our data for N = 64 have no reference
data to directly compare with, while the exact solution for
N = ∞ takes a reasonably close value. The highlighted range
indicates the distribution of the sampled data for different
χini’s. Its relationship with the sample number Me and χini will
be discussed shortly in Sec. IV E.

Figures 5(c) and 5(d) show NFPF and the efficiency, re-
spectively, where the differences between different numerical
conditions become visible. The ones obtained for χini = 10
agree well with the RPMPS + T results. From the numerical
data, we find δz2 ∝ χ−2

ini , which means that Nsamp decreases
as ∝χ−2

ini . Intuitively, χ2
ini is the number of auxiliary degrees of

freedom attached to the system, which replaces the samplings.
Since the numerical cost of increasing χini by a few times is
small, the TPQ-MPS can gain a high efficiency as

η = exp
[
�

(
χ−2

ini

)]
, (80)

which agrees with Eq. (45). In our demonstration, by increas-
ing χini from 10 to 40, we are able to increase the efficiency
from η � 0.5 to ∼1 at the lowest temperature.

Meanwhile, focusing only on the bond dimension, the nu-
merical cost of taking one sample is roughly estimated as
O(χ3

ini ) considering the multiplications of the matrices, and
if the practical number of samples required should increase as
∝δz2 ∝ χ−2

ini , the overall cost will increase by ∝χini. However,
we further made analytical calculations assuming the RMPS
state, and found that δz2 can be expanded by χini to higher
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-0.2

FIG. 6. Results of the transverse Ising model with g = 0.5, N = 64 using TPQ-MPS with l = 5.0 and χini = 1, 10, and 40. (a) Energy
density E/N , (b) specific heat C/N , (c) NFPF δz2 and (d) efficiency η as functions of temperature. The number of samples are taken as M = 500
with χini = 1 and M = 100 with χini = 10 and 40. In (a), the ranges of distribution of the sampled data are highlighted in purple (χini = 1),
green (χini = 10), and blue (χini = 40). (e) Relationships between η and δz2. The data points with χini = 1, 10, 40 and different temperatures
form a unique line. The solid line is analytical prediction. In the region in which the NFPF is small, numerical results coincide with analytical
prediction but in the region in which the NFPF is large, it does not. This can be attributed to the influence of the term O(δ3) in Eq. (45). (f)
The purity from Eq. (71) of the TPQ-MPS method.

order as

δz2 = a

χ2
ini

+ b

χ4
ini

+ O
(

1

χ6
ini

)
, (81)

where a and b are constants [67]. Accordingly, the estimated
numerical cost is modified to

aχini + b

χini
, (82)

which no longer increases linearly with χini, but takes a
minimal value at finite χini. Therefore, considering both the
numerical resources and the relationships between δz2 and the
accuracy of the physical quantity at focus, the optimal χini can
be chosen.

In Fig. 5(e), the NFPF is plotted as a function of efficiency
for all different choices of χini and kBT . They collapse to a sin-
gle curve, which follows the analytical form Eq. (45) shown
in solid line where the NFPF δz2 is small. The formulation
given in the previous section is thus numerically confirmed.
Figure 5(f) is the purity Prand. Again, we find good agreement
between TPQ-MPS with χini = 10 and the RPMPS + T result.

To show that the tendencies found in the Heisenberg model
hold for other models, we perform the same set of calcula-
tions for the transverse Ising model with g = 0.5 for which
the ground state is in the Néel ordered state. Figures 6(a)–
6(d) show the energy, specific heat, δz2 and the efficiency η.
We choose N = 64, l = 5.0, and M = 500 with χini = 1, and
M = 100 with χini = 10 and 40. The energy and the specific
heat at χini = 10 and 40 show very good agreement with the
quantum Monte Carlo (QMC) results of the same N = 64; the
results of the TPQ-MPS and QMC should ideally coincide,
and the slightly visible differences remain smaller than the

errors of the QMC results (see also Ref. [14]). With increasing
χini, η increases particularly at higher temperatures, indicating
that choosing a large initial value of χini works effectively
to obtain accurate numerical results in TPQ-MPS which is
generally known for other variational methods like DMRG. In
Fig. 6(e) we again find that η as a function of δz2 for various
χini and temperature collapes to a single curve. Figure 6(f)
shows the purity Prand. The same tendency as those of the
Heisenberg model holds, while the absolute values of purity
becomes larger, because δz2

TPQ differs as we saw in Fig. 2.

E. Number of samples

We want to estimate the number of required samples MO in
measuring the physical quantity Ô to support its relationship
between our analytical results Eq. (70). The physical implica-
tion of Eq. (70) was such that the number of required samples
is proportional to δz2, while in the actual calculation, MO

differs depending on the choice of Ô even though we choose
the same Hamiltonian and the model parameters.

For a series of calculations performed in Figs. 5 and 6,
we try to make reasonable connection between Me of the
energy density e = E/N and δz2. In Figs. 5(a) and 6(a), we
presented the range of distribution of sampled data when tak-
ing M = 500 for χini = 1 and M = 100 for χini = 10 and 40,
highlighted with different colors, which we denote as �e.
The histograms of the distribution of the sampled data of
the transverse Ising model are shown in Figs. 7(a)–7(c) for
χini = 1, 10, and 40, where the width of the histogram is �e.

In general, the histograms are expected to follow a Gaus-
sian distribution and the width of the histogram is expected to
be roughly proportional to M1/2

e . If this standard applies, the
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FIG. 7. Histograms (a)–(c) and the weighted histograms (d)–(f) of the sampled energy density E/N of the transverse Ising model calculated
by TPQ-MPS in Fig. 6(a). We show the results for χini = 1, 10, 40 and kBT = 0.1, 0.5, 1, 2, 3, and 4. (g) Integrated n-largest weights w̃n

among M samples of the transverse Ising model as a function of n/M. The inset shows w̃n as a function of δen/�e. Here, δen is the difference
of energy evaluated for n and M samples from the largest weight. (h) Number of samples Me = M/n giving w̃n = 0.8 as a function of δz2 for
the transverse Ising and Heisenberg models. Solid line Me ∝ δz2 is the guide to the eye.

numerical error of our data becomes smaller for lower temper-
atures. It, however, contradicts the general tendency that the
numerical error is larger for lower temperatures. Therefore it
is natural to consider that the accuracy of the data does not
simply scale with �e.

To clarify this point, we present the modified hisgrams
measured not by 1 for each sample but by the sample-
dependent weight wi,M , in Eq. (27) as shown in Figs. 7(d)–
7(f). By comparing them with Figs. 7(a)–7(c), we find that
for χini = 1, the weighted histogram has a larger weight on
the lower energy side, and particularly at low temperature,
kBT = 0.1, one of the two peaks dissapear, namely it has no
influence on the averaged value. For χini = 40, the weight
seems to distribute uniformly while the width of the histogram
is already narrow and the obtained results should show enough
accuracy, as has been shown in Figs. 6(a) and 6(b) in compari-
son with the QMC results. These results indicate that for small
χini and low temperatures, the width of the histogram (or its
variance) does not provide a measure for numerical accuracy.

To extract the reasonable estimate of the quality of the
hisgram, we arrange the sampled data in the descending order
of their weight, and integrate them up to n-largest weight,
w̃n = ∑n

i=1 wi,M , as shown in Fig. 7(g). When χini = 1 and
kBT = 0.2, only n = 6 samples among M = 500 contribute to
80% of the whole weight, whereas for χini = 40 and kBT = 1,
w̃n increases almost linearly with n/M, namely the distri-
bution is close to uniform and η ∼ 1. Although we are not
able to measure the accuray of E/N on the same ground for
these different numerical conditions, the diffence between the
energy densities evaluated for these top n-samples and for
M-samples, δen, will provide us a clue. We show in the inset

the relationships between w̃n and the δen/�e, which behave
linearly, having the slopes of the same order. Based on these
results, we estimate Me as such that the value of n that gives
w̃n = 0.8 [gray line in Fig. 7(g)], to be 1/Me; this means that
we need to collect Me-sample data in order to accumulate
the weight of w̃n = 0.8 of the histogram. Figure 7(h) shows
Me as a function of δz2 obtained for kBT = 0.1, 0.5, 1 and
χini = 1, 10, 40 for the two models. When δz2 � 1, the data
scale linearly, whereas for smaller δz2, we already find Me to
be of order 1, which means that the system is relatively pure
and we only need a few samples. We checked that Me obtained
by setting, e.g., w̃n = 0.9, differs only by few factors without
changing the profile of Fig. 7(g).

The practical usage of Me should be such that to compare
the quality of data from different numerical conditions such as
χini, or the data from different methods. The difference in δz2

tells us the difference in the order Me to find a similar quality
of accuracy. In fact, the RPPS method corresponding to our
χini = 1 was reported to require more than a few hundred
samples, and in Fig. 7(h) we indeed see almost two orders
of magnitude different Me compared to our TPQ-MPS with
χini = 10 and 40.

V. SUMMARY AND DISCUSSION

We introduced a systematic way of viewing a series of
thermal equilibrium states with purity 0 < P < 1, which we
named “thermal mixed quantum (TMQ) states.” Our theory is
based on the framework of random sampling method; start-
ing from a set of M independent states {|ψ (i)

0 〉}M
i=1 generated

from a random distribution, we performed an imaginary time
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evolution to obtain a set of states as, |ψ (i)
β 〉 = e−βĤ/2 |ψ (i)

0 〉.
The norm 〈ψ (i)

β |ψ (i)
β 〉 averaged over the samples is the partition

function Z (β ) of a TMQ state consisting of {|ψ (i)
β 〉}M

i=1. At
the same time, since this norm depends on i, the average
of the physical quantities over i = 1–M becomes a weighted
average, with its weight being proportional to the norm. The
efficiency of the random sampling method is the largest when
all the samples equally contribute, which means zero fluctu-
ation of the norm. Whereas the efficiency is lowered when
the norm largely varies from sample to sample. Based on this
consideration, we introduced a quantity called “normalized
fluctuation of the partition function (NFPF),” denoted as δz2,
and showed analytically that the efficiency is described as η =
e−δz2/2. The physical quantities evaluated by most of the TMQ
states obtained by random sampling methods are bounded by
the NFPF. This fact further endows the NFPF with the physi-
cal meaning that it provides a number of samples M = Nsamp

to form a TMQ state. However, Nsamp itself remains concep-
tual, since in practice, the necessary and sufficient number
of samples MO to properly evaluate the physical quantity Ô
differs for different Ô. We showed numerically that Me for the
energy density is proportional to δz2 when the TMQ state is
enough far from pure.

The density matrix of the TMQ state is given as a weighted
mixture of the density matrix of sampled pure states, and the
purity, which is the trace of the square of this density matrix,
is described using NFPF. Accordingly, the purity of a TMQ
state is expressed solely by NFPF, and its form is roughly
the ratio of NFPF of the TPQ state against that of the TMQ
state. Therefore the purity evaluated using NFPF has a phys-
ical implication of an effective dimension of the TMQ state.
Previously, purity had rather been a conceptual quantity that
was not available unless the wave function of the mixed state
was known a priori. Our theory provides the explicit form of
purity and related quantities that are calculated in numerical
experiments. We successfully applied the MPS-based random
sampling methods, TPQ-MPS and RPMPS + T, to our theory
and confirmed our analytical results.

We note here that the present theory cannot be directly
applied to Markov-chain-based random sampling methods,
such as the quantum Monte Carlo method and METTS. This
is because in our analytical calculations we have performed
the random average by assuming that the sampled states are
independent of each other. With a few modifications, this
problem can be resolved; when employing Markov chains,
we can guarantee the independence between sampled states
by taking samples at time intervals that are sufficiently longer
than the timescale of the Markov chain’s autocorrelation.
NFPF and purity are evaluated by carefully performing these
calculations. However, NFPF is no longer a suitable signal
for determining Nsamp. This is because Nsamp ∝ (NFPF) ×
(autocorrelation), where the second biggest eigenvalue of the
transition matrix can be used to estimate the autocorrelation
of a Markov chain.

While the present theory targets a TMQ state, our formu-
las are straightforwardly applied to any of the mixed states
generated by random sampling methods, regardless of the
construction of the wave function or the numerical details to
calculate the TMQ states. Suppose that we want to obtain a

mixed state that follows a distribution function represented by
an operator F̂ = F (Ĥ ). The expectation values of operator Ô
for this distribution are given as

〈Ô〉F = Tr(F̂ Ô)

ZF
, (83)

with ZF = Tr(F̂ ). A mixed state {|ψ (i)
F 〉} obtained by the ran-

dom sampling method can approximate Eq. (83) as

〈Ô〉samp
F,M =

∑M
i=1

〈
ψ

(i)
F |Ô|ψ (i)

F

〉∑M
j=1

〈
ψ

( j)
F |ψ ( j)

F

〉 . (84)

Here, instead of performing an imaginary time evolution, we
operate F̂ 1/2 to a set of random states {|ψ (i)

0 〉} and obtain∣∣ψ (i)
F

〉 = F̂ 1/2
∣∣ψ (i)

0

〉
. (85)

The purity and the necessary and sufficient number of samples
Nsamp is given by the same definition as those of the TMQ state
where we consider the NFPF of the partition function, ZF . For
the Boltzmann distribution, F̂ = e−βĤ we find a TMQ state.

There is a recently growing demand for acquiring a tool
to evaluate purity. An algorithm called quantum imaginary
time evolution (QITE) is developed for quantum computers
[68]. Although QITE rather remains a toy protocol since the
computing cost is no smaller than that of the classical tensor
network calculations, it is applicable to ground states and
TMQ state calculations. In Ref. [69], the thermal properties
of the four-site system were studied by performing QITE on
IBM’s quantum computer. They adopted a finite temperature
sampling method similar to the RPPS method. However, with
increasing system size, QITE rapidly loses sample efficiency.
There, they pointed out the importance of comparing diverse
sampling methods, which can be done using the norm of the
state after QITE is performed by using our definition of NFPF
and purity. In this way, the comparison of various random
sampling methods to obtain a mixed quantum wave function
will become increasingly important in several fields including
statistical mechanics and condensed matter, and computer
science.
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APPENDIX A: COUNTER EXAMPLES
OF ASSUMPTION (49)

The inequality Eq. (54) relies on the assumption given in
Eq. (49). Although Eq. (49) is valid for most cases, there are
two particular and exceptional counterexamples.
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The first one is the method using random phase state (RPS)
[71]; for a D-dimensional Hibert space, a full set of energy
eigenstate {|n〉} is used as a basis, and the RPS at infinite
temperature is given as∣∣ψRPS

0

〉 =
∑

n

eiθn |n〉 , θn ∈ [0, 2π ), (A1)

where θn are uniformly distributed random variables. By the
imaginary time evolution, we obtain a pure state at finite
temperature β−1 as |ψRPS

β 〉 = e−βĤ/2 |ψRPS
0 〉. Since the Hamil-

tonian is written in the form of a spectral decomposition using
the chosen basis as Ĥ = ∑D−1

n=0 En |n〉 〈n|, it commutes with
the imaginary-time-evolution operator, and the right-hand side
of Eq. (49) is exactly equal to zero. For operator Ô that
does not commute with the Hamiltonian, the left-hand side
of Eq. (49) is larger than zero. Therefore the assumption
is broken despite that |ψRPS

β 〉 is typical as follows; one can
evaluate

Var
(〈
ψRPS

β

∣∣Ô∣∣ψRPS
β

〉) =
∑
m =n

e−β(Em+En )| 〈m|Ô|n〉 |2, (A2)

which has O(D2) terms. Therefore the variance of the expec-
tation value of a physical quantity is bounded as

(〈
ψRPS

β

∣∣Ô∣∣ψRPS
β

〉〈
ψRPS

β

∣∣ψRPS
β

〉 − 〈Ô〉β
)2

� 〈Ô2〉2β e−Nsth (β̃ ). (A3)

meaning that RPS is typical.
From the above counterexample, one might expect that the

thermal state is typical if Var(〈ψβ |ψβ〉) = 0. However, it is not
necessarily the case as we see in the second counterexample.
This time we use the random state which we call random
Bloch state (RBS),

∣∣ψRBS
0

〉 =
D−1∑
n=0

einθ |n〉 , θ ∈ [0, 2π ), (A4)

which has only one random variable. As in the RPS, RBS
also show no fluctuation of operators which commute with the
Hamiltonian. Hence, Var(〈ψβ |ψβ〉) = 0, and the assumption
Eq. (54) is broken. In contrast to the RPS, the RBS is not
typical; this time, we find

Var
(〈
ψRBS

β

∣∣Ô∣∣ψRBS
β

〉)
=

∑
m =n,k =l
m+k=n+l

e−β(Em+En+Ek+El )/2 〈m|Ô|n〉 〈k|Ô|l〉 , (A5)

which includes O(D3) parameters, and becomes much larger
than that of the RPS. Therefore the variance of a physical
quantity can not be bounded.

The reason why the RPS and the RBS break the assumption
(49) is that we use the information of energy eigenstates when
we construct these random states. In the actual calculation, the
full information of energy eigenstates is usually inaccessible,
and Eq. (49) is naturally expected.

APPENDIX B: DEFINITION OF PURITY
FOR A RANDOMLY SAMPLED MIXED STATES

In deriving Eq. (71), we assumed that the samples are pure
states. However, some methods sample the purified mixed
states; each sampled state |ψ (i)

β 〉 is pure but it consists of a
physical system A and the ancilla or auxiliaries B, as we saw
in Fig. 3. One is then able to formally obtain the mixed states
in the system A by tracing out the degrees of freedom in B as

σ
(i)
β = TrB

∣∣ψ (i)
β

〉 〈
ψ

(i)
β

∣∣ . (B1)

Here, we reformulate the purity of system A using the sampled
mixed states. Random variables y(i) and wi,M in Eqs. (32) and
(34) are rewritten as

y(i) = Trσ (i)
β , wi,M = y(i)∑M

j=1 y( j)
. (B2)

Because the expectation value is given as

〈Ô〉samp
β,M =

M∑
i=1

wi,M

Tr
(
σ

(i)
β Ô

)
y(i)

, (B3)

the density operator becomes

ρ(M ) =
M∑

i=1

wi,M

σ
(i)
β

y(i)
. (B4)

Then, the purity of this density operator is given as

Tr[ρ(M )2] =
M∑
i j

wi,Mw j,M

Tr
[
σ

(i)
β σ

( j)
β

]
y(i)y( j)

=
M∑

i=1

w2
i,M

Tr
[(

σ
(i)
β

)2]
(y(i) )2

+
M∑

i = j

wi,Mw j,M

Tr
[
σ

(i)
β σ

(i)
β

]
y(i)y( j)

. (B5)

However, unlike the case given in the main text, the random
average of Eq. (B5) is not analytically evaluated, since they
are the combinations of three different quantities that follow
different distributions, wi,M , y(i) and σ

(i)
β . Instead, we make a

crude approximation of factorizing the random average into
the random averages of three constituents. This process corre-
sponds to replacing the three parts with their mean numbers,
and provide an order estimate of Eq. (B5).

The random average of the first term in Eq. (B5) is evalu-
ated as

(first term)

=
M∑

i=1

(
w2

i,M

Tr
[(

σ
(i)
β

)2]
(y(i) )2

)
�

M∑
i=1

w2
i,M

(
Tr

[(
σ

(i)
β

)2]
(y(i) )2

)

� Pave
1

M

[
1 +

(
1 − 1

M

)
δz2

]
, (B6)

where Pave = Tr(σ 2
β )/Tr(σβ )2 is the averaged purity of sam-

pled mixed states. The random average of the second term in
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FIG. 8. The purity defined in Eq. (B8) calculated for the physical
system in TPQ-MPS method for (a) spin-1/2 Heisenberg chain and
(b) transverse Ising chain with g = 0.5. We demonstrate the TPQ-
MPS method with χini = 1, 10, 40 and the RPMPS + T method.
Insets show the averaged purity Pave of each sampled TPQ-MPS.

Eq. (B5) is transformed as

(second term) =
M∑

i = j

(
wi,Mw j,M

Tr
[
σ

(i)
β σ

(i)
β

]
y(i)y( j)

)

�
M∑

i = j

wi,Mw j,M

Tr
[
σ

(i)
β σ

(i)
β

]
y(i)y( j)

� δz2
TPQ

(
1 − 1

M

)(
1 − 1

M
δz2

)
. (B7)

By combining the above two and substituting the appropriate
number of samples M = Nsamp = δz2/δz2

TPQ, we obtain an
expression of purity for mixed state sampling,

P ′
rand = Pave

δz2
TPQ

δz2

(
1 + δz2 − δz2

TPQ

)
+ δz2

TPQ

(
1 − δz2

TPQ

δz2

)(
1 − δz2

TPQ

)
. (B8)

This expression is reasonable from several perspectives. In
the low-temperature limit β → ∞, we find P ′

rand = 1, since
δz2

TPQ = 1 and Pave = 1. This meets the fact that the ground
state wave function has a purity-1. If we apply the TPQ state
with δz2 = δz2

TPQ to this form, we find P ′
rand = 1. It is impor-

tant to guarantee that P ′
rand is larger that the purity of the Gibbs

FIG. 9. Bond dimension χ of MPS of a k-th TPQ-MPS state
as a function of microcanonical temperature kBTk in Eq. (75) for
a transverse Ising model with g = 0.5 for the same calculation as
Fig. 6. We plot the cases with χini = 1, 10, and 40.

state PGibbs, which is satisfied as

P ′
rand − PGibbs

= (Pave − PGibbs)
δz2

TPQ

δz2

(
1 + δz2 − δz2

TPQ

)
� 0. (B9)

This equation takes the form of the multiplication of (Pave −
PGibbs) and Eq. (71). The classical mixture is attributed to
the number of sampling, Nsamp, which appears in the latter.
Whereas, Pave is responsible for the entanglement with the
bath which is explicitly introduced as auxiliaries. The purity
in Eq. (71) is thus the purity of states including the auxiliaries,
and Eq. (B8) is the purity of the physical system without
auxiliaries.

Figure 8 shows the purity in Eq. (B8) for TPQ-MPS which
has auxiliaries. We demonstrate the results of the spin-1/2
Heisenberg chain and the transverse Ising chain with g = 0.5
corresponding to the ones in Figs. 6 and 5, respectively. In
both models, P ′

rand of TPQ-MPS with χini = 10 and 40 has
almost the same curve; P ′

rand of TPQ-MPS is independent
of χini, because Prand scales as χ2

ini and Pave scales as χ−2
ini .

The RPMPS + T has relatively high purity when we focus on
the physical system. The present benchmark result supports
the high efficiency of the TPQ-MPS method; the dimension
χini of the auxiliaries gives the degree of mixing, and the
number of samples to take can be reduced very efficiently as
χ−2

ini .
We notice that our formula (B8) can be applied to sub-

systems of the TPQ state which we introduced in Sec. I as
an example of TMQ states. In that case, random fluctuations
are suppressed to the same degree as the TPQ state, and we
obtain δz2 � δz2

TPQ and then P ′
rand � Pave. Here, Pave coin-

cides with the value calculated in Ref. [13]. Our discussion
in Sec. I is justified in the framework of our theory of random
samplings.

APPENDIX C: DETAILS OF THE TPQ-MPS METHOD

In Ref. [14], the authors have proposed the TPQ-MPS
protocol which is applied in the present calculation. Here,
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we briefly explain the details updated from Ref. [14]. Pre-
viously, we prepared the common bond dimension χ for all
matrices and auxiliaries in the system, and kept the maximum
bond dimension to this value throughout the calculation. In
such a case, we found that the results depend much on l . In
general, for larger l , operating (l − ĥ) will not change the
MPS wave function much and the truncation error becomes
smaller. However, there is a trade-off that for larger l it takes
more steps k to reach the low-temperature mTPQ state. In
the previous Ref. [14], these two tendencies needed to be
optimized by varying l . In the present calculation, we set
χini as an initial value of χ . Each time we operate (l − ĥ),

the bond dimension increases from χ to χ × χop, which is
truncated to a new χ by keeping the truncation error smaller
than 10−7 independently for each bond after we transform
the MPS to a canonical form. As we demonstrate in Fig. 9,
the bond dimension started at χini = 1, 10, 40 exceeds χini

at k � 1, where we plot χ as a function of kBTk for the kth
microcanonical state. However, the overall χ depends much
on χini, and accordingly, NFPF and purity depend systemat-
ically on χini. This means that the initial quality of RMPS
dominates the purity of the TPQ-MPS. We also confirmed that
the l dependence that influenced the quality of truncation in
the previous protocol disappears by this update.
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