
PHYSICAL REVIEW B 106, 094316 (2022)
Editors’ Suggestion

Zero-point renormalization of the band gap of semiconductors and insulators
using the projector augmented wave method

Manuel Engel ,1,* Henrique Miranda ,2 Laurent Chaput,3 Atsushi Togo,4 Carla Verdi ,1

Martijn Marsman ,1 and Georg Kresse1

1University of Vienna, Faculty of Physics and Center for Computational Materials Physics, A-1090 Vienna, Austria
2VASP Software GmbH, A-1090, Vienna, Austria

3LEMTA–Université de Lorraine, CNRS, UMR 7563, 54518 Vandæuvre Cedex, France
4Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science,

Tsukuba, Ibaraki 305-0047, Japan

(Received 4 July 2022; accepted 9 September 2022; published 29 September 2022)

We evaluate the zero-point renormalization (ZPR) due to electron-phonon interactions of 28 solids using the
projector-augmented-wave (PAW) method. The calculations cover diamond, many zincblende semiconductors,
rock-salt and wurtzite oxides, as well as silicate and titania. Particular care is taken to include long-range
electrostatic interactions via a generalized Fröhlich model. The data are compared to recent calculations [Miglio
et al., npj Comput. Mater. 6, 167 (2020)] and generally very good agreement is found. We discuss in detail the
evaluation of the electron-phonon matrix elements within the PAW method. We show that two distinct versions
can be obtained depending on when the atomic derivatives are taken. If the PAW transformation is applied
before taking derivatives with respect to the ionic positions, then equations similar to the ones conventionally
used in pseudopotential codes are obtained. If the PAW transformation is used after taking the derivatives, then
the full-potential spirit is largely maintained. We show that both variants yield very similar ZPRs for selected
materials when the rigid-ion approximation is employed. In practice, we find, however, that the pseudoversion
converges more rapidly with respect to the number of included unoccupied states.
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I. INTRODUCTION

Electron-phonon interactions are among the most rele-
vant processes governing the temperature dependence of
the electronic properties of materials. Accurately predicting
and controlling these properties is crucially important for
the development of new technologies [1–9]. For instance,
electron-phonon interactions are essential for explaining the
temperature-dependent magnitude of the band gap of insula-
tors and semiconductors, as demonstrated repeatedly [10–13].
Even at absolute zero temperature, these processes can modify
the band gap significantly, which is commonly referred to as
a zero-point renormalization (ZPR).

Historically, the first ZPR calculations for real materials
were performed by Allen, Heine and Cardona (AHC) [14,15]
around 1980. Their method, based on second-order Rayleigh-
Schrödinger perturbation theory [16,17], forms the basis for
many modern approaches. Over the years, there have been a
number of theoretical and computational advances that gener-
alize or improve on AHC theory.

First, AHC theory only considers static, nonfrequency de-
pendent perturbations. As a result, the expression for the ZPR
in AHC theory does not account for the energy transfer from
the electronic to the ionic subsystem during phonon emission
and absorption. This approximation is often referred to as the

*manuel.engel@univie.ac.at

adiabatic AHC theory. A nonadiabatic formulation can be de-
rived from time-dependent or many-body perturbation theory
[18]. Inclusion of the energy transfer also avoids numerical
divergence problems in the case of polar materials in the limit
of small phonon wave vectors [13,19].

In 2007, Giustino et al. [20,21] introduced an interpola-
tion scheme for electron-phonon matrix elements based on
maximally localized Wannier functions [22,23]. This removed
the need for often prohibitively expensive density-functional
perturbation-theory (DFPT) calculations on dense q-point
grids. Over time, this and related interpolation techniques
have successfully been applied to the electron-phonon prob-
lem [24–31].

In order to properly treat polar materials using interpo-
lation techniques, the long-range behavior of the electron-
phonon interaction ought to be accounted for explicitly. To
this end, early considerations by Fröhlich [32] and Vogl [33]
were generalized to develop a long-range electron-phonon
potential from first principles that accurately captures the
dipole interaction [34,35]. Contributions from the quadrupole
interaction were recently covered by Brunin et al. [28,36],
Jhalani et al. [37], and Park et al. [38].

An extension of adiabatic AHC theory to the projector-
augmented-wave (PAW) method [39,40] was provided by
Engel et al. [31]. Since the PAW method accounts for the
exact shape of the all-electron (AE) wave functions, it should
improve the accuracy compared to traditional pseudopotential
methods, yet largely retains the computational performance of
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the latter. An alternative derivation was provided by Chaput
et al. [29], relying on a rigorous full-potential formulation
of the electron-phonon matrix element expressed within the
PAW framework. This even applies in the nonadiabatic case,
i.e., when energy is transferred during phonon emission and
absorption.

Alternative supercell-based approaches to calculate the
band-gap renormalization include Monte Carlo simulations
[41,42], molecular dynamics [43,44], and other adiabatic
supercell-based approaches. The latter rely on one or more
specially chosen, frozen atomic displacements [12,13,45–49].
Although these methods have advantages such as inclusion of
selected higher-order terms, they also have the disadvantage
that they usually remain in the adiabatic regime (neglect of
energy transfer during emission and absorption). Furthermore,
for polar materials it can be very difficult to reach the required
supercell convergence. On the other hand, they are easily ap-
plicable to methods beyond density-functional theory (DFT),
so that studies comparing DFT and the GW method became
possible recently [48]. A comprehensive review of electron-
phonon physics from the point of view of first-principles
calculations was given by Giustino [18].

In this work, we present results for the band-gap ZPR
of various semiconductors and insulators within the nonadi-
abatic AHC theory. The calculations are performed within
the framework of DFT using the PAW method and are based
on the computational approach proposed by Chaput et al.
[29] and Engel et al. [31]. The present implementation relies
partly on the VASP code [50–53] but also uses an external
program to calculate the derivatives of the self-consistent
Kohn-Sham (KS) potential using supercells. Importantly, two
different equations for the electron-phonon matrix elements
are compared and assessed, namely a pseudized [31] and a
full-potential [29] formulation of the PAW matrix element. Al-
though they describe distinctively different electron-phonon
matrix elements, both formulations are shown to yield identi-
cal ZPR under certain conditions. The details can be found in
Appendix B.

The general theory and methodology underpinning this
work is presented in Sec. II. In Sec. II A, a brief summary of
nonadiabatic AHC theory is given and the ZPR is expressed
in this framework. In Sec. II B, the calculation of the ZPR is
discussed in the context of the PAW method. A short descrip-
tion of the computational workflow is provided in Sec. II C.
The results are presented and discussed in Sec. III followed
by our conclusions in Sec. IV.

II. METHODS

A. Nonadiabatic AHC theory

The theory originally developed by AHC to describe the
change of the electronic band structure due to electron-phonon
interactions was derived from time-independent Rayleigh-
Schrödinger perturbation theory. In this case, the interaction
between electrons and ions is described only statically, i.e.,
there is no energy transfer between electrons and phonons.
The approximation relies on the assumption that the phonon
frequencies are much smaller than the typical electronic
excitation energies. Hence, one can assume that the elec-

(a)

(b)

FIG. 1. Feynman-diagrammatic representation of the lowest-
order electron-phonon contributions to the electron self-energy in
the context of KS DFT. Electronic states (solid lines) interact
with phonon states (dashed lines) via the first and second-order
electron-phonon matrix elements, gmnk,νq and g2,DW

nk , respectively.
(a) Fan-Migdal process; a phonon with wave vector q and branch
index ν is emitted and later reabsorbed. (b) Debye-Waller process; a
phonon is simultaneously emitted and reabsorbed. Note that there is
no momentum transfer in this case.

trons instantaneously adopt their electronic ground state
for any ionic configuration. This is the well known Born-
Oppenheimer or adiabatic approximation. The nonadiabatic
case can be obtained rigorously using many-body perturbation
theory treating electrons and ions on an equal quantum-
mechanical footing. This inherently allows for energy transfer
from the electrons to the phonons and vice versa [18].

If the perturbative expansion is truncated at second order in
the phonon perturbation, then one obtains two contributions to
the change of the KS eigenvalues as a function of temperature,
T :

�εnk(T ) = �εFM
nk (T ) + �εDW

nk (T ). (1)

The term �εFM
nk (T ) is the real part of the so-called Fan-Migdal

(FM) contribution to the electron self-energy and corresponds
to two first-order electron-phonon vertices. Figure 1(a) depicts
the Feynman diagram associated with this process. The FM
contribution can be calculated as

�εFM
nk (T ) =

∫
BZ

d3q

�BZ

∑
ν

∑
m

|gmnk,νq|2

× Re

[
1 − fmk+q(T ) + nνq(T )

εnk − εmk+q − h̄ωνq + iδ

+ fmk+q(T ) + nνq(T )

εnk − εmk+q + h̄ωνq + iδ

]
, (2)

where gmnk,νq is the electron-phonon matrix element that de-
scribes scattering of an initial electronic state, |ψnk〉, into a
final electronic state, |ψmk+q〉, by either emitting or absorbing
a phonon with wave vector q and branch index ν. The matrix
element is discussed further in Sec. II B in relation to the
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PAW framework. εnk are the electronic eigenvalues and ωνq
are the phonon angular frequencies. fmk+q(T ) and nνq(T ) are
temperature-dependent Fermi-Dirac and Bose-Einstein distri-
bution functions that correspond to the intermediate electronic
and phononic states, respectively. The integration boundary
indicates that the domain of integration for the phonon wave
vector is the first Brillouin zone with volume �BZ. Finally,
δ is a positive infinitesimal that guarantees the correct pole
structure of the self-energy in the complex plane. From a prac-
tical perspective, this parameter can also be used to perform
a Lorentzian broadening of the energy transitions. This can
improve convergence of the Brillouin-zone integration, but the
parameter should be kept small to reduce potential numerical
errors. At zero temperature, Eq. (2) simplifies to the following
expression:

ZPRFM
nk ≡ �εFM

nk (T = 0)

=
∫

BZ

d3q

�BZ

∑
ν

∑
m

|gmnk,νq|2

× Re

(
1

εnk − εmk+q ± h̄ωνq + iδ

)
, (3)

where the sign in front of the phonon frequency in the denom-
inator is positive if m corresponds to an occupied state and
negative otherwise.

The remaining term in Eq. (1), �εDW
nk (T ), is the so-called

Debye-Waller (DW) contribution and is described by only
a single second-order perturbation. Its associated Feynman
diagram is shown in Fig. 1(b). Unfortunately, the correspond-
ing electron-phonon matrix elements, g2,DW

nk , are expensive to
calculate. To resolve this issue, AHC introduced the rigid-ion
approximation that allows the DW contribution to be writ-
ten in terms of first-order electron-phonon matrix elements,
gmnk,νq. In this case, the DW contribution is approximated by

�εDW
nk (T ) = −

∫
BZ

d3q

�BZ

∑
ν

′∑
m

	mnk,νq

εnk − εmk
(2nνq(T ) + 1),

(4)
where

	mnk,νq ≡ h̄

4ωνq

∑
κα
κ ′β


νq
κα,κ ′βg0∗

mnk,καg0
mnk,κ ′β, (5)


νq
κα,κ ′β ≡ eκα,νqe∗

κβ,νq

Mκ

+ e∗
κ ′α,νqeκ ′β,νq

Mκ ′
, (6)

g0
mnk,κα ≡

∑
ν

√
2Mκων0

h̄
eκα,ν0gmnk,ν0. (7)

The prime in the sum over all bands, m, in Eq. (4) indicates
that degenerate cases, where the denominator would become
zero, are excluded. The vector eκ,νq describes the eigen-
displacement of the atom κ with mass Mκ for the phonon
mode characterized by q and ν. They are the eigenvectors
of the dynamical matrix, Dκα,κ ′β (q), which is defined as the
Fourier transform of the matrix of interatomic force constants,

Clκα,l ′κ ′β :

Dκα,κ ′β (q) ≡ 1√
MκMκ ′

∑
l

Clκα,0κ ′βe−iq·Rl , (8)

Clκα,l ′κ ′β ≡ ∂2U

∂Rlκα∂Rl ′κ ′β
. (9)

The latter is defined as the second derivative of the total
energy, U , with respect to atomic displacements evaluated at
the equilibrium configuration. At zero temperature, we obtain
the corresponding DW contribution to the ZPR:

ZPRDW
nk ≡ �εDW

nk (T = 0)

= −
∫

BZ

d3q

�BZ

∑
ν

′∑
m

	mnk,νq

εnk − εmk
. (10)

B. Electron-phonon interactions within the PAW framework

The pseudopotential method and related methods have
been used for many decades to great success in solving the
ground-state problem in DFT. Ordinarily, when solving the
KS equations, all electrons need to be considered. This is
problematic from a practical point of view. Core electrons ex-
hibit sharp features in real space, and due to the orthogonality
constraint, the valence electrons also show rapid oscillations
in real space close to the ionic cores. In order to accurately
capture these features using plane-wave basis sets, numerous
plane-wave coefficients would be required.

Instead of treating all electrons explicitly, the pseudopo-
tential method replaces the core electrons and nuclei by a
soft, effective and singularity-free potential, a so-called pseu-
dopotential. This way, only a few valence states enter the KS
equations, which allows for a considerable increase in compu-
tational efficiency. In the original pseudopotential method, the
exact orbitals are replaced by node-less pseudo (PS) orbitals
and the shape of the AE orbitals cannot be easily recovered.

One particularly successful generalization of the pseu-
dopotential method is the PAW method [39,40]. While this
method retains some computational strategies from pseudopo-
tential methods, the full-potential AE wave function can be
reconstructed in the vicinity of each atom in the form of
one-center terms that are represented on radial grids. This
allows for a very accurate description of both core and valence
electrons while at the same time retaining many of the com-
putational advantages of pseudopotential methods. The price
one has to pay is the emergence of additional terms in the
expectation values of operators. This is also very relevant for
the definition of the electron-phonon matrix element within
the PAW framework.

In terms of the AE orbitals, |ψnk〉, the electron-phonon
matrix element can be computed as

gmnk,νq ≡ 〈ψmk+q|∂νqĤ |ψnk〉 , (11)

∂νq ≡
∑
lκα

√
h̄

2Mκωνq
eκα,νqeiq·Rl ∂lκα, (12)

where Ĥ is the AE KS Hamiltonian and ∂νq corresponds to
a collective displacement of the crystal lattice in terms of
individual atomic displacements, ∂lκα ≡ ∂

∂Rlκα
. In the PAW
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method, the AE orbitals are transformed into computationally
convenient PS orbitals, |ψ̃nk〉, via the PAW transformation:

|ψnk〉 ≡ T̂ |ψ̃nk〉 . (13)

Chaput et al. [29] applied this transformation to express
gmnk,νq in Eq. (11) in terms of the PAW quantities. The
corresponding final expression is given in Appendix A by
Eq. (A10). To obtain this result, the derivatives in Eq. (11)
are done at the level of the AE orbitals first, and then the PAW
transformation is performed. The electron-phonon matrix el-
ement so obtained is the one traditionally used in many-body
perturbation theory. We choose to call gmnk,νq the AE electron-
phonon matrix element.

Another strategy of taking the electron-phonon interaction
into account was used by Engel et al. in Ref. [31]. Indeed, in
the adiabatic case, they showed that ZPR calculations within
the PAW framework are also possible using an alternative
definition of the electron-phonon matrix element,

g̃mnk,νq ≡ 〈ψ̃mk+q|∂νqH̃ − εnk∂νqS̃|ψ̃nk〉 , (14)

where H̃ = T̂ †Ĥ T̂ is the PAW Hamiltonian and S̃ = T̂ †T̂
the PAW overlap operator. To obtain this new quantity, the
ZPR is expressed in terms of the derivatives of the electronic
eigenvalues with respect to atomic displacement (Eq. (2)
in Ref. [31]), and those electronic eigenvalues are obtained
from the already pseudized Hamiltonian. Casting the resulting
equation for the ZPR into a form reminiscent of the one known
from many-body perturbation theory allows to define g̃mnk,νq,
which we name the PS electron-phonon matrix element. The
matrix element so defined allows to rigorously compute the
ZPR in the adiabatic approximation, however, it is not Her-
mitian. Therefore it cannot be straightforwardly used within
many-body perturbation theory and must be interpreted with
care.

The key difference between these two approaches lies in
the order in which the PAW transformation and the atomic
derivatives are performed. In the work of Engel et al. [31],
the quantity we want to differentiate (the electronic ener-
gies) is first expressed in terms of the PAW quantities, and
then differentiated. This is in the spirit of the original PAW
formulation [39]: The total-energy expression is transformed
using the PAW transformation and, subsequently, any other
quantity is derived as a derivative thereof. For instance, the
Hamiltonian is the derivative of the PAW total energy with
respect to the pseudo density matrix, the forces are the first
derivative of the PAW total energy with respect to the ionic
positions, interatomic force constants are the second deriva-
tive of the energy with respect to the ionic positions, and
so on. On the other hand, in their work Chaput et al. [29]
did not try to compute a specific physical quantity, like the
ZPR. Rather, they derived a computable expression, in terms
of PAW quantities, for the full-potential AE electron-phonon
matrix element, gmnk,νq. Because it is defined from the deriva-
tive of the AE Hamiltonian, the atomic derivatives therefore
have to be performed before the PAW transformation.

Remarkably, the two versions of the electron-phonon ma-
trix element are related through the simple equation [31]

gmnk,νq = g̃mnk,νq + (εnk − εmk+q)tmnk,νq, (15)

tmnk,νq ≡ 〈ψ̃mk+q|T̂ †∂νqT̂ |ψ̃nk〉 . (16)

Note that this involves derivatives of the PAW transformation
operator, T̂ , which are usually absent within the PAW frame-
work, but emerge because the derivatives are taken first in
Ref. [29]. To compute the ZPR, both approaches are formally
equivalent in the adiabatic case under the absence of the
rigid-ion approximation (see Appendix B), but not necessarily
in the nonadiabatic case or when the rigid-ion approxima-
tion is used. Pseudized formulations of the electron-phonon
matrix element have been used to calculate the nonadiabatic
band-gap ZPR for many years, albeit most of the time us-
ing norm-conserving pseudopotentials [11,19,24,54–58]. In
Sec. III we provide numerical evidence that using the PS
electron-phonon matrix element is accurate to compute the
ZPR, and even converges faster than the AE approach with
respect to the number of intermediate states. This can be
rationalized by considering that g̃mnk,νq has been specifically
designed to compute the ZPR in the adiabatic limit. A more
detailed explanation is given in Sec. III.

C. Computational approach

The implementation used to calculate the ZPR in this work
is based on the nonadiabatic AHC formulas in Eqs. (3) and
(10) and utilizes finite atomic displacements in large super-
cells to evaluate the involved derivatives, ∂lκα , numerically.
Most of the code is implemented directly in VASP, but the
derivatives are computed using a complementary python pro-
gram. The ZPR can both be evaluated using the PS and the AE
electron-phonon matrix elements defined in Sec. II B. In either
case, a series of perturbations consisting of single atomic
displacements, ∂lκα , are performed in large supercells. From
these calculations, both the interatomic force constants and
the changes of the self-consistent KS potential are computed
in the supercell and written to disk. In VASP, the supercell
potentials and force constants are read from disk, mapped to
the primitive cell and evaluated between Bloch states corre-
sponding to k and k + q according to Eq. (11). Note that
VASP recalculates on-the-fly the Bloch orbitals on the re-
quired dense k-point grid. In order to reconstruct the operator
∂νq, linear combinations involving the phonon eigenvectors,
Eq. (12), are built. This allows to compute ∂νqH̃ , the derivative
of the pseudopotential, ∂νqṼ , and other related quantities.
Details are given in Appendix A and in Ref. [29]. The com-
putation of the electron-phonon matrix elements using the
derivative of the potential known in a supercell requires an
interpolation procedure, which is detailed in Appendix A 2.
There, it is also shown that the procedure becomes exact when
k and q are commensurate with the supercell used in the
calculation. For the related case of phonons, a derivation is
also given in Ref. [59].

For ionic compounds, the long-range part of the potential
derivatives contained in the electron-phonon matrix element
must be treated explicitly. To this end, a strategy similar to the
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one presented in Ref. [34] is employed. Details are given in
Appendix A 3.

Ultimately, the procedure outlined above allows to obtain
both matrix elements, gmnk,νq and g̃mnk,νq, at arbitrary k and q
vectors. In order to estimate the integral over the first Brillouin
zone in Eqs. (3) and (10), an extrapolation toward an infinitely
dense q-point grid is necessary. It is assumed that at suffi-
ciently dense q-point sampling densities, nq, the ZPR depends
linearly on n−1/3

q , so that the final ZPR can be extrapolated
from this linear regime [19].

III. RESULTS

A. AE versus PS formulation

First, we present a comparison between the AE and PS
approaches discussed in Sec. II B. To this end, we calculate
the nonadiabatic band-gap ZPR for a few materials, namely
MgO-rs, AlAs-zb, ZnS-zb, and C-cd. Here and in the fol-
lowing, the suffixes -rs, -zb, -cd and -w are used to denote
the rock salt, zincblende, cubic diamond, and wurtzite crystal
structures, respectively. For each of the four materials, two
electron-phonon calculations are performed, one using the
AE matrix elements and one using the PS matrix elements.
Both commence from the same 4×4×4 supercell calculation
to determine the force-constants and the change of the self-
consistent KS potential. In our experience, the convergence
of the ZPR with respect to the number of bands is largely
independent of the convergence with respect to the number of
q points used to sample the phononic states. Since we aim to
highlight the difference between the AE and PS approach, we
only use a relatively coarse 8×8×8 q-point mesh to sample
the phononic states in each electron-phonon calculation. This
is identical to the 8×8×8 k-point mesh used to diagonalize the
electronic KS Hamiltonian in the primitive cell. The smearing
parameter, δ, appearing in the denominator of Eq. (3) is set to
10 meV. The converged results for the nonadiabatic band-gap
ZPR are listed in Table I together with the PAW potentials
used and the electronic cut-off energies. We opt to use the la-
bels of the POTCAR files distributed with VASP to distinguish
between different PAW potentials. Additional information that
characterizes these PAW potentials is provided in Table II. The
convergence behavior with respect to the number of bands is
shown in Figs. 2 and 3. Each panel shows the nonadiabatic
band-gap ZPR as a function of the maximum number of
included intermediate states. The secondary x axis atop each
panel displays the average KS energy associated with each
intermediate state relative to the Fermi level. Figures 2(a), 2(b)
and 2(c) show the ZPR of MgO, AlAs, and ZnS, respectively,
while Fig. 3 is dedicated to diamond.

It is known that the convergence of the ZPR with respect to
the number of bands is slow and nonmonotonic [24], requiring
many conduction-band states to reach convergence. However,
in Figs. 2 and 3, we observe that the PS method converges
appreciably faster than the AE method. In order to under-
stand why the ZPR converges slowly in the first place, let us
consider the FM contribution in the adiabatic approximation.
The relevant quantity is the integrand γ FM

nk,νq in Eqs. (B1) and
(B2). When written using the one-particle Green’s function,

TABLE I. Comparison of the nonadiabatic band-gap ZPR (in
meV) converged with respect to the number of bands between AE
and PS methods. In addition, the used PAW potentials (POTCAR)
and plane-wave cutoffs (Ecut) are listed.

Material POTCAR Ecut (eV) ZPR AE ZPR PS

AlAs-zb Al As 600 −64 −64
C-cd C 1500 −334 −338
C-cd C_GW_new 2400 −331 −338
C-cd C_h_GW 3000 −337 −337
MgO-rs Mg O_s 600 −272 −273
ZnS-zb Zn S 800 −46 −46

(εnk − Ĥ )−1, the integrand becomes:

γ FM
nk,νq =

′∑
m

〈ψnk|∂ν−qĤ |ψmk+q〉

× 〈ψmk+q|(εnk − Ĥ )−1∂νqĤ |ψnk〉 . (17)

In this form, it becomes clear that the sum over all inter-
mediate states, |ψmk+q〉, can be considered an expansion of
the perturbed AE potential present in ∂νqĤ in terms of KS
orbitals. Since the KS orbitals at high energies essentially
behave like free electrons, the sum eventually becomes a
plane-wave expansion at high energies. Unfortunately, the true
AE potential and its derivative can change rapidly in proxim-
ity to the nuclei. Thus, in general, a considerable amount of
plane waves is required to accurately represent the change
of the AE potential. This explains the origin of the slow
convergence of the ZPR with respect to the number of inter-
mediate states. Similar arguments can be made to discuss the
convergence of the DW part of the ZPR.

Let us now attempt to explain the difference in conver-
gence behavior between the AE and PS approaches as seen
in Figs. 2 and 3. In the PS approach, the PS FM term is
calculated by replacing the integrand γ FM

nk,νq in Eq. (B1) by its
PS counterpart, γ̃ FM

nk,νq, defined in Eq. (B5). The two integrands
differ only by a substitution gmnk,νq → g̃mnk,νq and by the
last term in Eq. (B5). This term has been carefully checked
to be negligible for all materials considered here. Therefore,
the difference in convergence behavior between the AE and
PS approaches is directly related to the difference between
the corresponding electron-phonon matrix elements. As a side
note, the individual FM and DW terms generally converge
to completely different values in the two formulations, as
discussed in Ref. [31].

In the PAW method, slow plane-wave convergence is usu-
ally avoided since the sharp AE potential is replaced by a
smooth pseudopotential that requires fewer plane waves to be
described accurately. In the case of the PS electron-phonon
matrix element, this pseudization is kept intact as we pseudize
the orbitals and potentials first, and only describe the inter-
action of the PS orbitals with the pseudopotentials and their
derivatives. Although the pseudized electron-phonon term,
Eq. (14), contains one-center corrections—as happens for
any operator after the PAW transformation—these one-center
terms are calculated in such a manner that the ionic potential
and partial waves move rigidly in unison with the PAW sphere
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TABLE II. List of PAW potentials used in this work. The first column (POTCAR) contains the label of the potential from VASP’s PAW
database. The second column (valence) shows which local orbitals are treated as valence. The cutoff radii, rcut, for the s, p, d , and f channels
are reported in columns three to six if applicable. If there is more than one channel for a single angular-momentum quantum number, then
the corresponding cutoff radii are listed as n × rcut if they are the same or as a comma-separated list otherwise. The final column contains the
radius rcore below which the AE potential is replaced by a local pseudopotential. All radii are given in atomic units.

POTCAR Valence rcut(s) rcut(p) rcut(d ) rcut( f ) rcore

Al 3s3p3d 2 × 1.9 2 × 1.9 1.9 – 1.900
As 4s4p4d4 f 2 × 2.1 2 × 2.1 2.1 2.1 2.100
B 2s2p3d 2 × 1.5 2 × 1.7 1.7 – 1.700
Ba_sv 5s6s5p5d 2 × 2.8 2 × 2.7 2 × 2.7 – 2.516
Be 2s2p3d 2 × 1.9 2 × 1.9 1.5 – 1.900
C 2s2p3d 2 × 1.2 2 × 1.5 1.5 – 1.500
C_GW_new 2s2p 3 × 1.1 3 × 1.5 1.5, 1.6 1.4 1.600
C_h_GW 2s2p 3 × 1.0 3 × 1.1 2 × 1.1 – 0.804
Ca_sv 3s4s3p3d 2 × 2.3 2 × 2.3 2 × 2.3 – 1.808
Cd 4d5s 2 × 2.3 2 × 2.3 2 × 2.3 – 2.054
F 2s2p3d 2 × 1.2 2 × 1.52 1.5 – 1.520
Ga_d 3d4s4p 2 × 2.3 2.1, 2.3 2 × 2.3 2.3 2.300
Li_sv 1s2s2p3d 1.4, 1.7 1.4 1.4 – 1.700
Mg 3s3d 2 × 2.0 2 × 2.0 2.0 – 1.506
N_s 2s2p 2 × 1.5 2 × 1.85 – – 0.803
O 2s2p3d 2 × 1.2 2 × 1.52 1.5 – 1.520
O_s 2s2p 2 × 1.5 2 × 1.85 – – 0.804
P 3s3p3d 2 × 1.9 2 × 1.9 1.9 – 1.900
S 3s3p3d 2 × 1.9 2 × 1.9 1.9 – 1.900
Sb 5s5p5d4 f 2 × 2.3 2 × 2.3 2.3 2.3 2.300
Se 4s4p4d4 f 2 × 2.1 2 × 2.1 2.1 2.1 2.100
Si 3s3p3d 2 × 1.9 2 × 1.9 1.9 – 1.900
Sn_d 4d5s5p 2 × 2.5 2 × 2.5 2 × 2.5 2.5 2.500
Sr_sv 4s5s4p4d 2 × 2.48 2 × 2.5 2 × 2.5 – 2.201
Te 5s5p5d4 f 2 × 2.3 2 × 2.3 2.3 2.3 2.300
Ti_sv 3s4s3p3d4 f 1.8, 2.3 2 × 2.3 2 × 2.3 2.3 2.300
Zn 3d4s 2 × 2.3 2 × 2.3 2 × 2.3 – 1.828

when the corresponding atom is displaced. As a consequence,
there are no partial derivatives of the AE potential. This ex-
plains the comparatively faster convergence in the PS case.

On the other hand, in the case of the AE electron-phonon
matrix element, the change of the AE potential is essentially
reconstructed from the available information inside the PAW
spheres using Eqs. (A10) to (A14). This reintroduces the slow
convergence as discussed earlier. To see how this manifests in
practice, let us inspect the difference between the AE and PS
matrix elements given in Eq. (15). It factorizes into two parts:
an energy difference, (εnk − εmk+q), and the term tmnk,νq that
contains the change of the AE partial waves [see Eq. (A14)].
The energy difference causes this contribution to converge
slowly as it scales linearly with the KS energy of the interme-
diate state, while tmnk,νq provides a numerical reconstruction
of the perturbed AE potential. In contrast, no such scaling
is present in the PS method as the corresponding matrix el-
ements do not contain the KS energy of the intermediate state.

If one were to artificially set (εnk − εmk+q) = 1 in
Eqs. (A13) and (A14), then the fast convergence behavior
of the PS method should be recovered. We have conducted
this numerical test for the carbon potential corresponding
to Fig. 3(a) and indeed found that the modified ZPR cal-
culation converges as fast as in the PS case. Once again,
this is not a coincidence as the reconstruction of the AE

information contained in tmnk,νq is not required in the PS
method.

For diamond, as observed in Figs. 3(a) and 3(b), both
methods converge to slightly different values. In our imple-
mentation, Eq. (A10) can be seen as a reconstruction formula
to obtain the AE quantity, Eq. (11). That both methods do
not converge to the same value indicates that this reconstruc-
tion in the term tmnk,νq has failed. More precisely, it is most
likely the contribution g(R) in Eq. (A14), which contains the
derivative of the AE partial waves, |φ j〉, projected onto other
partial waves, 〈φi|, that is responsible for the discrepancy.
Unfortunately, it is entirely possible that the corresponding
partial-wave basis is not sufficiently complete to describe
the potential derivative induced by the phonon perturbation,
especially at high energies. In general, pseudopotential meth-
ods, the PAW method and other linearized methods have
been designed to describe total energies, forces, and one-
electrons energies close to the Fermi level with great accuracy
[60]. In contrast, electron-phonon matrix elements are, strictly
speaking, not observables. Hence, it is reasonable to assume
that the reconstruction of the AE orbital might fail for cer-
tain pseudopotentials, especially at higher energies where the
partial-wave basis is not sufficiently complete. An impor-
tant exception are the diagonal matrix elements (εmk+q =
εnk) which describe the first-order change of the electronic
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FIG. 2. Convergence behavior of the nonadiabatic ZPR with re-
spect to the maximum number of included intermediate states for
both the AE and PS method for (a) MgO, (b) AlAs, and (c) ZnS. The
second x axis scale above each panel displays the average KS energy
with respect to the Fermi level that corresponds to the number of
bands. The PS method converges much faster and smoother than the
AE method, but both eventually converge to approximately the same
value.

eigenvalues. In this case, the AE and PS electron-phonon ma-
trix elements are strictly identical and the contribution from
Eq. (A14) is zero. Similar issues related to the completeness of
the local PAW basis were previously encountered in the con-
text of linear optical properties [61] and are also commonly
observed for NMR calculations in all-electron codes [62].

In Fig. 3(b), we have tried to improve on the calculations
performed in Fig. 3(a) by using a different pseudopotential
that features more partial waves, but this did not improve the
agreement. It is difficult to say why this is the case exactly.
First, there is no guarantee that the ZPR converges mono-
tonically with respect to the number of local basis functions.
Second, a systematic convergence study becomes unfeasible
due to the technical challenges of pseudopotential generation,
as increasing the local basis-set size usually requires tuning
other parameters.

In Fig. 3(c), we instead used a pseudopotential with a
smaller core radius for the PAW spheres, a local pseudopo-
tential that follows the all-electron potential down to 0.8 Bohr
radii, and a partial-wave basis that contains three partial waves
and accurately restores the scattering properties up to 500 eV
above the vacuum level. This effectively shifts a portion of the
AE information from the local basis onto the plane-wave grid
and improves the completeness of the partial wave basis. The
drawback of such a potential is that an even larger number of
states is required to converge the ZPR with respect to the num-
ber of intermediate states. In Fig. 3(c), the AE and PS methods
agree on the final result, as reported in Table I. Remarkably,
the values computed using the PS approach seem to be quite
insensitive to the choice of the pseudopotential, which moti-
vates our choice to calculate the ZPR using the PS approach.

B. Evaluation of ZPR for selected materials

In light of the above results and discussion, from here on
we have calculated the ZPR using the PS approach. We now
proceed to present converged nonadiabatic ZPR calculations
for several materials listed in Table III. Important computa-
tional parameters, such as the choice of the PAW potential
and the plane-wave cutoff, are reported. In addition, the table
also lists the size of the supercell and the maximum number of
k/q points used to extrapolate the ZPR toward infinity. Addi-
tional information regarding the pseudopotentials is listed in
Table II. The materials were chosen from a recent publication
by Miglio et al. [63] in order to make a detailed comparison.

All calculations were performed using the PBE flavor of
density-functional-theory approximation [64,65], except AlN,
BN, and C, where LDA was used [66]. This is done for
consistency with the calculations reported by Miglio et al., as
different density-functional-theory approximations can trans-
late into slight differences in the ZPR results. For reason
of consistency, we also chose a smearing parameter of δ =
10 meV for all compounds and the same band-gap transitions
as in Ref. [63]. Lattice parameters are optimized to minimize
the DFT total-energy functional. The Born effective-charge
tensor and macroscopic ion-clamped static dielectric tensor
used to calculate the long-range electrostatic contributions in
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FIG. 3. Same as Fig. 2 but for diamond and using three different PAW potentials: C (a), C_GW_new (b), and C_h_GW (c). AE and PS
methods converge to approximately the same result only in panel (c). The AE results depend more strongly on the PAW potential.

our interpolation scheme are calculated from DFPT [61]. We
leave the special treatment of the dynamic quadrupoles in the
long-range interaction as proposed in Refs. [36,37] for a future

TABLE III. PAW potentials (POTCAR), plane-wave cutoffs
(Ecut) and supercell sizes used for all materials studied. In addition,
the finest k/q-point grid size used to extrapolate the ZPR toward
infinity is listed for each material (max. grid). This grid size is used
for both electrons and phonons. The names of the PAW potentials
correspond to the labels of the POTCAR files distributed with VASP.

Material POTCAR Ecut (eV) Supercell Max. grid

AlAs-zb Al As 240 4×4×4 64×64×64
AlN-w Al N_s 279 4×4×2 48×48×48
AlP-zb Al P 255 4×4×4 64×64×64
AlSb-zb Al Sb 240 4×4×4 64×64×64
BN-zb B N_s 319 4×4×4 64×64×64
BaO-rs Ba_sv O_s 283 4×4×4 64×64×64
BeO-w Be O_s 350 4×4×2 48×48×48
C-cd C 600 4×4×4 48×48×48
CaO-rs Ca_sv O_s 350 4×4×4 64×64×64
CdS-zb Cd S 274 4×4×4 64×64×64
CdSe-zb Cd Se 274 4×4×4 64×64×64
CdTe-zb Cd Te 274 4×4×4 64×64×64
GaN-w Ga_d N_s 283 4×4×2 64×64×64
GaN-zb Ga_d N_s 350 4×4×4 64×64×64
GaP-zb Ga_d P 283 4×4×4 64×64×64
Li2O Li_sv O 499 4×4×4 64×64×64
LiF-rs Li_sv F 499 4×4×4 64×64×64
MgO-rs Mg O 500 4×4×4 64×64×64
Si-cd Si 245 4×4×4 64×64×64
SiC-zb Si C 400 4×4×4 64×64×64
SiO2-t Si O_s 283 3×3×4 48×48×48
SnO2-t Sn_d O_s 283 3×3×4 48×48×48
SrO-rs Sr_sv O_s 283 4×4×4 64×64×64
TiO2-t Ti_sv O_s 283 3×3×4 32×32×32
ZnO-w Zn O_s 283 4×4×2 64×64×64
ZnS-zb Zn S 277 4×4×4 64×64×64
ZnSe-zb Zn Se 277 4×4×4 64×64×64
ZnTe-zb Zn Te 400 4×4×4 64×64×64

work. Lattice parameters as well as the relevant components
of the Born effective-charge and dielectric tensor are reported
in Tables IV to VI.

Our results for the band-gap ZPR are reported in Table VII,
together with the corresponding results from Miglio et al.
Given the differences in the pseudopotentials and the differ-
ent methodological details, the comparison between the ZPR
results is excellent. For most materials, the relative difference
is only within a few percent, except for some compounds that
feature a particularly small ZPR, such as ZnTe and CdSe.
Concerning LiF, missing in Ref. [63], we note that Nery
et al. [54] report a nonadiabatic band-gap ZPR for LiF of
−1149 meV. This agrees well with our value of −1231 meV.

The values for the ZPR in Table VII range from a few meV
to over 1 eV in the case of LiF. We can observe an overall
trend that materials involving light atoms also feature a large

TABLE IV. Lattice constants (in Å), dielectric constants, and
Born effective charges for cubic materials.

Material a ε∞
xx Z�

xx

AlAs-zb 4.053 9.526 2.154
AlP-zb 3.893 8.118 2.245
AlSb-zb 4.407 12.035 1.827
BN-zb 2.535 4.534 1.866
BaO-rs 3.968 4.238 2.722
CaO-rs 3.421 3.768 2.346
CdS-zb 4.190 6.227 2.235
CdSe-zb 4.379 8.386 2.319
CdTe-zb 4.680 9.304 2.302
GaN-zb 3.215 6.059 2.669
GaP-zb 3.891 10.583 2.206
Li2O 3.268 2.918 0.903
LiF-rs 2.867 2.049 1.052
MgO-rs 2.978 3.128 1.969
SiC-zb 3.096 6.993 2.690
SrO-rs 3.682 3.781 2.431
ZnS-zb 3.851 5.905 2.022
ZnSe-zb 4.055 7.345 2.102
ZnTe-zb 4.372 9.030 2.087
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TABLE V. Lattice constants (in Å) and components of the
dielectric tensor and Born effective-charge tensor for symmetry-
inequivalent directions for hexagonal materials.

Material a c ε∞
xx ε∞

zz Z�
xx Z�

zz

AlN-w 3.091 4.947 4.372 4.592 2.504 2.665
BeO-w 2.712 4.404 3.044 3.108 1.788 1.848
GaN-w 3.219 5.244 5.855 6.035 2.621 2.761
ZnO-w 3.284 5.301 5.242 5.227 2.109 2.162

total ZPR. This is in line with previous findings by Karsai
et al. [48]. However, a definitive statement would require a
more thorough analysis. Additionally, Nery et al. [54] showed
that for the strongly polar materials LiF and MgO, long-range
Fröhlich-like interactions account for a considerable portion
of the total ZPR. Although we did not look at the Fröhlich
contribution separately for the present materials, we still ex-
pect this to be the case for other polar materials.

With the choice δ = 10 meV for the smearing parameter,
some small numerical errors occur. To gauge the size of these
errors, we have investigated the convergence behavior of the
ZPR with respect to δ for MgO and CdTe. The latter has
a particularly small total ZPR that is of the same order of
magnitude as δ. The errors are about 1 and 0.5 meV for MgO
and CdTe, respectively.

In order to reaffirm the correctness of our results, we
conducted a more thorough analysis on ZnO-w for which
the relative and absolute differences are comparatively large.
First, we compare our computational setup with the one used
by Miglio et al. in Ref. [63]. While small differences exist
in the lattice parameters, Born effective charges and the di-
electric tensor, we find that those differences only account for
a change in the ZPR of about 3 meV. Likewise, increasing
the supercell size in our calculation from 4×4×2 to 5×5×3
increases the total ZPR by only 2 meV.

Next, we investigate the effect of using different pseudopo-
tentials on the ZPR. The AHC band-gap ZPR of ZnO reported
in Ref. [63] was calculated in Abinit [67] using ONCVPSP-
type pseudopotentials from the Pseudo-Dojo database v0.3
[68]. Here we attempt to replicate the result of Ref. [63], and
we perform additional calculations using the EPH module in
Abinit 9.6.2 which uses a similar approach to interpolate the
electron-phonon potential to dense q-point meshes. We use the
Dojo pseudopotentials in their standard and high variants, as
well as two other types denoted FHI98pp and HGH following
the denominations in Ref. [69].

The results of our Abinit calculations are summarized in
Table VIII. The HGH as well as both Dojo calculations yield
very similar values when extrapolated to an infinitely dense
q-point grid, in excellent agreement with the ones obtained

TABLE VI. Same as Table V but for tetragonal materials.

Material a c ε∞
xx ε∞

zz Z�
xx Z�

xy Z�
zz

SiO2-t 4.231 2.700 3.369 3.556 3.807 0.401 4.041
SnO2-t 4.831 3.246 4.675 4.909 4.097 0.519 4.474
TiO2-t 4.587 2.954 7.404 8.738 6.341 1.030 7.621

TABLE VII. Band-gap ZPR (in meV) obtained in the framework
of nonadiabatic AHC theory for various materials. The values are
compared against the ones reported by Miglio et al. [63].

ZPR ZPR
Material this work Ref. [63] Rel. diff. Abs. diff.

AlAs-zb −74 −74 0.2 % 0
AlN-w −377 −399 5.5 % 22
AlP-zb −96 −93 2.9 % 3
AlSb-zb −52 −51 1.8 % 1
BN-zb −402 −406 0.9 % 4
BaO-rs −277 −271 2.4 % 6
BeO-w −726 −699 3.9 % 27
C-cd −323 −330 2.0 % 7
CaO-rs −357 −341 4.8 % 16
CdS-zb −67 −70 3.8 % 3
CdSe-zb −29 −34 15.2 % 5
CdTe-zb −19 −20 7.4 % 1
GaN-w −171 −189 9.5 % 18
GaN-zb −163 −176 7.6 % 13
GaP-zb −69 −65 5.7 % 4
Li2O −569 −573 0.6 % 4
LiF-rs −1231 – – –
MgO-rs −533 −524 1.6 % 9
Si-cd −58 −56 4.1 % 2
SiC-zb −175 −179 2.1 % 4
SiO2-t −583 −585 0.4 % 2
SnO2-t −232 −215 7.9 % 17
SrO-rs −323 −326 1.0 % 3
TiO2-t −349 −337 3.5 % 12
ZnO-w −175 −157 11.2 % 18
ZnS-zb −88 −88 0.2 % 0
ZnSe-zb −43 −44 3.1 % 1
ZnTe-zb −25 −22 14.4 % 3

by VASP using the PAW method (175 meV). The FHI98pp
pseudopotential is an outlier in the set which is in line with
the � test results [69]. We conclude that the ZPR value for
ZnO agrees well with the one obtained using the new EPH
module in Abinit [67,70]. This approach bypasses DFPT com-
putations of the electron-phonon potential on dense q-point
meshes and is thus more attractive from a computational point

TABLE VIII. Comparison between different norm-conserving
pseudopotentials used in our Abinit calculations of the band-gap
ZPR of ZnO-w (in meV). The row labeled “infinity” contains the
extrapolated values.

Dense grid FHI98pp Dojo-std. Dojo-high HGH

4×4×4 −81 −88 −88 −84
8×8×8 −106 −116 −116 −110
12×12×12 −117 −129 −129 −122
16×16×16 −124 −137 −137 −129
24×24×24 −133 −148 −148 −139
32×32×32 −139 −153 −154 −146
48×48×48 −145 −162 −162 −152
64×64×64 −149 −166 −166 −158
Infinity −160 −175 −178 −175
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of view. The value of the ZPR for ZnO-w reported in Ref. [63]
is an outlier in the otherwise satisfactory agreement with our
current results. The remaining differences are likely to be re-
lated to substantially different pseudopotentials. We consider
the present agreement to be a strong validation of the results
obtained in Ref. [63] as well as a thorough validation of our
present VASP implementation.

C. Comparison with prior work

In this section, we compare against two publications by
Karsai et al. [48] and Engel et al. [31] that calculated the band-
gap ZPR using VASP, and we highlight their shortcomings.
While the approaches used in both cases employ the adiabatic
Born-Oppenheimer approximation and rely on finite displace-
ments in supercells, they differ substantially in how the ZPR
is calculated. Let us first briefly review the characteristics of
each method.

In Ref. [48], the change of the band structure was deter-
mined directly from a single frozen phonon that represents
a stochastically average displacement [13]. Since the band
structure is calculated exactly for the frozen-phonon structure,
no summation over intermediate states is required. Addition-
ally, this method implicitly captures contributions to the ZPR
that correspond to higher-order terms in the electron-phonon
interaction (anharmonicities in the ion-ion interactions are ne-
glected, though). The disadvantage of the supercell approach
is that momentum transfers are restricted to wave vectors that
are commensurate with the supercell. In order to sample small
momentum transfers, one might need to increase the super-
cell size, in particular for polar materials. Presently, a simple
method to accurately account for the long-range electrostatic
contributions to the electron-phonon interaction does not exist
in this approach, so one must rely on brute-force convergence
tests and potentially huge supercells.

In Ref. [31], the ZPR was calculated from second-order
perturbation theory in the harmonic approximation. Similar to
the present work, this method relies on the AHC approach and
the rigid-ion approximation to calculate the DW contribution.
In contrast to the present work, the electron-phonon ma-
trix elements were calculated using a Wannier-interpolation
scheme. While this allows for a very fine sampling of the
Brillouin zone, only a comparatively small number of inter-
mediate states has been used. Convergence of the ZPR with
respect to the number of bands is generally fairly challenging
in Wannier-interpolation schemes, since conduction bands are
not easily localized. Finally, even though long-range elec-
trostatic contributions can, in principle, be included in such
an interpolation scheme, a working implementation was not
available then, and these contributions are hence missing in
Ref. [31].

Table IX lists results for the band-gap ZPR from both prior
publications and the present work for selected semiconduc-
tors and insulators. The reported literature values correspond
to calculations using a 5×5×5 supercell and were extracted
from Table IV in Ref. [31], while the first column collects
the present results from Table VII. In addition, column two
of Table IX also provides results calculated within the adia-
batic AHC approximation using the present PS method, but
employing supercell sizes and computational parameters that

TABLE IX. Band-gap ZPR in meV. Column one shows the
converged ZPR from this work (Table VII). Column two shows the
adiabatic ZPR without q-point interpolation and hence without long-
range electrostatic contributions. Columns three and four reproduce
results from prior publications by Karsai et al. and Engel et al., re-
spectively, and correspond to 5×5×5 supercell calculations; in both
cases, long-range electrostatic contributions are missing. The table
includes information about whether a method employs the harmonic
or adiabatic approximations and whether it is converged with respect
to the conduction-band states and q points.

This work This work Ref. [48] Ref. [31]
AHC AHC one-shot AHC

Adiabatic No Yes Tes Yes
q-Point conv. Yes No No No
Harmonic Yes Yes Partly Yes
Band conv. Yes Yes Yes No

AlAs-zb −74 −57 −63 −55
AlP-zb −96 −70 −70 −67
AlSb-zb −44 −43 −43 −39
BN-zb −402 −290 −294 −290
C-cd −323 −320 −320 −337
GaN-zb −163 −87 −94 −95
GaP-zb −61 −52 −57 −44
Si-cd −58 −54 −65 −54
SiC-zb −175 −121 −120 −130

match closely those of Ref. [48]. Specifically, for column
two and four, no interpolation to a dense q-point grid was
performed, so the k/q-point grids are commensurate with the
5×5×5 supercell. Convergence with respect to the number of
intermediate states was obtained by summing over numerous
bands as done everywhere else in this work. We are now in a
position to compare and assess the implications of the various
approximations.

First, we note that the last three columns of Table IX are re-
markably close but deviate significantly from the first column.
The last three columns have been obtained for identical super-
cell sizes (one-shot method) and q-point samplings. Besides
using the adiabatic approximation, all three are obviously not
converged with respect to the considered momentum trans-
fers. For nonpolar materials (C and Si) and materials with a
large dielectric screening (AlSb) the resulting errors are small.
However, for the more polar materials with a small dielectric
constant and large Born effective charges, the errors are not
acceptable. The errors can well reach a factor two and are
typically at least 50 %. Clearly, this confirms prior observa-
tions that an accurate treatment of the long-range electrostatic
interactions is required in polar materials [54].

The second interesting assessment is the comparison of the
stochastic one-shot method (third column) and the adiabatic
AHC approach (second column). The results are remark-
ably close, with the absolute errors hardly exceeding 10 meV
(Si-cd). The one-shot method always consistently increases
the ZPR for the materials considered here. The good agree-
ment means that in this case the harmonic approximation
in the electron-phonon interaction in combination with the
rigid-ion approximation is quite well justified. One could po-
tentially add the corrections obtained by the one-shot method
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compared to the adiabatic AHC back to the q-point converged
results to correct for the rigid-ion approximation and anhar-
monic effects in the electron-phonon interaction.

The final comparison is between column two (AHC con-
verged with respect to intermediate conduction bands) and
the AHC approach using Wannier orbitals. The latter is not
converged with respect to the intermediate states. Clearly, the
relative errors are between 5 % and 10 % but can approach
15 % as for GaP-zb. A systematic trend is not observed.
Generally, as shown in Fig. 2, the convergence of the ZPR
with respect to the intermediate states can be fairly erratic,
with outliers often exceeding 10 % of the converged ZPR.
Note that the magnitude of the “oscillations” also depends
strongly on the used PAW potentials, as exemplified in Fig. 3.
Hard accurate PAW potentials (C_h_GW) or the AE PAW
approach result in larger jumps than softer PAW potentials.
This makes the Wannier approach somewhat unpredictable.
Used with care and in combination with soft PAW potentials,
it can give a fairly reliable estimate of the ZPR using little
computational resources. The downside of this approach is
that one needs to be particularly careful when constructing
the Wannier orbitals, and validation against converged AHC
calculations will likely be required to ascertain the reliability
of the results.

IV. CONCLUSION

The present work determines the ZPR of the band gaps
of 28 semiconductors and insulators using the PAW method.
As shown, one can derive two different expressions for the
electron-phonon matrix element in the PAW method. We have
explained in detail how this is possible. Essentially, it depends
on whether the atomic derivatives are performed before or
after the PAW transformation. The PAW transformation and
completeness relation can either be used at the beginning
of the derivation, transforming the AE Hamiltonian to the
PAW form, or alternatively after taking the derivatives of
the AE Hamiltonian with respect to the ionic positions. We
have termed the former description PS PAW electron-phonon
matrix element and the latter AE PAW electron-phonon matrix
element. The latter version describes how the electron-phonon
matrix element changes as the nuclear cusp, Z/r, moves
against the AE orbitals. The PS version replaces the Z/r
cusp and the AE orbitals by the corresponding pseudized
quantities.

On first sight, one would expect the AE description to
be preferable for the determination of the ZPR, since it is
fundamentally more accurate. However, in practice, we find a
more rapid convergence of the ZPR with respect to the number
of intermediate conduction-band states in the PS formulation.
Moreover, in the case of diamond, the local partial-wave ex-
pansion does not seem sufficiently complete to perform the
reconstruction of the full potential in the AE formulation.
Only a reduction of the radial cutoff for the local basis yields
results consistent with PS calculations. It remains to be seen if

the PS formulation can be employed successfully for other ob-
servables. In general, one should carefully investigate whether
a simple substitution of the AE matrix element with the PS one
yields accurate results.

The second issue we have addressed in the present work
is the comparison between different approaches implemented
in VASP. The new reference method is based on the AHC
approach, can use very dense k-point grids and can account for
the energy transfer during phonon emission and absorption.
The other two considered approaches are the supercell-based
one-shot method and Wannier interpolation. The one-shot
method imposes a specific phonon pattern in a supercell and
determines the induced band-gap changes compared to the
ground-state structure. This approach is in some aspects more
accurate than the AHC approach adopted in the present work,
since it includes higher-order electron-phonon interactions
and avoids the rigid-ion approximation. Remarkably, for the
materials considered here, the corrections are always below
10 meV, which we consider to be acceptable. The disadvan-
tage of the one-shot approach is that it neglects the energy
transfer on phonon emission and absorption, and at the often
considered cell sizes it neglects important long-range contri-
butions. This can lead to sizable errors for polar materials.
The second method is also based on the AHC approach but
replaces the reevaluation of the KS orbitals at a very dense
k-point grid by a Wannier interpolation. While this approach
appears to introduce errors of about 10 %, the errors can
be much larger in some cases and for hard potentials. The
main source of these errors is related to the small number of
conduction-band states that one can include in the Wannier
approach.

Finally, we have compared our ZPR results with the re-
sults of Miglio et al. [63] for the same set of materials. The
agreement between the two different first-principles codes
is overall good, but we find a few cases where the dis-
crepancy is approaching 10 % or even 20 % for materials
with a very small ZPR. We have picked one of the outliers
(ZnO) and carefully reevaluated the ZPR using Abinit for
several pseudopotentials. The reevaluation greatly improved
the agreement with our data. As to why the new values using
Abinit are improved compared to VASP, we have speculated
that this is either related to more careful convergence tests
in the present work, an unfortunate choice of pseudopo-
tentials in the original work or recent improvements in the
Abinit code. In summary, we are confident that our present
PAW results can serve as a very stringent test for other
implementations.
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APPENDIX A: ELECTRON-PHONON INTERACTION IN PAW: IMPLEMENTATION DETAILS

1. AE and PS formalisms

If the electronic system is described by the one-electron problem,

Ĥ |ψnk〉 =
(

p̂2

2m
+ v̂

)
|ψnk〉 = εnk |ψnk〉 , (A1)

with Bloch states ψnk and band structure εnk, then the electron-phonon coupling is defined as

gnn′k′,νq = −i
εnk − εn′k′

h̄

∑
κ

〈ψnk| − ih̄
∂

∂Rκ

|ψn′k′ 〉 ·
√

h̄

2Mκωνq
eκ,νq�(q + k′ − k), (A2)

≡
∑

κ

gκ
nk,n′k′ ·

√
h̄

2Mκωνq
eκ,νq�(q + k′ − k). (A3)

In this definition, the states are normalized to one over the unit cell. κ labels the atoms in the primitive cell, and eκ,νq are the
eigenvectors of the dynamical matrix,

Dκα,κ ′α′ (q) = − 1√
MκMκ ′

∑
l ′

eiq·Rl′
∂Fl ′κ ′α′

∂Rκα

, (A4)

with Fl ′κ ′α′ the force on atom κ ′ in primitive cell l ′ in the Cartesian direction α′.
The matrix elements

gκ
nk,n′k′ = 〈ψnk| ∂Ĥ

∂Rκ

|ψn′k′ 〉 = 〈ψnk| ∂ v̂

∂Rκ

|ψn′k′ 〉 (A5)

have been expressed in Ref. [29] in terms of the orbitals and potentials used in the PAW formalism to solve Eq. (A1). In this
formalism, the AE quantities are pseudized according to

|ψnk〉 = T̂ |ψ̃nk〉 , (A6)

T̂ = 1 +
∑

i

(|φi〉 − |φ̃i〉) 〈p̃i| , (A7)

S̃ = T̂ †T̂ = 1 +
∑

i j

| p̃i〉 Qi j 〈p̃ j | , (A8)

H̃ = T̂ †Ĥ T̂ = − h̄

2m
∇2 + ṽ(r) +

∑
i j

| p̃i〉 Di j 〈p̃ j | , (A9)

where the i and j are compound indices to distinguish between the L = (n, l, m) momentum channels on an atom κ , i = (κi, Li ).
|φi〉, |φ̃i〉, and | p̃i〉 are the AE partial waves, PS partial waves and PAW projectors, respectively. Moreover, Di j and Qi j are
localized on the atoms, and therefore are nonzero only if κi = κ j . For example, Di j = δκi,κ j D

κi
Li,L j

.
Expressed in terms of PS orbitals and potentials, the matrix element in Eq. (A5) can be written as

gκ
nk,n′k′ = g(V )

nk,n′k′ (Rκ ) + g(D)
nk,n′k′ (Rκ ) + g(P)

nk,n′k′ (Rκ ) + g(R)
nk,n′k′ (Rκ ), (A10)

with

g(V )
nk,n′k′ (Rκ ) = 〈ψ̃nk| d ṽ

dRκ

|ψ̃n′k′ 〉 , (A11)

g(D)
nk,n′k′ (Rκ ) =

∑
i j

〈ψ̃nk| p̃i〉 dDi j

dRκ

〈p̃ j |ψ̃n′k′ 〉 , (A12)

g(P)
nk,n′k′ (Rκ ) =

∑
i j

〈
ψ̃nk

∣∣∣∣ d p̃i

dRκ

〉
(Di j − εn′k′Qi j ) 〈p̃ j |ψ̃n′k′ 〉 +

∑
i j

〈ψ̃nk| p̃i〉 (Di j − εnkQi j )

〈
d p̃ j

dRκ

∣∣∣∣ψ̃n′k′

〉
, (A13)

g(R)
nk,n′k′ (Rκ ) = −(εnk − εn′k′ )

∑
i j

〈ψ̃nk| p̃i〉
( 〈

φi

∣∣∣∣ ∂φ j

∂Rκ

〉
−

〈
φ̃i

∣∣∣∣ ∂φ̃ j

∂Rκ

〉 )
〈p̃ j |ψ̃n′k′ 〉 . (A14)

In Ref. [31], an alternative approach was used to base directly the calculations on the derivatives of the overlap operator, S̃.
To this end, a PS electron-phonon coupling is defined as the matrix element

g̃κ
nk,n′k′ = 〈ψ̃nk| ∂H̃

∂Rκ

− εn′k′
∂ S̃

∂Rκ

|ψ̃n′k′ 〉 (A15)

= g(V )
nk,n′k′ (Rκ ) + g(D)

nk,n′k′ (Rκ ) + g(Q)
nk,n′k′ (Rκ ), (A16)
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with

g(Q)
nk,n′k′ (Rκ ) =

∑
i j

〈
ψ̃nk

∣∣∣∣ d p̃i

dRκ

〉
(Di j − εn′k′Qi j ) 〈p̃ j |ψ̃n′k′ 〉 +

∑
i j

〈ψ̃nk| p̃i〉 (Di j − εn′k′Qi j )

〈
d p̃ j

dRκ

∣∣∣∣ψ̃n′k′

〉
. (A17)

The use of g̃κ
nk,n′k′ allows to avoid the computation of the reaction matrix, g(R)

nk,n′k′ (Rκ ). For clarity, we note that the two

contributions g(P)
nk,n′k′ (Rκ ) and g(Q)

nk,n′k′ (Rκ ) defined in Eqs. (A13) and (A17) differ only in the indices of the KS eigenvalues,
εnk and εn′k′ , appearing in the last term.

2. Parlinski supercell interpolation theorems for electron-phonon interactions

The electron-phonon equivalent of the Parlinski interpolation theorem for phonons [59] is provided in this Appendix. In our
approach, we are computing the derivatives of the potentials appearing in Eqs. (A11) and (A12) from finite displacements of
atoms in supercell calculations (see Ref. [29]). This supercell approach prevents us from accessing the quantities d ṽ/dRκ and
dDi j/dRκ . Indeed, having periodic boundary conditions in the supercell implies that when a finite displacement is applied to
atom κ , Rκ → Rκ + u, every supercell-periodic repetition of this atom is also displaced, RLκ → RLκ + u, with RLκ = Rκ + L,
and L the supercell lattice vectors. Consequently, the quantities we obtain from finite differences are

∑
L

d ṽ(r)

dRLκ

and
∑

L

dDi j

dRLκ

, (A18)

rather than just d ṽ/dRκ and dDi j/dRκ .
As shown in Eq. (A4), the same aliasing problem appears in the computation of the phonon spectrum when the force constants

are obtained from finite differences of forces. In this case, instead of ∂Fl ′κ ′α′/∂Rκα , one has
∑

L ∂Fl ′κ ′α′/∂RLκα , which is obtained
from the supercell calculations.

The problem at hand is therefore to obtain as accurately as possible the aforementioned derivatives, ∂/∂Rκ , knowing only
the periodic derivatives

∑
L ∂/∂RLκ . For phonons, by defining a proper interpolation of the dynamical matrix, Parlinski [59] has

shown that it is possible to obtain exact results for wave vectors q that are commensurate with the supercell, eiq·L = 1. In the
following for the electron-phonon coupling, we propose interpolations which also become exact for those commensurate wave
vectors.

At first, for a given atom κ at position Rκ , and a given location r in the supercell, we define the set of supercell lattice vectors,
L, that minimize the distance between Rκ and the image of r in the neighboring supercell,

{L}κ,r = argminL||r + L − Rκ ||. (A19)

r + L are the so-called minimal images of r around Rκ . If V is the crystal volume and VS the volume of the supercell, then
the interpolations are defined saying that the volume integration/summation is replaced by an integration/summation over the
supercell volume of the same quantities, but computed with the periodic derivatives, and averaged over their minimal images
around atom κ . This gives

g(V )
nk,n′k′ (Rκ ) =

∫
V

d3r ψ̃∗
nk(r)

d ṽ(r)

dRκ

ψ̃n′k′ (r) (A20)

→
∫

VS

d3r
1

|{L}κ,r|
∑
{L}κ,r

ψ̃∗
nk(r + L)

(∑
L′

d ṽ(r + L)

dRL′κ

)
ψ̃n′k′ (r + L), (A21)

g(D)
nk,n′k′ (Rκ ) =

∑
κ ′∈V

∑
LL′

〈ψ̃nk| p̃κ ′L〉 dDκ ′
L,L′

dRκ

〈p̃κ ′L′ |ψ̃n′k′ 〉 (A22)

→
∑
κ ′∈VS

∑
LL′

1

|{L}κ,Rκ′ |
∑

{L}κ,R
κ′

〈ψ̃nk| p̃Lκ ′L〉
(∑

L′

dDLκ ′
LL′

dRL′κ

)
〈p̃Lκ ′L′ |ψ̃n′k′ 〉 . (A23)

In Eqs. (A20) and (A22), the definitions of g(V ) and g(D) are recalled, and the interpolation is defined in Eqs. (A21) and (A23)
with the arrow →.

That the above interpolations becomes exact for wave vectors k and k′ commensurate with the supercell is easily shown
using the Bloch theorem and the periodicity of the potential. Indeed, if VS (L′) is the volume of the supercell with origin at L′,
the interpolation for g(V ) can be written as

∑
L′

∫
VS (L′ )

d3r ψ̃∗
nk(r)

d ṽ(r)

dRκ

ψ̃n′k′ (r)
1

|{L}κ,r|
∑
{L}κ,r

ei(k′−k)·(L−L′ ), (A24)
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where the exponential becomes equal to 1 for commensurate wave vectors. The interpolation of g(D) can be written the same
way:

∑
L′

∑
κ ′∈VS (L′ )

∑
LL′

〈ψ̃nk| p̃κ ′L〉 dDκ ′
L,L′

dRκ

〈p̃κ ′L′ |ψ̃n′k′ 〉 1

|{L}κ,Rκ′ |
∑

{L}κ,R
κ′

ei(k′−k)·(L−L′ ), (A25)

which becomes equal to g(D) for commensurate wave vectors.

3. Treatment of the long-range part of the potential derivative

In ionic systems, the potential derivative in Eq. (A5) may have contributions at long wavelengths, and therefore the
interpolation defined in the previous section may become inaccurate. In such a case, we may write

gκ
nk,n′k′ = 〈ψnk| ∂ v̂S

κ

∂Rκ

|ψn′k′ 〉 + 〈ψnk| ∂ v̂L
κ

∂Rκ

|ψn′k′ 〉 , (A26)

with

vS
κ (r) = v(r) − vL

κ (r), (A27)

where vL
κ is a potential with a long range behavior approximately equal to the one of v. Consequently, vS

κ is a short-range
potential to which our interpolation procedure may be applied. In practice, we choose vL

κ to be the Coulomb potential due to a
point charge Qκ located at Rκ . This point charge is put in a uniform background of opposite charge to keep the system neutral.
In a final step, the point charge Qκ is promoted to be the Born effective-charge tensor, (−e)Z�

κ , for the description of the long
range part to be as accurate as possible. Explicitly, the solution of the Poisson equation gives for vL

κ

vL
κ (r) = (−e)

4πQκ

V

∑
q

∑
G �=−q

ei(q+G)·(r−Rκ )

(q + G) · ε∞ · (q + G)
, (A28)

where G are the reciprocal-lattice vectors of the crystal and ε∞ is the macroscopic ion-clamped static dielectric tensor. This
gives for the second term of Eq. (A26)

〈ψnk| ∂ v̂L
κ

∂Rκ

|ψn′k′ 〉 = (−e)
4πQκ

�

∑
G �=−q

∫
�

d3r ψ∗
nk(r)

(−i(q + G)ei(q+G)·(r−Rκ )

(q + G) · ε∞ · (q + G)

)
ψn′k′ (r), (A29)

with � the volume of the primitive cell, and q = k − k′mod G. The AE orbitals, ψnk, are unknown and therefore the above
quantity has to be expressed in terms of the PS orbitals, ψ̃nk. We have

〈ψnk|ei(q+G)·(r̂−Rκ )|ψn′k′ 〉 = 〈ψ̃nk|ei(q+G)·(r̂−Rκ )|ψ̃n′k′ 〉 +
∑

i j

〈ψ̃nk| p̃i〉 Qκ
i j (q + G) 〈p̃ j |ψ̃n′k′ 〉 , (A30)

with

Qκ
i j (q + G) = 〈φi|ei(q+G)·(r̂−Rκ )|φ j〉 − 〈φ̃i|ei(q+G)·(r̂−Rκ )|φ̃ j〉 (A31)

=
∫

Sκi

d3r (φ∗
i (r)φ j (r) − φ̃∗

i (r)φ̃ j (r))ei(q+G)·(r−Rκi )ei(q+G)·(Rκi −Rκ ). (A32)

Sκi is the atomic sphere around atom κi. However, the functions in the integral depend only on r − Rκi . Therefore, it can be
evaluated in the sphere located at the origin. Using φi(r) = Rnili (r)Slimi (r̂) (See the Appendices in Ref. [29]) and the Rayleigh
expansion formula, we obtain

Qκ
i j (q + G) = 4πei(q+G)·(Rκi −Rκ )

∞∑
l=0

l∑
m=−l

ilSlm(̂q + G)ql
i j (|q + G|)Clm

lil j mimj
, (A33)

where

ql
i j (|q + G|) =

∫
drr2

(
Rnili (r)Rnj l j (r) − R̃nili (r)R̃n j l j (r)

)
jl (|q + G|r), (A34)

with the spherical Bessel functions jl and the Gaunt coefficients,

Clm
lil j mimj

=
∫

dr̂ Slimi (r̂)Slm(r̂)Sl j mj (r̂). (A35)
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This gives

〈ψnk| ∂ v̂L
κ

∂Rκ

|ψn′k′ 〉 = (−e)
4πQκ

�

∑
G �=−q

∫
�

d3r ψ̃∗
nk(r)

(−i(q + G)ei(q+G)·(r−Rκ )

(q + G) · ε∞ · (q + G)

)
ψ̃n′k′ (r)

+ (−e)
4πQκ

�

∑
G �=−q

∑
i j

−i(q + G)

(q + G) · ε∞ · (q + G)
〈ψ̃nk| p̃i〉 Qκ

i j (q + G) 〈p̃ j |ψ̃n′k′ 〉 . (A36)

To compute 〈ψnk| ∂ v̂Sκ
∂Rκ

|ψn′k′ 〉, the interpolation procedure defined in the previous section is used. The quantities
∑

L′ d ṽ/dRL′κ

and
∑

L′ dDi j/dRL′κ , which appear in Eqs. (A21) and (A23), are the change of the PAW potential when an atom κ is moved in
every periodic repetition of the supercell with lattice vectors L. When the Poisson equation is solved with such periodic boundary
conditions, its solution can be written as∑

L

dvL(r)

dRLκ

= (−e)
d

dRκ

4πQκ

VS

∑
K �=0

eiK·(r−Rκ )

K · ε∞ · K
, (A37)

where K are the reciprocal-lattice vectors of the supercell. To obtain the PAW representation of this potential, once again we
write

〈ψnk|eiK·(r−Rκ )|ψn′k′ 〉 = 〈ψ̃nk|eiK·(r−Rκ )|ψ̃n′k′ 〉 +
∑

i j

〈ψ̃nk| p̃i〉 Qκ
i j (K) 〈p̃ j |ψ̃n′k′ 〉 . (A38)

Therefore,

〈ψnk|
∑

L

d v̂L

dRLκ

|ψn′k′ 〉 = 〈ψ̃nk|(−e)
4πQκ

VS

∑
K �=0

−iK
K · ε∞ · K

eiK·(r̂−Rκ )|ψ̃n′k′ 〉

+
∑

i j

〈ψ̃nk| p̃i〉 (−e)
4πQκ

VS

∑
K �=0

−iK
K · ε∞ · K

Qκ
i j (K) 〈p̃ j |ψ̃n′k′ 〉 . (A39)

Comparing with Eqs. (A11) and (A12), this last equation shows that we can use the equation of the previous section to perform
the interpolation procedure by making the substitutions∑

L

d ṽ(r)

dRLκ

←−
∑

L

d ṽ(r)

dRLκ

− 4πe2Z��
κ

VS

∑
K �=0

−iK
K · ε∞ · K

eiK·(r−Rκ ), (A40)

∑
L

dDi j

dRLκ

←−
∑

L

dDi j

dRLκ

− 4πe2Z��
κ

VS

∑
K �=0

−iK
K · ε∞ · K

Qκ
i j (K). (A41)

APPENDIX B: AE AND PS METHODS
IN THE ADIABATIC APPROXIMATION

In this section, we show the formal equivalence of the
band-structure renormalization between the AE and PS for-
mulations in the adiabatic limit by means of an algebraic
proof. For simplicity’s sake, we focus on the ZPR but the proof
is equally valid at finite temperature. In addition, we assume
that the band structure is nondegenerate everywhere. While
not strictly necessary, this allows for a clean removal of the
iδ term from the denominator of the self-energy expression.
Furthermore, in this proof, we do not employ the rigid-ion
approximation, which means that the DW contribution is exact
in second-order perturbation theory. Under these assumptions,
the FM contribution to the adiabatic ZPR reads

ZPRFM,a
nk =

∫
BZ

d3q

�BZ

∑
ν

γ FM
nk,νq, (B1)

γ FM
nk,νq ≡

′∑
m

|gmnk,νq|2
εnk − εmk+q

, (B2)

where the prime above the sum indicates that the case (mk +
q) = (nk) is excluded. The DW contribution takes the form

ZPRDW,a
nk =

∫
BZ

d3q

�BZ

∑
ν

γ DW
nk,νq, (B3)

γ DW
nk,νq ≡ 1

2
〈ψnk|∂νq∂

∗
νqĤ |ψnk〉 , (B4)

where ∂∗
νq = ∂ν,−q.

In the PS formulation, the terms γ FM
nk,νq and γ DW

nk,νq are re-
placed by their respective PS equivalents:

γ̃ FM
nk,νq ≡

′∑
m

|g̃mnk,νq|2
εnk − εmk+q

− g̃nnk,ν0 〈ψ̃nk|∂ν0S̃|ψ̃nk〉 δ(q) (B5)

and

γ̃ DW
nk,νq ≡ 1

2 〈ψnk|∂νq∂
∗
νqH̃ − εnk∂νq∂

∗
νqS̃|ψnk〉 , (B6)

which yields the ZPR equations reported in Ref. [31]. Our
goal is to show that γ FM

nk,νq − γ̃ FM
nk,νq = γ̃ DW

nk,νq − γ DW
nk,νq when
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integrated over the first Brillouin zone, which proves that both
formulations yield identical results for the adiabatic ZPR.

Let us begin by transforming the AE electron-phonon ma-
trix elements in Eq. (B2) to the PS formulation using Eq. (15).
To keep track of the different resulting terms, they are divided
into three different contributions:

γ FM
nk,νq = γ FM,a

nk,νq + γ FM,b
nk,νq + γ FM,c

nk,νq, (B7)

γ FM,a
nk,νq ≡

′∑
m

|g̃mnk,νq|2
εnk − εmk+q

, (B8)

γ FM,b
nk,νq ≡

′∑
m

g̃∗
mnk,νqt̃mnk,νq + c.c., (B9)

γ FM,c
nk,νq ≡

′∑
m

(εnk − εmk+q)|t̃mnk,νq|2, (B10)

t̃mnk,νq ≡ 〈ψ̃mk+q|T̂ †∂νqT̂ |ψ̃nk〉 . (B11)

The term γ FM,a
nk,νq is already identical to the first line of Eq. (B5).

Next, let us add and subtract the (mq) = (n0) contribution to
and from γ FM,b

nk,νq to complete the sum:

γ FM,b
nk,νq =

∑
m

(g̃∗
mnk,νqt̃mnk,νq + c.c.)

− g̃∗
nnk,ν0t̃nnk,ν0δ(q) − c.c. (B12)

Since ∂ν0 = ∂∗
ν0, we know that g̃nnk,ν0 is real, which lets us

further modify the terms appearing on the second line of

Eq. (B12):

g̃∗
nnk,ν0t̃nnk,ν0 + t̃∗

nnk,ν0g̃nnk,ν0

= g̃nnk,ν0(t̃nnk,ν0 + t̃∗
nnk,ν0)

= g̃nnk,ν0 〈ψ̃nk|∂ν0S̃|ψ̃nk〉 ,

where we used the product rule of differentiation to retrieve
the PAW overlap operator. Therefore,

γ FM,b
nk,νq =

∑
m

(g̃∗
mnk,νqt̃mnk,νq + c.c.)

− g̃nnk,ν0 〈ψ̃nk|∂ν0S̃|ψ̃nk〉 δ(q). (B13)

Summing Eq. (B8) and the second line of Eq. (B13) yields
exactly γ̃ FM

nk,νq, so the difference of the AE and PS FM contri-
butions is simply the entire remainder:

γ FM
nk,νq − γ̃ FM

nk,νq =
∑

m

[(εnk − εmk+q)|t̃mnk,νq|2

+ g̃∗
mnk,νqt̃mnk,νq + t̃∗

mnk,νqg̃mnk,νq]. (B14)

Notice how Eq. (B14) now contains a sum over all intermedi-
ate states, m. This is possible since the case (mq) = (n0) does
not contribute in γ FM,c

nk,νq.
To show the difference between the AE and PS DW con-

tributions, it is easier to begin in the PS formulation by
expanding Eq. (B6) in terms of the PAW transformation and
then applying the differential operators using the product rule.
This way, the second derivative of the PAW Hamiltonian con-
tributes nine terms while the second derivative of the PAW
overlap contributes four. To keep track of all these terms, we
once again group them into different contributions:

γ̃ DW
nk,νq = γ DW

nk,νq + γ̃ DW,a
nk,νq + γ̃ DW,b

nk,νq + γ̃ DW,c
nk,νq , (B15)

γ̃ DW,a
nk,νq ≡ 1

2

〈
ψ̃nk | ∂νq∂

∗
νqT̂ †Ĥ T̂ − εnk∂νq∂

∗
νqT̂ †T̂ | ψ̃nk

〉 + c.c., (B16)

γ̃ DW,b
nk,νq ≡ 1

2

〈
ψ̃nk | ∂∗

νqT̂ †Ĥ∂νqT̂ + ∂νqT̂ †Ĥ∂∗
νqT̂ − εnk∂

∗
νqT̂ †∂νqT̂ − εnk∂νqT̂ †∂∗

νqT̂ | ψ̃nk
〉
, (B17)

γ̃ DW,c
nk,νq ≡ 1

2

〈
ψ̃nk | T̂ †∂∗

νqĤ∂νqT̂ + T̂ †∂νqĤ∂∗
νqT̂ + ∂∗

νqT̂ †∂νqĤ T̂ + ∂νqT̂ †∂∗
νqĤ T̂ | ψ̃nk

〉
. (B18)

The first term on Eq. (B15) is already the AE DW contribution. Using the KS equations, Ĥ |ψnk〉 = εnk |ψnk〉, it is quite easy to
show that γ̃ DW,a

nk,νq is, in fact, zero. Eqs. (B17) and (B18) consist of pairs of terms which are invariant under a sign change of q.
For example, the first term in Eq. (B17) maps onto the second term:

∂∗
ν,−qT̂ †Ĥ∂ν,−qT̂ = ∂νqT̂ †Ĥ∂∗

νqT̂ .

Since the domain of integration is the first Brillouin zone and therefore inversion symmetric around the origin, the sign of the
integration variable, q, can be swapped without affecting the result. Hence, by redefining q → −q for only one term of each pair
mentioned earlier, we can simplify the contributions from Eq. (B17),

∫
BZ

d3q

�BZ
γ̃ DW,b

nk,νq =
∫

BZ

d3q

�BZ
〈ψ̃nk|∂∗

νqT̂ †Ĥ∂νqT̂ |ψ̃nk〉 − εnk

∫
BZ

d3q

�BZ
〈ψ̃nk|∂∗

νqT̂ †∂νqT̂ |ψ̃nk〉 , (B19)

and from Eq. (B18),

∫
BZ

d3q

�BZ
γ̃ DW,c

nk,νq =
∫

BZ

d3q

�BZ
〈ψ̃nk|T̂ †∂∗

νqĤ∂νqT̂ |ψ̃nk〉 +
∫

BZ

d3q

�BZ
〈ψ̃nk|∂∗

νqT̂ †∂νqĤ T̂ |ψ̃nk〉 . (B20)
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Each of the matrix elements appearing in Eqs. (B19) and (B20) consists of a product of two first-order derivatives. In order to
separate them, we insert the complete basis of PS Bloch states,

1 =
∫

BZ

d3k

�BZ

∑
m

T̂ |ψ̃mk〉 〈ψ̃mk| T̂ †,

in-between the operators. Due to the Bloch theorem, it is sufficient to only involve states at k + q to complete the basis in this
case. Let us demonstrate this procedure for the first matrix element in Eq. (B19):

∂∗
νqT̂ †Ĥ∂νqT̂ = ∂∗

νqT̂ †
∑

m

[T̂ |ψ̃mk+q〉 〈ψ̃mk+q| T̂ †]Ĥ
∑

m′
[T̂ |ψ̃m′k+q〉 〈ψ̃m′k+q| T̂ †]∂νqT̂

=
∑
mm′

∂∗
νqT̂ †T̂ |ψ̃mk+q〉 〈ψ̃mk+q|H̃ |ψ̃m′k+q〉︸ ︷︷ ︸

εmk+qδmm′

〈ψ̃m′k+q| T̂ †∂νqT̂

=
∑

m

εmk+q∂
∗
νqT̂ †T̂ |ψ̃mk+q〉 〈ψ̃mk+q| T̂ †∂νqT̂ .

Using this trick to separate the derivatives, Eq. (B19) becomes∫
BZ

d3q

�BZ
γ̃ DW,b

nk,νq = −
∫

BZ

d3q

�BZ

∑
m

(εnk − εmk+q) 〈ψ̃nk|∂∗
νqT̂ †T̂ |ψ̃mk+q〉 〈ψ̃mk+q|T̂ †∂νqT̂ |ψ̃nk〉

= −
∫

BZ

d3q

�BZ

∑
m

(εnk − εmk+q)|t̃mnk,νq|2. (B21)

Similarly, Eq. (B20) becomes∫
BZ

d3q

�BZ
γ̃ DW,c

nk,νq =
∫

BZ

d3q

�BZ

∑
m

[〈ψ̃nk|T̂ †∂∗
νqĤ T̂ |ψ̃mk+q〉 〈ψ̃mk+q|T̂ †∂νqT̂ |ψ̃nk〉

+ 〈ψ̃nk|∂∗
νqT̂ †T̂ |ψ̃mk+q〉 〈ψ̃mk+q|T̂ †∂νqĤ T̂ |ψ̃nk〉]

=
∫

BZ

d3q

�BZ

∑
m

(g∗
mnk,νqtmnk,νq + t∗

mnk,νqgmnk,νq). (B22)

The final step involves transforming the AE matrix elements in Eq. (B22) using Eq. (15) to the PS representation:

g∗
mnk,νqtmnk,νq + t∗

mnk,νqgmnk,νq = g̃∗
mnk,νqtmnk,νq + t∗

mnk,νqg̃mnk,νq + 2(εnk − εmk+q)|t̃mnk,νq|2. (B23)

This allows us to state the difference between the integrated AE and PS DW contributions:∫
BZ

d3q

�BZ

(
γ̃ DW

nk,νq − γ DW
nk,νq

) =
∫

BZ

d3q

�BZ

∑
m

[(εnk − εmk+q)|t̃mnk,νq|2 + g̃∗
mnk,νqt̃mnk,νq + t̃∗

mnk,νqg̃mnk,νq]. (B24)

Finally, we are able to compare Eq. (B24) against Eq. (B14) and find that∫
BZ

d3q

�BZ

(
γ FM

nk,νq − γ̃ FM
nk,νq

) =
∫

BZ

d3q

�BZ

(
γ̃ DW

nk,νq − γ DW
nk,νq

)
, (B25)

which, of course, implies that the AE and PS ZPR equations are identical.
Note that this equivalence between the AE and PS formulations is no longer valid once the rigid-ion approximation is

introduced. This approximation is used to calculate the second-order DW contribution with greater computational efficiency.
However, the way this approximation is employed in the PS case detailed in Ref. [31] is different from how it is employed in the
AE case, in the sense that the resulting ZPR expressions are no longer formally equivalent. Due to the subtlety of the issue and
its potential impact on calculations, it requires further investigation in the future.
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