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Engineering Floquet dynamical quantum phase transitions
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Floquet dynamical quantum phase transitions (FDQPTs) are signified by recurrent nonanalytic behaviors of
observables in time. In this work, we introduce a quench-free and generic approach to engineer and control
FDQPTs for both pure and mixed Floquet states. By applying time-periodic modulations with two driving
frequencies to a general class of spin chain model, we find multiple FDQPTs within each driving period. The
model is investigated with equal, commensurate and incommensurate driving frequencies. The nonanalytic cusps
of return probability form sublattice structures in time domain. Notably, the number and time locations of these
cusps can be flexibly controlled by tuning the Hamiltonian parameter and the frequencies of the drive. We further
employ the dynamical topological order parameter, which shows a quantized jump whenever a DQPT happens,
to identify the topological feature of FDQPTs. Our findings reveal the advantage of engineering nonequilibrium
phase transitions with multifrequency driving fields.
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I. INTRODUCTION

In recent decades, dynamical phase transitions—phase
transitions away from equilibrium—have gained a lot of
attention across many areas in the physics community, rang-
ing from the abrupt changes in the relaxation dynamics of
strongly correlated quantum many-particle systems [1] to the
domain formation in the early universe [2]. The renaissance
of the topic was commenced by the experimental advances
achieved with ultracold atoms in optical lattices [3–8], making
it possible to prepare and control nonequilibrium quan-
tum states. Thereafter, trapped ions [9–12], nitrogen-vacancy
center in diamonds [13], superconducting qubits [14], and
photonic quantum walks [15,16] were developed to provide
a framework for experimentally studying a wide variety of
dynamical phase transitions in nonequilibrium systems. These
experiments have also provoked huge progress in theoretical
physics.

Moreover, there has been growing interest in dynamical
quantum phase transitions (DQPTs), which are characterized
theoretically by the nonanalyticity of physical observables in
time domain. The notion of DQPTs was proposed as a coun-
terpart of thermal phase transitions in equilibrium [17,18].
As the equilibrium phase transition is signaled by nonana-
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lyticities in the thermal free energy, the DQPT is revealed
through the nonanalytical behavior of dynamical free energy,
where the real time plays the role of a control parame-
ter [17–41]. DQPTs, which were observed experimentally
[7,9,10,14,15,42,43], display phase transitions between dy-
namically emerging quantum phases. They take place during
the nonequilibrium coherent quantum time evolution un-
der sudden/ramped quenches [17–38,44–57] or time-periodic
modulations of the Hamiltonian [13,58–67]. In addition, anal-
ogous to order parameters at equilibrium quantum phase
transitions, dynamical topological order parameters (DTOPs)
were proposed to capture the topological nature of DQPTs
[27,29]. The DTOP is quantized and its unit magnitude jump
at the critical time of DQPT reveals its topological feature
[13,27,29,58,59,62–64].

Since both the ground and excited states participate in
the dynamics and the system keeps exchanging energy with
the driving field, quantum many-body systems driven out
of equilibrium via a periodic protocol yield exotic phe-
nomena that are absent in those driven by a sudden or
ramped quench. These include the generation of drive-induced
topological states of matter [68–71], realization of Floquet
time crystals [72–74], and phenomena such as dynamical
localization [75–77], dynamical freezing [78,79], and driving-
induced tuning of ergodicity [80,81]. Consequently, studies
of DQPTs in periodically driven systems—known as Floquet
DQPTs—attracted a lot of attention. It has been established
that FDQPTs possess a class of DQPTs by displaying time-
periodic nonanalyticity and nondecaying return probabilities,
which should make them easier to trace in the laboratory
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[13,58–64]. Meanwhile, the conventional DQPTs following
a single quench are usually observable only in transient
timescales owing to the decaying return probabilities.

Therefore, realizing and controlling (effectively) closed
nonequilibrium quantum many-body systems, specifically
time-periodic driven systems, is of practical relevance as they
might pave the way to the development of quantum technolo-
gies. All the studies on controlling DQPTs and FDQPTs until
now focus on sudden quench protocols, where the parameters
of the given Hamiltonian are abruptly changed from one equi-
librium phase to another [59–61,82]. One of the features of
equilibrium quantum phase transitions is the disability to adi-
abatically link the ground states between two distinct phases
[83]. A nonanalyticity in the ground state energy is thus
consistently encountered when crossing the critical point, irre-
spective of the path chosen to acquire this crossing. Therefore,
controlling and engineering the time-periodic driven closed
quantum systems in the context of Floquet theory without
resorting to any quenches across the critical point is one of the
most attractive topics in advancing nonequilibrium physics.
Motivated by these considerations, we study the FDQPTs in a
general class of periodically modulated model with two driv-
ing frequencies, in which one frequency guides the periodic
evolution of the system, while the other frequency controls
the FDQPTs therein.

In this paper, we elaborate on how the FDQPTs can be
controlled simply by the Hamiltonian parameters and driving
frequencies. We show that in a quench-free setting, FDQPTs
are more flexible to control than the conventional DQPTs. We
first investigate the effect of equal frequencies for the driving
terms, and then show the differences with commensurate or
incommensurate driving frequencies. In particular, we demon-
strate that it is possible to induce several FDQPTs within a
single driving period, making the nonanalytic cusps in the
return probability to form a sublattice structure in time. More-
over, we demonstrate that more FDQPTs can be observed
without changing the initial state of the system [59]. We also
investigate the topological aspects of FDQPTs by computing
the DTOP.

II. MODEL

We start with a periodically driven generalized XY spin
chain, whose Hamiltonian can be written as

H(t ) =
∑

n

({J − γ cos[ϕ(t )]}sx
nsx

n+1

+ {J + γ cos[ϕ(t )]}sy
nsy

n+1

− γ sin[ϕ(t )]
(
sx

nsy
n+1 + sy

nsx
n+1

) + hz(t )sz
n

)
, (1)

where hz(t ) = h1 + h(t ) = h1 + h cos(ωt ) and ϕ(t ) = ω0t +
2

∫ t
0 h(t ′)dt ′ = ω0t + 2(h/ω) sin(ωt ). We choose this model

as a working example to study the DQPTs in driven systems
with two different frequencies. In this paper, we concentrate
on the case in which the two frequencies are commensurate
with each other, such that the Hamiltonian of the system is
still periodic in time, i.e., H (t + TF ) = H (t ), where TF is
the discrete time translational symmetry (periodicity) of the
driven XY Hamiltonian in Eq. (1). Such a symmetry can

be established if ω/ω0 = p/q with q, p ∈ N, yielding TF =
2πq/ω0 = 2π p/ω.

The Hamiltonian in Eq. (1) can be mapped to a free spinless
fermion model by means of the Jordan-Wigner transformation
[58,84–87]

H(t ) =
N∑

n=1

[(
J

2
c†

ncn+1 − γ

2
e−iϕ(t )c†

nc†
n+1 + H.c.

)

+ hz(t )(c†
ncn − 1/2)

]
, (2)

where c†
n, cn are the spinless fermion creation and annihilation

operators, respectively. The Hamiltonian in Eq. (2) is equiv-
alent to the one-dimensional p-wave superconductor with a
time-dependent pairing phase (magnetic flux) ϕ(t ) and a peri-
odically modulated chemical potential hz(t ) [88,89].

Applying Fourier transformations

cm = 1√
N

∑
k

cke−ikm, c†
m = 1√

N

∑
k

c†
meikm,

where the wave number k is equal to k = (2p − 1)π/N and
p runs from −N/2 + 1 to N/2, and introducing the two-
component Nambu spinor C†

k = (c†
k , c−k ), the Hamiltonian in

Eq. (2) can be decomposed as

H(t ) =
∑

k

C†
k H(k, t )Ck, (3)

where

H(k, t ) =
(

hz(k, t ) ihxy(k)e−iϕ(t )

−ihxy(k)eiϕ(t ) −hz(k, t )

)
, (4)

in which the parameters hxy(k) and hz(k, t ) are given by

hxy(k) = γ sin(k), hz(k, t ) = J cos(k) + hz(t ). (5)

Therefore, the Bloch single-particle Hamiltonian H(k, t ) is
given as

H(k, t ) = hxy(k){sin [ϕ(t )]σx − cos [ϕ(t )]σy} + hz(k, t )σz.

(6)

The exact solution to the time-dependent Schrödinger
equation i d

dt |ψ (k, t )〉 = H(k, t )|ψ (k, t )〉 is found by going to
the rotating frame given by the unitary transformation UR(t ) =
e−iϕ(t )σ z/2,

UR(t ) =
(

e−iϕ(t )/2 0
0 eiϕ(t )/2

)
(7)

to obtain the effective time-independent Hamiltonian

HF (k) =
[
UR

†(t )H(k, t )UR(t ) − iUR
†(t )

dUR(t )

dt

]
(8)

= −hxy(k)σy + Bz(k)σz,

where Bz(k) = J cos(k) + h1 − ω0/2.
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The eigenvalues and eigenvectors of the effective time-
independent Hamiltonian HF (k) are given by

ε±
k = ±εk = ±

√
h2

xy(k) + B2
z (k),

|χ±
k 〉 = 1√

f 2(k) + h2
xy(k)

[hxy(k)|∓〉 + i f (k)|±〉], (9)

where f (k) = Bz(k) + εk and |±〉 are eigenstates of σz. Due to
the decoupling of different momentum sectors, the eigenstate
|ψ (t )〉 of the Hamiltonian H(t ) is given by

|ψ±(t )〉 =
∏

k

|ψ±
k (t )〉,

|ψ±
k (t )〉 = UR(t )e−iHF (k)t |χ±

k 〉 = e−iε±
k tUR(t )|χ±

k 〉. (10)

It is noteworthy to mention that the extended XX model
with modified Dzyaloshinskii-Moriya interaction [90] in the
presence of the effective transverse field heff

Heff =
∑

n

[
J
(
sx

nsx
n+1 + sy

nsy
n+1

)
− γ

(
sx

nsy
n+1 + sy

nsx
n+1

) + heff s
z
n

]
, (11)

with heff = h1 − ω0/2, results in the same noninteracting
Hamiltonian as HF (k) in Eq. (8), yielding eigenvectors and
eigenvalues as expressed by Eqs. (9).

It can be verified that the effective time-independent
Hamiltonian undergoes quantum phase transitions at ω0 =
2(h1 ± J ), where the energy gap closes at k = 0, π . Exam-
ining the effective Hamiltonian’s winding numbers indicates
that the HF experiences topological quantum phase transitions
(TQPTs) and the phases are distinguished by the winding
number [88,91],

Nw = 1

2π

∫ π

−π

Bz(k)∂khxy(k) − hxy(k)∂kBz(k)

h2
xy(k) + B2

z (k)
. (12)

The winding number demonstrates that for 2(h1 − J ) < ω0 <

2(h1 + J ) the system falls into the topological phase with
winding number Nw = 1, otherwise the winding number is
zero and the phase of the system is nontopological [88,91].

In Floquet systems, the presence of chiral symmetry for the
Floquet operator relies on the existence of a pair of symmetric
time frames [92–94]. From Eq. (10), one can see that the
evolution operator at a given k is

U (k, t ) = UR(t )e−iHF (k)t

= e−i(ϕ/2)tσz e−i[Bzσz+hxy (k)σx]t .

We can then introduce two symmetric time frames, in which
the Floquet operators are

U1(k, TF ) = e−iHF (k)TF /2UR(TF )e−iHF (k)TF /2,

U2(k, TF ) = UR(TF /2)e−iHF (k)TF UR(TF /2).

Both U1(k, TF ) and U2(k, TF ) are unitarily equivalent
to U (k, TF ) = UR(TF )e−iHF (k)TF . They share the chiral

symmetry, i.e.,

�U1(k, TF )� = U †
1 (k, TF ), �U2(k, TF )� = U †

2 (k, TF ),

where � = σx.
The effective Hamiltonians in these two time frames, up to

a global constant, are given by

H (1)
F (k) = Bz(k)σz − hxy(k)σy,

H (2)
F (k) = Bz(k)σz + hxy(k)σy.

If we consider N (1)
w and N (2)

w as the winding numbers of
H (1)

F (k) and H (2)
F (k), respectively, it is clear that we always

have N (2)
w = −N (1)

w . According to the topological classifica-
tion of chiral symmetric Floquet systems [92,93], the Floquet
operator U (k, TF ) can be characterized by a pair of wind-
ing numbers N (0)

w = (N (1)
w + N (2)

w )/2 = 0 and N (π )
w = (N (1)

w −
N (2)

w )/2 = N (1)
w = Nw = 1. which count the number of zero

and π edge modes under open boundary conditions of the
lattice model [92,93]. So, the topological nontrivial and trivial
regimes of U (k, TF ) correspond to that of the effective time-
independent Hamiltonian.

Furthermore, following the calculations of Ref. [58], it
is easy to verify that the topological phase of the system
corresponds to the region where the periodically modulated
Hamiltonian experiences adiabatic cyclic processes (reso-
nance regime), while in the nontopological phase, the driven
system undergoes nonadiabatic evolution.

III. DYNAMICAL QUANTUM PHASE TRANSITION

As mentioned above, the concept of DQPT is extracted
from the analogy between the partition function of an equi-
librium system Z (β ) = Tr(e−βH) and the boundary partition
function Z (z) = 〈ψ0|e−zH|ψ0〉, with |ψ0〉 being a boundary
state and z ∈ C. When z = it , the boundary partition function
becomes equivalent to the Loschmidt amplitude (LA), L(t ) =
〈ψ0|e−iHt |ψ0〉, denoting the overlap between the initial state
|ψ0〉 and the time-evolved one |ψ0(t )〉 [17]. Heyl et al. [17]
showed that, similar to the thermal free energy, a dynamical
free energy can be defined as

g(t ) = − 1

N
lim

N→∞
ln |L(t )|2, (13)

where the real time t plays the role of the control parameter.
DQPTs are simply signaled by the nonanalytical behavior of
g(t ) as a function of time, evincing in characteristic cusps in
g(t ) or one of its time derivatives. These cusps are followed by
zeros of L(t ), known in statistical physics as Fisher zeros of
the partition function [95]. As mentioned in the Introduction,
DTOP has been proposed to reveal the topological features of
DQPTs. The DTOP takes integer values as a function of time
and shows unit magnitude jumps at the critical times when the
DQPT happens.

In this section we investigate FDQPTs for both pure
and mixed Floquet states in the system described by time-
dependent Hamiltonian Eq. (1). The focus of our study is the
control of FDQPTs in periodically modulated systems.
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A. Pure state FDQPTs

According to Eq. (10), the initial and time evolved ground
states of the original Hamiltonian are expressed by

|ψ−(t )〉 =
∏

k

|ψ−
k (t )〉 =

∏
k

e−iε−
k tUR(t )|χ−

k 〉,

|ψ−(0)〉 =
∏

k

|χ−
k 〉. (14)

It is straightforward to show that the return probability—
Loschmidt echo—to the ground state of the proposed Floquet
model is given by

L(t ) = 〈ψ−(0)|ψ−(t )〉 =
∏

k

L(k, t ),

L(k, t ) = 〈χ−
k |ψ−

k (t )〉 = e−iε−
k t 〈χ−

k |UR(t )|χ−
k 〉

= e−iε−
k t e−iϕ(t )/2

f 2(k) + eiϕ(t )h2
xy(k)

f 2(k) + h2
xy(k)

. (15)

The DQPTs occur at the time instances at which at least one
factor in LA becomes zero, i.e., Lk∗ (t∗) = 0. Referring to
Eq. (15), we find that FDQPT happens only when there is
a mode k∗, which satisfies J cos(k) + h1 − ω0/2 = 0, which
leads to

2(h1 − J ) < ω0 < 2(h1 + J ), (16)

at time instances t∗, when the equation

ω0t∗ + 2
h

ω
sin(ωt∗) = (2n + 1)π (17)

is fulfilled. The condition, Eq. (16), reveals that FDQPTs ap-
pear if the effective time-independent Hamiltonian in Eq. (8)
is topologically nontrivial, which is controlled by the driv-
ing frequency ω0. However, the timescale of FDQPTs is
controlled by both the driving frequency ω, and ω0 and
Hamiltonian parameter h. Accordingly, these properties make
it possible to easily engineer and control the FDQPTs. Al-
though we focus on the commensurate case, i.e., ω/ω0 = p/q
with p, q ∈ N, the equations obtained above are valid also for
the cases with ω/ω0 �= p/q.

To understand the effect of Hamiltonian parameter h on
FDQPTs, in this section we consider the ω = ω0 (p = q)
case. In such a case, the equation of real-time nonanalyticity
reduces to

ω0t∗ + 2
h

ω0
sin(ω0t∗) = (2n + 1)π. (18)

A purely analytical solution to Eq. (17) or Eq. (18) is not
tractable, which requires numerical solutions. Nevertheless, it
can be verified that Eq. (18) is satisfied by

t∗
m,F = (2m + 1)

TF

2
, m ∈ N, (19)

which is the only solution for h = 0 although other numerical
solutions show up for h �= 0. Further, it can be easily shown
that Eq. (18) is preserved under the transformation t∗ →
t∗ + TF , which means that the time periodicity of FDQPTs is
the same as that of the Floquet Hamiltonian. Moreover, the
equation of real-time nonanalyticity is preserved under the
transformation t∗ → TF − t∗, which means that the patterns

of FDQPTs and dynamical free energy have the reflection
symmetry with respect to t = TF /2 within each driving pe-
riod. We should mention that the Hamiltonian in Eq. (1)
reduces to the Hamiltonian of Refs. [13,58] if we remove
the time dependence of the transverse magnetic field, putting
h = 0. In our model, for ω = ω0, the transverse field in
the Hamiltonian, Eq. (1), is still time dependent while in
Refs. [13,58] the transverse field is time independent.

The density plot of the Loschmidt echo |L(k, t )|2 and
the dynamical free energy g(t ) have been displayed for J =
h1/2 = π/6 and ω0 = ω in Figs. 1(a)–1(f) for h = π , and
in Figs. 2(a)–2(f) for h = 2π . It can be clearly seen that,
in the region where the time-independent Hamiltonian HF is
topological and the system is in resonance regime [Figs. 1(b)
and 2(b)], there exist critical points k∗ and t∗ where Lk∗ (t∗)
becomes zero. Interestingly, there are no such critical points
in the nonresonance regime [(Figs. 1(a), 1(c), 2(a), and 2(c)].
Consequently, the nonanalyticity in the dynamical free energy
and FDQPTs occur for the driving frequency, at which the
system is in topological phase. Cusps in g(t ) in Figs. 1(e) and
2(e) are clearly visible, implying FDQPTs. For the driving
frequency at which the system is in nontopological phase, the
dynamical free energy shows completely analytic and smooth
behavior [Figs. 1(a), 1(c), 2(a), and 2(c)]. Moreover, as is
clearly seen in Figs. 1(e) and 2(e), the pattern of FDQPTs
has reflection symmetry with respect to t = TF /2 within each
driving period, as expected from Eq. (18).

It should be mentioned that t∗
m,F is independent of the value

of h, which makes t∗
m,F the only timescale of FDQPT for h = 0

[13,58,62]. In other words, the dynamical phase transition
for h = 0 takes place only once within every Floquet time
period and its periodicity is the same as that of the Floquet
Hamiltonian [13,58,62]; while for h �= 0, FDQPT timescales
[solutions of Eq. (18)] are not periodic within each Floquet
time period, and the global pattern of FDQPTs is repeated at
every driving period [Figs. 1(b) and 2(b)]. The density plot
of g(t ) versus time and h has been shown in Figs. 3(a)–3(f).
We see that the system undergoes more and more FDQPTs
within a single driving period with the increase of h, with a
cusp observed at every critical time t∗ as predicted precisely
by Eq. (18). In summary, the Hamiltonian parameter h induces
several FDQPTs within a single driving period, while the
FDQPT timescale (t∗ = TF /2) is fixed for h = 0.

Dynamical topological order parameter

As mentioned above, analogous to order parameters at
equilibrium quantum phase transitions, a dynamical topolog-
ical order parameter is proposed to capture DQPTs [27,29].
The DTOP is quantized and its unit magnitude jump at
the time of DQPT reveals the topological feature of DQPT
[27,29,45]. This dynamical topological order parameter is
extracted from the gauge-invariant Pancharatnam geometric
phase associated with the Loschmidt amplitude [27,29]. In
other words, the DTOP is a momentum-space winding num-
ber of the Pancharatnam geometric phase, which serves as a
dynamical analog of a topological order parameter in two-
band Bogoliubov–de Gennes models that experiences a DQPT
after a sudden change in the band structure parameters. The
integer values of the DTOP change only at DQPTs, which
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FIG. 1. The density plot of Loschmidt echo |Lk (t )|2 versus time and momentum for the modulated Floquet XY model for γ = 1, h =
π , J = h1/2 = π/6, and (a) ω = ω0 = π/4, (b) ω = ω0 = π/2, and (c) ω = ω0 = 3π/2. The dynamical free energy g(t ) and dynamical
topological order parameter νD(t ) of the modulated Floquet XY model versus time for (d) ω = ω0 = π/4 (TF = 8), (e) ω = ω0 = π/2 (TF =
4), and (f) ω = ω0 = 3π/2 (TF = 4/3).

FIG. 2. The density plot of Loschmidt echo |Lk (t )|2 versus time and momentum for the modulated Floquet XY model for γ = 1, h =
2π , J = h1/2 = π/6, and (a) ω = ω0 = π/4, (b) ω = ω0 = π/2, and (c) ω = ω0 = 3π/2. The dynamical free energy g(t ) and dynamical
topological order parameter νD(t ) of the modulated Floquet XY model versus time for (d) ω = ω0 = π/4 (TF = 8), (e) ω = ω0 = π/2 (TF =
4), and (f) ω = ω0 = 3π/2 (TF = 4/3).
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FIG. 3. The density plot of dynamical free energy g(t ) versus time and h for the modulated Floquet XY model for γ = 1, J = h1/2 = π/6,
and (a) ω = ω0 = π/4 (TF = 8), (b) ω = ω0 = π/2 (TF = 4), and (c) ω = ω0 = 3π/2 (TF = 4/3).

reveals how the topology of the underlying Hamiltonian has
changed during the quench [27,29,45]. The dynamical topo-
logical order parameter is defined as [29]

νD(t ) = 1

2π

∫ π

0

∂φG(k, t )

∂k
dk, (20)

where the geometric phase φG(k, t ) is obtained by subtracting
the dynamical phase φD(k, t ) from the total phase φ(k, t ), i.e.,
φG(k, t ) = φ(k, t ) − φD(k, t ).

The total phase φ(k, t ) is the phase factor of return
amplitude, i.e., Lk (t ) = |Lk (t )|eiφ(k,t ) and φD(k, t ) =
− ∫ t

0 〈ψ−
k (t ′)|H (k, t ′)|ψ−

k (t ′)〉dt ′, in which φ(k, t ) and
φD(k, t ) can be calculated as follows:

φ(k, t ) = −[ε−
k t + ϕ(t )/2]

+ tan−1
( f 2(k) sin [ϕ(t )]

h2
xy(k) + f 2(k) cos [ϕ(t )]

)
, (21)

φD(k, t ) = −ε−
k t +

[
f 2(k) − h2

xy(k)

2
[

f 2(k) + h2
xy(k)

]
]

[ϕ(t ) − ϕ(0)].

(22)

The DTOP of our model has been plotted for the ω = ω0 case
in Figs. 1(d)–1(f) and 2(d)–2(f) for different values of driven
frequency and Hamiltonian parameters in resonance and non-
resonance regimes. As seen, the DTOP is zero when FDQPTs
are absent while the DTOP displays singular changes in suc-
cessive critical times t∗

n in the adiabatic resonance regime
where FDQPTs occur. The unit jumps in νD(t ) feature the
topological aspects of DQPTs, where the phase of time-
independent Floquet Hamiltonian HF is topological. While
the DTOP for h �= 0 shows unit jumps up and down at t∗

n , the
DTOP layout within every Floquet time period is preserved up
to a unit jump up [Figs. 1(e) and 2(e)] at each driving period.
We should mention that for h = 0, the DTOP shows the unit
jumps up at t∗ = TF /2 [13,58,62].

B. Mixed state FDQPTs

In far-from-equilibrium experiments [7,9], the initial state
in which the system is prepared is generally not a pure state
but rather a mixed state. This leads us to introduce the gener-
alized Loschmidt amplitude (GLA) for mixed thermal states,
which perfectly reproduces the nonanalyticity that appears in

the DQPTs of pure states [27,28]. Here we investigate the
notion of mixed state FDQPTs in Floquet dynamics, governed
by Eq. (1). The GLA for the thermal mixed state is given as

GL(t ) =
∏

k

GLk (t ) =
∏

k

Tr(ρk (0)U (t )), (23)

where ρk (0) is the mixed state density matrix at time t = 0,
and U (t ) is the time-evolution operator. By a rather lengthy
calculation, one can obtain an exact expression for GLA (see
Appendix A):

GLk (t ) = R(k, t ) + i I (k, t ) tanh(βεk ), (24)

where

R(k, t ) = cos(εkt ) cos [ϕ(t )/2] − Bz(k)

εk
sin(εkt ) sin [ϕ(t )/2],

I (k, t ) = sin(εkt ) cos [ϕ(t )/2] + Bz(k)

εk
cos(εkt ) sin [ϕ(t )/2].

The dynamical free energy of the generalized Loschmidt echo
g(t ) has been displayed versus time t and k in Figs. 4(a)–4(c)
for the ω = ω0 case, for different values of driving frequency
at β = 10. As is clear from the figures, the nonanalyticity in
the dynamical free energy of the GLA appear in the resonance
regime [Fig. 4(b)] and correctly reproduces the critical time t∗
observed during the pure state FDQPT. It should be mentioned
that for temperatures higher than the temperature associ-
ated with the minimum energy gap of the time-independent
Hamiltonian, the finger prints of the DQPT are washed out
[27,58].

Analogous to the pure state FDQPT, a topological in-
variant has also been established for the mixed state DQPT
to reveal its topological feature [27]. In the mixed state
DQPT, the total phase and dynamical phase are defined
as φ(k, β, t ) = Arg{Tr[ρ(k, β, 0)U (t )]}, and φD(k, β, t ) =
− ∫ t

0 Tr[ρ(k, β, t ′)H (k, t ′)]dt ′, respectively. The topological
invariant νD(t ) for mixed states can then be obtained using
Eq. (20) in which φG(k, β, t ) = φ(k, β, t ) − φD(k, β, t ). A
rather lengthy calculation results in exact expressions for
φ(k, β, t ) and φD(k, β, t ) for a mixed state (see Appendix A).

The mixed state DTOP has been illustrated in Fig. 4 at
β = 10 for the ω = ω0 case, for different values of driving
frequencies. One can clearly see that νD(t ) exhibits a per-
fect quantization (unit jump) as a function of time between
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FIG. 4. The mixed state dynamical free energy g(t ) and dynamical topological order parameter νD(t ) of the modulated Floquet XY model
versus time for γ = 1, h = π , J = h1/2 = π/6, β = 10, and (a) ω = ω0 = π/4 (TF = 8), (b) ω = ω0 = π/2 (TF = 4), and (c) ω = ω0 =
3π/2 (TF = 4/3).

two successive critical times t∗ in the resonance regime,
as shown in Fig. 4(b), while it is zero in the no-FDQPTs
regime [Figs. 4(a)–4(c)]. The quantized structure of νD(t ) is
only observed as far as temperatures are smaller than the
temperature associated with the minimum energy gap of the
time-independent Hamiltonian [27,58].

C. Pure state FDQPTs for ω/ω0 = p/q

To better understand the effect of second driven frequency
ω on FDQPTs, here we investigate the case of ω/ω0 = p/q for
a constant h = π . In such cases, the discrete time translational
symmetry of the modulated Floquet Hamiltonian [Eq. (1)] is
given by TF = 2πq/ω0 = 2π p/ω, and the equation of real-
time nonanalyticity specifying the timescale of FDQPTs is
given by Eq. (17). Further, it can be shown that Eq. (17) is
preserved under the transformation t∗ → t∗ + TF and t∗ →
TF − t∗, which means that the time period of the FDQPT is
the same as that of the Floquet Hamiltonian, and the dynam-
ical free energy has the reflection symmetry with respect to
t = TF /2 within each driven period.

In addition, we can show that the condition of real-time
nonanalyticity in Eq. (17) is satisfied at

t∗
m,F = (2m + 1)

TF

2
, m ∈ N; TF = 2πq/ω0 = 2π p/ω,

(25)
where q is an odd number. This means that the timescale
t∗ = TF /2 at which the system shows the FDQPT for h = 0
[13,58,62] is still the FDQPT timescale for h �= 0. However,
for even q, the system does not show FDQPT at t = TF /2
and h �= 0. So the FDQPT timescale (t∗ = TF /2) for h �= 0
can be controlled by the ratio of the two driving frequencies
(ω0/ω = p/q).

The dynamical free energy g(t ) of the model has been
plotted in the region where the system undergoes FDQPTs for
p = 1 and different values of q in Figs. 5(a)–5(c) at h = π .
As seen, the Floquet time period and the number of FDQPTs
in a single driving period can be raised by increasing the ratio
of ω0/ω = q/p. As expected, for q = 2, 4 [Figs. 5(a)–5(c)]
the dynamical free energy does not show nonanalyticity at
t = TF /2, while for q = 3 [Fig. 5(b)] the cusp at t = TF /2
represents the FDQPT. Moreover, as is clearly seen, the dy-
namical free energy has the reflection symmetry with respect
to t = TF /2 within each driving period. We have also plotted

the DTOP for p = 1 and different values of q in Figs. 5(a)–
5(c), which shows the quantized jump whenever a Floquet
DQPT happens.

IV. CONCLUSION

In this work, we introduced a quench-free route to engi-
neer and control FDQPTs. The key idea of our strategy is to
apply two driving fields with commensurate frequencies to a
system. The first field guides the periodic Floquet dynamics,
whereas the second field with a higher frequency controls
FDQPTs within each period of the first drive. Our approach
is demonstrated in a driven XY spin chain, where we observe
rich patterns of FDQPTs within each driving period for both
pure and mixed initial states. These transitions are further
characterized by quantized jumps of DTOPs. Our discovery
unveiled the flexibility of Floquet systems in the engineering
and control of DQPTs compared with the conventional cases
following a single quench. Therefore, the Floquet system with
multiple driving frequencies can work as a useful dynami-
cal platform to engineer and control phase transitions out of
equilibrium. It is worthwhile to mention that when deviat-
ing slightly from the commensurate to incommensurate cases
the DQPTs are still present but the critical time is not the
same as that of the commensurate case and the periodicity of
the dynamical free energy is wiped out (for more details, see
Appendix B). Hence, in the case of the incommensurate case
the DQPTs are not periodic in time as well as the Hamiltonian.

Moreover, we would like to mention that our findings may
be verified experimentally by a negatively charged nitrogen-
vacancy center by which the noninteracting single-mode
Hamiltonian H(k, t ), in a two-band insulator can be simulated
experimentally [96].
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APPENDIX A: DYNAMICAL PHASE TRANSITION FOR
MIXED STATE

The mixed state density matrix at time t = 0 describing the
system at thermal equilibrium with a bath corresponding to the
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FIG. 5. The dynamical free energy g(t ) and dynamical topological order parameter νD(t ) of the modulated Floquet XY model versus time
for γ = 1, h = π , J = h1/2 = π/6, ω0 = π/2, and (a) ω = ω0/2 = π/4 (TF = 8), (b) ω = ω0/3 = π/6 (TF = 12), and (c) ω = ω0/4 = π/8
(TF = 32).

initial Hamiltonian HF (k) = q(k)1 + �hl (k) · �σ can be written
as [27,28]

ρF (k, 0) = e−βHF (k)

Tr(e−βHF (k) )
= 1

2
[1 − �n̂l (k) · �σ ] (A1)

where β is the inverse temperature, � = tanh[β|�hl (k)|],
n̂l (k) = �hl (k)/|�hl (k)|.

The mixed state density matrix at time t of the time-
dependent Hamiltonian H(k, t ) is given by

ρ(k, t ) = UF (t )ρF (k, 0)U †
F (t ), (A2)

where UF (t ) = UR(t )e−iHF (k)t .
The generalized Loschmidt overlap amplitude ) for each k

mode is defined as [27,28]

GL(t ) =
∏

k

GLk (t ),

GLk (t ) = Tr(ρ(k, 0)UF (t ))

= R(k, t ) + i I (k, t ) tanh(βεk ), (A3)

where

R(k, t ) = cos(εkt ) cos [ϕ(t )/2] − Bz(k)

εk
sin(εkt ) sin [ϕ(t )/2]

I (k, t ) = sin(εkt ) cos [ϕ(t )/2] + Bz(k)

εk
cos(εkt ) sin [ϕ(t )/2].

Moreover, for the mixed state DQPT a topological invariant
has been proposed to lay out its topological characteristics
[27,28]. In the mixed state DQPT the total phase and dynam-
ical phase are given as

φ(k, β, t ) = Arg{Tr[ρ(k, β, 0)U (t )]}
and

φD(k, β, t ) = −
∫ t

0
Tr[ρ(k, β, t ′)H (k, t ′)]dt ′,

respectively. The topological invariant νD(t ) can be calculated
using Eq. (22) for the mixed state in which

φG(k, β, t ) = φ(k, β, t ) − φD(k, β, t ).

After a lengthy calculation, one can obtain the total phase
φ(k, β, t ) and the dynamical phase φD(k, β, t ) as follows:

φ(k, β, t ) = arctan

[R(k, t )

I (k, t )
tanh(βεk )

]
,

φD(k, β, t ) = tanh(βεk )
[

− ε−
k t − Bz(k)

2εk
[ϕ(t ) − ϕ(0)]

]
.

(A4)

APPENDIX B: DYNAMICAL PHASE TRANSITION:
INCOMMENSURATE CASE

As mentioned before, the Hamiltonian of system [Eq. (1)]
is not periodic in time for incommensurate frequencies, which
results in a nonperiodic dynamical topological quantum phase
transition. In Fig. 6 the dynamical topological order param-
eter of the model has been plotted for parameters, which
slightly deviate from the commensurate case. As seen, within
the first driving period, the behavior of the dynamical topo-
logical order parameters for incommensurate cases ω/ω0 =

FIG. 6. The dynamical topological order parameter νD(t ) of the
modulated Floquet XY model versus time for γ = 1, h = π , J =
h1/2 = π/6, ω0 = π/2 and different ratio of driving frequencies
close to the commensurate case, namely, ω/ω0 = √

0.97/2, ω/ω0 =
1/2, (TF = 8), and ω/ω0 = √

1.05/2.
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√
0.97/2,

√
1.05/2 are roughly the same as that of the com-

mensurate case, ω/ω0 = 1/2. The difference between the
dynamical topological order parameter of the incommensurate
and commensurate cases increases by enhancing the driv-
ing period, which manifests the nonperiodic behavior of the

dynamical topological quantum phase transition in the incom-
mensurate case. We observed in the incommensurate cases the
return probabilities are nondecaying with time which should
make them easier to trace in the laboratory though the dynam-
ical free energy displays nonperiodic nonanalyticities.
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