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Fundamental inequalities in the Stoner-Wohlfarth model
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We report two fundamental inequalities in the Stoner-Wohlfarth model. Specifically, we investigate the
theoretical limit for the initial magnetic susceptibility in a system described by the Stoner-Wohlfarth approach.
We also find analytical solutions for the magnetization in the low-field regime and obtain the borderline value
for the uniaxial anisotropy constant in such an ideal Stoner-Wohlfarth system. We go beyond and introduce a
general mean-field theory for interacting Stoner-Wohlfarth-like systems, thus estimating how the initial magnetic
susceptibility is affected by the dipolar and exchange interactions inside the system. By means of a simple
insight from a fundamental inequality for the magnetic susceptibility of an ideal Stoner-Wohlfarth system, we
show its violation is a signature of the existence of exchange interactions between nanoparticles in an interacting
Stoner-Wohlfarth-like system.
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I. INTRODUCTION

For more than a century, the dependence of magnetiza-
tion on magnetic field has drawn attention as a signature of
magnetic materials, bringing fundamental insights into the
physical mechanisms involved in magnetization dynamics. On
the theoretical side, approaches have been developed to ad-
dress the magnetic properties of magnets, capturing essential
features of the magnetization process [1–7]. One celebrated
example that has shaped our thinking despite its simplicity is
the Stoner-Wohlfarth (SW) model [8]. This model represents a
theoretical approach often used to simulate the expected mag-
netic properties of noninteracting uniaxial anisotropy blocked
particle systems. The random SW model appears to be a very
useful tool to predict important parameters observed in real
noninteracting systems. For interacting systems in turn, the
presence of dipolar and/or exchange interactions affecting
the magnetization dynamics makes the description of all the
magnetic properties a hard task.

Within this framework, magnetic nanoparticles and their
wide diversity provide a fascinating playground for theoretical
and experimental investigations of the magnetic properties in
both noninteracting and interacting systems. From a historical
point of view, magnetic nanoparticles have been the focus of
numerous studies for several decades due to their challenging
physical properties and potential for application [9,10]. Per-
haps most of the progress on the discovery of novel materials
and the exploration of the dynamic magnetic response in
diverse particle systems has been driven by the technologi-
cal demand. Within this perspective, magnetic nanoparticles
have appeared, for instance, in the context of biomedical
engineering [11–18], as well as in a wide variety of techno-
logical applications [19–22]. Nevertheless, recent advances in
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the field of magnetization dynamics have stimulated renewed
interest in phenomena involving the interactions between
magnetic nanoparticles. For magnetic systems, it is well
known that their magnetic properties are dependent on numer-
ous issues, including experimental parameters employed in
the production of the sample and features owing to the chem-
ical composition [14,23–30]. For nanoparticles, in addition,
the interactions between particles have a key role in all the
magnetic properties and magnetization dynamics [4,31–39].
The presence and intensity of such interactions have often
been explored by employing remanence plots [40–44]. While
several aspects of the interactions have been the subject of
recent analysis, it remains unclear whether or not there is a
simple, straightforward way to relate the general features of
a system, such as the magnetic susceptibility, and the type of
interaction between particles contributing to its properties and
dynamics.

In this paper, we derive two fundamental inequalities in
the context of the Stoner-Wohlfarth model. We investigate the
theoretical limit for the initial magnetic susceptibility in a sys-
tem described by the SW approach, find analytical solutions
for the magnetization in the low-field regime, and obtain the
borderline value for the uniaxial anisotropy constant in such
an ideal SW system. Going further, we introduce a general
mean-field theory for interacting SW-like systems, and we
also estimate how the initial magnetic susceptibility is affected
by the dipolar and exchange interactions inside the system.
Then, using a fundamental inequality for the magnetic sus-
ceptibility of an ideal SW system, we show its violation is a
signature of the existence of exchange interactions between
nanoparticles in an interacting Stoner-Wohlfarth-like system.

II. THEORETICAL APPROACH AND DISCUSSION

In this section, we initially give a brief overview of the
Stoner-Wohlfarth model to establish the basis of our model
and make clear the nomenclature employed in this work. Here,
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FIG. 1. Schematic diagram of the theoretical system. Here, we
show just a single particle with uniaxial magnetic anisotropy (double
arrow). We consider �H to be the magnetic field vector and �ms to
be the magnetization vector, the latter having an amplitude equal to
the saturation magnetization. Thus, α is the angle between �H with
respect to the uniaxial magnetic anisotropy, while θ is the angle
between �ms and the direction of the anisotropy.

it is worth mentioning that the term Stoner-Wohlfarth-like
system (SW-like system) is widely taken in the construction
of our ideas and refers to a system consisting of interacting
(or not) uniaxial anisotropy single-domain blocked particles.
Moving forward, we build some well-known work-energy
relations involved in the magnetization processes considered
in our context. From this framework, we first provide a funda-
mental inequality for the initial magnetic susceptibility that is
valid for ideal SW systems; in the sequence we find specific
analytical solutions for the magnetization at low fields in the
SW model, then provide a second fundamental inequality,
and introduce a mean-field theory for interacting SW systems.
Finally, we suggest the violation of the fundamental inequality
for the magnetic susceptibility is a signature of the major
contribution of ferromagnetic exchange interactions between
blocked nanoparticles in a SW-like system.

It is worth pointing out that we use, in the construction of
the theoretical approach, conventional SI units for all quanti-
ties; they are summarized in Table I in the Appendix.

A. A brief recapitulation of the SW model

We start our approach by recalling the SW model. It as-
sumes that the system is composed of a set of noninteracting,
uniaxial anisotropy single-domain particles at a temperature
of 0 K; that is, the particles are completely blocked magnet-
ically. The reversal of the magnetization is due to coherent
rotation of the single-domain magnetic particles, and thermal
effects on magnetization are neglected [8].

Figure 1 shows a sketch of the theoretical system using
the SW model, together with the definitions of the relevant
vectors and angles considered in our approach. In this case, we
assume �H is the magnetic field vector and �ms is the magnetiza-
tion vector whose amplitude is the saturation magnetization;
additionally, we consider α to be the angle of �H with respect
to the uniaxial magnetic anisotropy, and θ corresponds to the
angle between �ms and the direction of the anisotropy.

The SW model is based on the minimization of the free
energy of the system. From the appropriate magnetic free
energy, a routine for minimization determines the values of the
equilibrium angle θm of the saturation magnetization vector
for a given magnetic field; and from this procedure we may
obtain the magnetization curve, i.e., the set of values of the
component of the magnetization along �H for each field value.

For the sake of simplicity, the SW model takes into ac-
count only the Zeeman interaction and the effective uniaxial
magnetic anisotropy terms. The Zeeman energy per particle is

EZ = −μ0msVpH cos(α − θ ), (1)

while the energy associated with the uniaxial magnetic
anisotropy of a particle is

Ea = keffVp sin2(θ ), (2)

where μ0 is the magnetic permeability of the free space, H
is the amplitude of the magnetic field, ms is the volumetric
saturation magnetization, Vp is the volume of the particle, keff

is the effective uniaxial magnetic anisotropy constant, and
α and θ are the aforementioned angles. The magnetic free
energy E f per particle in this case is given by

E f = keffVp sin2(θ ) − μ0msVpH cos(α − θ ). (3)

Notice that the magnetic field �H , applied along a given di-
rection described by the angle α with respect to the anisotropy
axis, rotates the magnetization vector �ms at an angle θ from
the orientation of the anisotropy. It gives rise to a restoring
force due to the anisotropy against the magnetization rotation.
Hence, the equilibrium state of the magnetization, represented
by the equilibrium angle θm, is obtained by minimizing the
magnetic free energy for each H value [45], i.e.,

∂E f /∂θ = 0, (4)

whose solution θm must satisfy the condition

∂2E f /∂
2θ > 0. (5)

Using Eqs. (3) and (4), we can find the following relation:

2keff sin(θ ) cos(θ ) = μ0msH sin(α − θ ). (6)

Additionally, we can express the volumetric magnetization m,
i.e., the component of �ms along the �H , as

m = ms cos(α − θ ). (7)

Here, we raise some well-known predictions for the SW
model that are of interest. First, for now, let us consider
the simplest case in which the field is perpendicular to the
anisotropy axis, a situation represented by α = π/2. By com-
bining Eqs. (6) and (7) and using the identity cos(π/2 − θ ) =
sin(θ ), we obtain

m

ms
= μ0ms

2keff
H, (8)

which reveals the magnetization has a linear dependence on
the field for α = π/2. In this condition, the magnetization
saturates (m/ms = 1) when the magnetic field reaches a value
of

Hk = 2keff

μ0ms
, (9)
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which is known as the anisotropy field Hk .
Second, let us now consider a system composed of a

set of randomly oriented particles with uniaxial magnetic
anisotropy. In this case, the net value of the volumetric mag-
netization m is obtained through the average value [8]

〈m(H )〉 = ms

∫ π/2
0 cos[α − θm(α)] f (α) 2π sin(α) dα∫ π/2

0 f (α) 2π sin(α) dα
, (10)

where f (α) is a distribution function that describes the angular
distribution of the magnetic anisotropy per particle. The limits
of the integrals are 0 and π/2 rad due to the symmetry of
the uniaxial anisotropy. For the random SW case, f (α) = 1,
and the anisotropy field is understood as the minimum field
value needed to cause an irreversible magnetization reversal
of all particles composing the system. Additionally, the model
also provides normalized ratios for remanent magnetization
mr and coercive field Hc. Specifically, we find mr/ms = 0.5
and Hc/Hk = 0.48 from the magnetization curve taken for
the random SW system. Such well-known relations are very
useful given they may be interpreted as pattern parameters to
study magnetic samples that are, in principle, thought to be
SW-like systems.

B. Work-energy relations

Now, we bring in some well-known work-energy relations
involved in the magnetization process [45]. The relations be-
tween energy and work are achieved from a macroscopic point
of view and are of the utmost importance for evaluating the
energy contributions from the interactions between nanoparti-
cles in a collective system.

In order to estimate the work undergone by magnetic
nanoparticles in a magnetization process, let us suppose a
system (a set of noninteracting nanoparticles) consists of a
magnetic sample with a cylindrical form, with radius R and
length l; moreover, let us consider a solenoid with N turns,
radius R, and length l , wound around the sample. For the sake
of simplicity, we assume l � R, so that it may be taken as
an ideal solenoid. Under these assumptions, the magnitude of
the magnetic field H produced inside the solenoid due to the
electrical current i flowing through the wire may be written as
[46]

H = Ni

l
. (11)

The solenoid is connected to an electrical power source,
which provides an electromotive force in a time interval dt
and produces an electrical current variation di in the solenoid.
In the magnetization process, as soon as the current is mod-
ified by an amount di, we observe a change in magnetic
flux d� inside the solenoid and, consequently, throughout
the sample. Keeping in mind we still maintain the ideal
conditions, assuming the field is homogeneous through the
cross-sectional area A of the sample, the magnetic flux may be
simply written as � = AB, where B is the magnetic induction.
Then, the change in magnetic flux inside the solenoid may be
expressed as

d�

dt
= A

dB

dt
. (12)

Such a change in the flux causes a back electromotive force εb

in the solenoid, which by means of the Faraday’s law [46] is

εb = −Nd�/dt, (13)

and work must be done to overcome this back electromotive
force [45].

In this framework, the work per unit volume w done by
the electrical power source in a time interval dt against the
back electromotive force on the solenoid wire can be written
in differential form as

dw = 1

Vin
Pdt = 1

Vin
Vidt, (14)

where Vin is the inner volume of the solenoid and P = Vi is the
electrical power delivered by the source to the circuit. Notice
that i is the final electrical current value in the time interval
dt , and V = −εb is the voltage between the terminals of the
solenoid. Since we are interested only in the magnetic effects,
we neglect in Eq. (14) the electrical resistance of the solenoid
and the corresponding Joule effect contribution to the energy
balance.

From Eq. (14) and taking into account Eqs. (11), (12), and
(13), the electrical work per unit volume done by the electrical
source can be expressed in a generalized differential form as

dw = H dB, (15)

with B = μ0(H + m). Without loss of generality, here, we
use simply the magnitudes H and B, assuming the fact that
the magnetization vector �m is the volumetric average of the
magnetic moment of the whole sample along the direction
defined by the external magnetic field vector �H .

From this, we can explore straightforwardly some cases of
interest. The first consists of the case in which the solenoid
is empty, without the presence of the sample. Here, the total
electrical work per unit volume done by the electrical power
source is totally converted to potential energy, which remains
stored in the magnetic field. Then, assuming B = μ0H and
integrating Eq. (15) from H = 0 up to a given H value, we
may express the conservative energy per unit volume stored
in the magnetic field um as

um = 1
2μ0H2. (16)

Next, the second case is the one in which the sample is in-
side the solenoid. By taking into account the general principle
of energy conservation, we can split the total electrical work
per unit volume done by the electrical source into two compo-
nents, the aforementioned energy per unit volume stored in the
magnetic field um and the work per unit volume undergone by
the sample ws. Hence, in differential form, dws = dw − dum,
which becomes, after integration,

ws = μ0

∫
H dm. (17)

This equation is a general expression for obtaining the work
undergone by a noninteracting magnetic nanoparticle system
due to its interaction with the magnetic field.

C. Fundamental inequalities

For our purposes, it becomes important to demonstrate that
Eq. (16) describing the conservative energy per unit volume
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stored in the magnetic field represents precisely the maximum
work per unit volume that can be done by the electrical power
source of the experimental setup in a magnetization process.

As previously mentioned, the electrical resistance of the
solenoid was neglected in the calculation of Eq. (14); hence,
the electrical current in the solenoid may be written as [47]

i = V

XL
= V

ωL
, (18)

where XL = ωL is the inductive reactance, with ω being the
angular frequency associated with the electric current vari-
ation and L corresponding to the general inductance of the
solenoid. Notice that here we are considering only the initial
transient regime of the electrical current, where the electrical
power source does work due to the emergence of inductive
reactance in the solenoid.

The general inductance L of the solenoid can be expressed
in terms of L0, i.e., the inductance when the solenoid is empty,
as

L = μrL0 = μ

μ0
L0, (19)

where μr = μ/μ0 is the relative magnetic permeability, with
μ0 being the magnetic permeability of the free space and μ

corresponding to the magnetic permeability of the material
inside the solenoid.

It is worth pointing out that magnetic materials have the in-
equality μ � μ0. As a result, taking into account Eqs. (18) and
(19), the work per unit volume done by the electrical power
source in a time interval dt against the back electromotive
force on the solenoid wire given by Eq. (14) may be rewritten
as

dw = 1

Vin

V 2

ωμrL0
dt . (20)

Therefore, we conclude that the maximum dw takes place
when the condition μ = μ0 is satisfied, and it corresponds
specifically to the case in which the solenoid is empty. Within
this context, we confirm that the conservative energy per unit
volume stored in the magnetic field given by Eq. (16) indu-
bitably does represent the maximum work per unit volume
that can be done by the electric power source.

Once the work undergone by a macroscopic magnetic
system and the maximum work that can be done in a
magnetization process are established, we address the work
undergone by an ideal system described by the SW model.
For a system consisting of noninteracting, uniaxial anisotropy
single-domain blocked particles, the work in the magnetiza-
tion process in the low-field regime is done against only the
individual restoring force arising in each particle due to the
orientation of the magnetic field in a nonparallel direction
with respect to the anisotropy axis. In the linear magnetization
regime, in which m = χH , with χ being the initial magnetic
susceptibility, such work, after integration of Eq. (17) from
m = 0 to a given m value, comes to

ws = 1
2μ0mH. (21)

Here, we must remark that the work undergone by a SW
system represented by Eq. (21) is valid just for the conditions

in which the magnetic field is well below both the coercive
field Hc and anisotropy field Hk , i.e., H � Hc and H � Hk .

Next, from the definition of the initial magnetic suscepti-
bility,

χ = m/H, (22)

and by means of the simple insight of multiplying the nu-
merator and denominator in r.h.s. of Eq. (22) by the factor
(1/2)μ0H , we may express it as

χ =
1
2μ0mH
1
2μ0H2

. (23)

Therefore, in the context of the SW model, we verify the
initial magnetic susceptibility may be written as the ratio of
the work undergone by the system [Eq. (21)] to the maximum
work that can be done by the electrical power source in the
magnetization process [Eq. (16)], i.e.,

χ = ws

um
. (24)

In this case, taking into account the general principle of energy
conservation, we conclude that

χ � 1 (25)

for the magnetization curve in the linear regime. Equation (25)
corresponds to the first fundamental inequality we aim to
address here. It is, in principle, valid for any noninteracting
single-domain (macrospin) blocked system and represents the
theoretical limit of the initial magnetic susceptibility in an
ideal nanoparticle system described by the SW model.

It is interesting to rewrite the maximum magnetic suscep-
tibility in terms of the ms and keff parameters. To this end, a
possible way to investigate the initial magnetic susceptibility
in uniaxial anisotropy systems is through the evaluation of
the torques involved in the magnetization process. First, let us
consider the low-field regime (H � Hk), in which we assume
the approximation of θ → 0, i.e., �ms lies along the direction
of the uniaxial magnetic anisotropy, as we can identify from
Fig. 1. Under this condition, the torque exerted by the mag-
netic field on the macrospin, ∂EZ/∂θ , is counterbalanced by
the torque resulting from the uniaxial anisotropy, ∂Ea/∂θ [48].
Then, from Eq. (2), we find

∂Ea

∂θ
= keffVp sin(2θ ) = −∂EZ

∂θ
. (26)

The initial torque of the magnetic field, taking into account
the approximation θ → 0 and using Eq. (1), may be written
as (

∂EZ

∂θ

)
θ=0

= −μ0msVpH sin(α). (27)

From Eqs. (26) and (27) and expressing sin(2θ ) = 2θ , which
is valid for small θ values, we achieve

θ = μ0msH

2keff
sin(α), (28)

and by means of Eq. (7), we obtain an analytical solution for
the magnetization in the SW model considering the low-field
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FIG. 2. Magnetization m as a function of the magnetic field H ,
taking into account θ = 0 as the initial situation, for selected α val-
ues. The solid lines are the analytical solutions given by Eq. (29) for
the distinct α cases and by Eq. (31) for the random one. The symbols
of corresponding colors show the numerical calculations performed
for the SW model considering the same conditions. For both ana-
lytical solutions and numerical calculations, we assume ms = 340
kA/m and keff = 3.2×105 J/m3. The gray zone highlights the field
range below 0.1Hk in which we observe perfect convergence of the
analytical solutions with the behavior predicted by the numerical
calculations for the SW model.

regime (H � Hk), given by

m = ms cos

(
α − μ0msH

2keff
sin(α)

)
. (29)

We may also access the solution for a random SW system
averaging our findings over all possible orientations of �ms,

m = ms

〈
cos

(
α − μ0msH

2keff
sin(α)

)〉

= ms

∫ π

0 cos
(
α − μ0msH

2keff
sin(α)

)
2π sin(α)dα∫ π

0 2π sin(α)dα
, (30)

which, for H � Hc, simplifies to

m ≈ μ0m2
s

3keff
H. (31)

As a straightforward consequence, the initial magnetic sus-
ceptibility for a random SW system is

χ = μ0m2
s

3keff
. (32)

To verify the validity of our findings, we first investigate
the dependence of the magnetization m on the magnetic field
H and compare the results obtained with the analytical so-
lutions, given by Eqs. (29) and (31), with those achieved
via numerical calculations performed for the SW model.
Figure 2 shows the magnetization m as a function of the
magnetic field H , taking into account θ = 0 as the initial
situation, for selected α values. For both analytical solutions
and numerical calculations, we consider ms = 340 kA/m and

keff = 3.2×105 J/m3, which are typical parameters found
for uniaxial anisotropy nanoparticles of barium hexaferrite,
BaFe12O19 [45,49,50].

The magnetization curves present a clear dependence on
the orientation between the easy magnetization axis and the
magnetic field, reflecting all traditional features of uniaxial
systems, as expected. From the plots, we clearly observe
perfect convergence of the analytical solutions (solid lines)
with the behavior predicted by the numerical calculations for
the SW model (symbols) at the magnetic fields below 0.1Hk

(gray zone). The agreement between analytical solutions and
calculations is understood to be evidence confirming that our
approximation, i.e., Eqs. (29) and (31), is valid just at this
low-field range.

Next, we explore the magnetic susceptibility from the be-
havior of the magnetization m with the field H . However,
given everything that has been stated above, from now on we
focus our analysis on the magnetization regime at H < 0.1Hk ,
thus informing the initial magnetic susceptibility.

Coming back to Eq. (27), it is worth observing that the
maximum torque is found when �H is perpendicular to the
orientation of the uniaxial magnetic anisotropy axis of the
particle. Hence, considering the solution for the magnetiza-
tion provided by Eq. (29) and assuming α = π/2, we obtain
the maximum initial magnetic susceptibility χmax in the SW
model, which is

χmax =
(

∂m

∂H

)
H=0

= μ0m2
s

2keff
. (33)

It is interesting to note that Eq. (33) can be obtained directly
from Eq. (8).

Moving forward, from Eqs. (25) and (33), we find the
unexpected inequality

keff � 1
2μ0m2

s . (34)

Equation (34) corresponds to the second fundamental in-
equality we aim to explore here. It is, in principle, valid
only for noninteracting, uniaxial anisotropy single-domain
(macrospin) blocked systems. This is a quite intriguing result
indeed, especially if we realize that the ms and keff parameters
in the context of the SW model are, a priori, independent.
In other words, Eq. (34) correlates keff with ms and imposes
a bottom limit for the magnetic anisotropy according to the
saturation magnetization. Within this framework, one could
read Eq. (34) as telling us that in systems described by the
SW model, high saturation magnetization values in materials
imply high uniaxial magnetic anisotropy, whatever the origin
of such anisotropy is.

Figure 3 presents the dependence of the magnetic sus-
ceptibility χmax on the effective uniaxial magnetic anisotropy
constant keff , given by Eq. (33). For the analytical solution,
we consider ms = 340 kA/m. Notice that, once the saturation
magnetization is set, there is a restricted region (gray zone)
limiting the accessible values of χmax and keff for which the
principle of energy conservation is not violated. For the initial
magnetic susceptibility in a SW system, the upper limit is
equal to 1, given by Eq. (25). Further, once the saturation
magnetization is set here, Eq. (34) provides the bottom limit
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FIG. 3. Maximum magnetic susceptibility χmax as a function of
the effective uniaxial magnetic anisotropy constant keff . The χmax

values for the SW system are obtained using Eq. (33), assuming
ms = 340 kA/m. The horizontal dashed line represents the theo-
retical upper limit of the initial magnetic susceptibility in a SW
system given by Eq. (25). The vertical dashed line corresponds to the
bottom limit for the uniaxial magnetic anisotropy constant given by
Eq. (34) once we set the saturation magnetization for the calculation.
The gray zone highlights the magnetic susceptibility and uniaxial
magnetic anisotropy constant ranges in which the principle of energy
conservation is not violated.

for the uniaxial magnetic anisotropy. For the case illustrated
here, only keff values larger than 0.73×105 J/m3 are allowed.

D. Violation of the first inequality in an interacting
Stoner-Wohlfarth-like system

Going further, we determine whether the inequality in
Eq. (25) is applicable for nonideal SW systems, i.e., interact-
ing SW-like systems. To this end, we address here the case
of a collective system of interacting magnetic nanoparticles.
Let us assume that the sample is small enough, relative to the
detecting system of the experimental setup, to be considered
a point dipole. Notice that such a condition is often satisfied
when the experiment is carried out by means of vibrating
sample or superconducting quantum interference device mag-
netometers [45]. This assumption is a key factor that allows
us to introduce in our theoretical approach the demagnetizing
mean-field theory proposed by Sánchez and collaborators [33]
and the Weiss’s well-known mean-field theory [45,51,52]; as
a consequence, both the dipolar and exchange interactions
between magnetic nanoparticles inside the sample are inserted
naturally in the model. From this perspective, the magnitude
of the internal mean field Hin in the sample may be expressed
as

Hin = H + Hm + Hd = H + γ m − γd m, (35)

where Hm = γ m and Hd = −γd m are the mean fields associ-
ated with the exchange and dipolar interactions, respectively,
with γ being the effective mean-field constant and γd corre-
sponding to the effective demagnetizing factor [33]. Here, we

FIG. 4. Initial magnetic susceptibility χint for an interacting SW-
like system as a function of the difference of the effective mean-field
constant and effective demagnetizing factor γ − γd . The χint values
for the interacting SW-like system are obtained using Eq. (37), as-
suming ms = 340 kA/m and keff = 3.2×105 J/m3. Notice that only
for positive (γ − γd ) values, in the vicinity of the divergence in the
susceptibility, is the inequality in Eq. (25) violated.

keep using the magnitudes H and m, instead of the vectorial
form.

Again, it is worth remembering that we understand that
each nanoparticle behaves like a macrospin. This condi-
tion implies that the coherent magnetization rotation of each
nanoparticle, i.e., the magnetic free energy associated with
the exchange forces inside each single domain, is always
minimized. Thus, taking into account the general mean-field
theory represented by Eq. (35) and considering the situation in
which the maximum magnetic susceptibility in the SW model
is found, α = π/2, the magnetization in the low-field regime
(Hin � Hk) may be written from Eq. (29) as

m = ms sin

(
μ0msHin

2keff

)
≈ μ0m2

s

2keff − μ0m2
s (γ − γd )

H, (36)

and consequently, the maximum magnetic susceptibility for
an interacting SW-like system χint is

χint = m

H
= μ0m2

s

2keff − μ0m2
s (γ − γd )

. (37)

Then, to evaluate the behavior of the magnetic suscepti-
bility of an interacting SW-like system using the mean-field
theory, Fig. 4 brings to light the dependence of χint on
(γ − γd ). For this analytical solution, we consider ms = 340
kA/m and keff = 3.2×105 J/m3. Notice the remarkable evo-
lution of χint with γ − γd . The quantity γ − γd discloses the
type of interaction between the nanoparticles in the Stoner-
Wohlfarth-like system. Specifically, negative γ − γd values
represent SW-like systems with interparticle interactions of
dipolar origin; positive γ − γd values indicate systems with
ferromagnetic exchange interactions between nanoparticles,
while γ − γd = 0 corresponds to the ideal noninteracting SW
system.
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The most striking finding here resides in the fact that for
positive (γ − γd ) values, in the vicinity of the divergence
in the susceptibility, χint achieves values above 1. In other
words, the inequality in Eq. (25) is violated. Hence, although
χint values smaller than 1 do not provide us insights allowing
the identification of the existence and/or type of interparticle
interaction, the violation of such an inequality is an unam-
biguous signature of the existence of ferromagnetic exchange
interactions between nanoparticles in an interacting Stoner-
Wohlfarth-like system.

III. CONCLUSION

In conclusion, we derived two fundamental inequalities
belonging to the Stoner-Wohlfarth model. First, we showed
that the maximum work per unit volume that can be done
by an electrical power source in the experimental setup is
precisely the conservative energy per unit volume stored
in the magnetic field in vacuum. Then, by means of the
calculation of the work undergone by an ideal SW system
at low fields, i.e., H � Hc and H � Hk , we verified that
the initial magnetic susceptibility may be written as the
ratio of the work undergone by the system [Eq. (21)] to
the maximum work that can be done by the electrical
power source of the experimental setup in the magnetization
process [Eq. (16)]. As result, we uncovered through a simple
insight that χ � 1 [Eq. (25)] for the magnetization curve
in the linear regime at low fields. It is the first fundamental
inequality we have addressed here, which is valid for any
noninteracting single-domain (macrospin) blocked system
and represents the theoretical limit of the initial magnetic
susceptibility in an ideal nanoparticle system described by
the SW model. Further, we also found analytical solutions for
the magnetization in the low-field regime and obtained the
borderline value for the uniaxial anisotropy constant in such
an ideal Stoner-Wohlfarth system [Eq. (34)]. It corresponds to
the second fundamental inequality we have disclosed here and
correlates the keff and ms parameters, in addition to imposing
a bottom limit for the magnetic anisotropy according to
the saturation magnetization (two parameters that are often
understood as being independent). Going further, we finally
introduced a general mean-field theory for interacting
SW-like systems and estimated how the initial magnetic
susceptibility is affected by the dipolar and exchange

TABLE I. Conventional SI units of the main quantities consid-
ered in the theoretical approach.

Quantity Unit

μ0 4π×10−7 N/A2

EZ , Ea, Ef J
m, ms, mr A/m
H , Hk , Hc, Hin, Hm, Hd A/m
keff , w, ws, um J/m3

Vp, Vin m3

i A
N dimensionless
l m
A m2

B T, N/(A m)
� Wb, J/A
t s
εb, V V, W/A
P W
XL �, W/A2

ω s−1

L, L0 H, J/A2

μ N/A2

μr , χ , χmax, χint , γ , γd dimensionless

interactions between nanoparticles. Within this context, we
demonstrated that the violation of the inequality χ � 1
[Eq. (25)] is an unambiguous signature of the existence of
ferromagnetic exchange interactions between nanoparticles in
an interacting Stoner-Wohlfarth-like system.
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APPENDIX

Table I gives the conventional SI units of the main quanti-
ties considered in this work.
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