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Pressure-dependent thermal conductivity in Al, W, and Pt: Role of electrons and phonons

Xinyu Zhang,1 Shouhang Li ,2 Ao Wang,1 and Hua Bao 1,*

1University of Michigan–Shanghai Jiao Tong University Joint Institute,
Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

2College of Mechanical Engineering, Donghua University, Shanghai 201620, People’s Republic of China

(Received 7 April 2022; revised 24 July 2022; accepted 23 August 2022; published 26 September 2022)

Understanding the pressure dependence on thermal transport of metals is crucial for high-pressure appli-
cations and fundamental research in earth science. As high-pressure thermal measurements are challenging,
the theoretical approach and first-principles methods are widely adopted to investigate the pressure-dependent
thermal transport in metals. However, these approaches are generally limited to the free-electron metals and the
phonon contributions are neglected. The mechanisms behind the pressure effect on thermal transport of metals
are not fully addressed. In this work, we implement rigorous mode-level first-principles calculations to reveal
different mechanisms behind the pressure-dependent electronic and phonon thermal conductivity in aluminum
(Al), tungsten (W), and platinum (Pt). While the overall thermal conductivity values of the three metals all
increase with pressure, the mechanisms are different. For the electronic thermal conductivity part, the main
contribution for the positive pressure effect on free-electron metal Al is the decrease of the electron-phonon
scattering rate, while the dominant contribution in Pt and W, whose d state electrons are abundant around the
Fermi energy, is the increase of electron group velocity. Phonon thermal conductivity of Pt and Al is found to
increase with pressure, but the rates of increase are different. In contrast, phonon thermal conductivity of W
is nearly independent with pressure. Such pressure invariance is due to the competing effect between phonon
lifetime decrease and phonon group velocity increase under pressure.
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I. INTRODUCTION

Thermal conductivity under pressure is crucial for many
applications, such as the thermal evolution of the Earth’s
core [1–4], high-pressure synthesis of materials [5–8], and
manufacturing apparatuses for high-pressure scenarios [9,10].
The pressure-dependent thermal conductivity for many non-
metallic materials has been investigated [2,11,12], and it
has been generally found that the thermal conductivity
increases with pressure [13]. The underlying pressure-
dependent phonon transport mechanism has been carefully
discussed [12,14]. In comparison, the pressure-dependent
thermal transport in metals is less explored [15–17]. Dif-
ferent from nonmetallic materials, the thermal transport in
metals is contributed by both electrons and phonons. The
scattering and transport of these two carriers lead to relatively
more complicated pressure-dependent thermal transport in
metals [18,19].

High-pressure thermal measurements have been quite chal-
lenging and therefore have undergone slow development [20].
There are two main difficulties: The first is to maintain a high-
pressure environment and the second is to measure physical
properties under high pressure. In recent years, these difficul-
ties were partly solved by methods like the combination of the
diamond anvil cell [21] and the modern micro- and nanoprob-
ing technology [22]. Although it is now possible to con-
duct thermal measurements under the pressure of hundreds
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of GPa [20], it is still not an easy task to perform such experi-
ments. As such, there are quite limited available experimental
thermal conductivity data for metals under pressure [23]. In
addition, the existing data of high-pressure thermal measure-
ments are scattered, leading to controversy. For example,
the measured thermal conductivity of iron at similar tem-
perature and pressure in different experiments ranges from
40 to 226 W/mK [24,25]. Moreover, the experiments can
only provide thermal conductivity values, while the under-
lying mechanisms, especially the separation of electron and
phonon contributions to the thermal conductivity, are a long-
standing challenge. On the other hand, theoretical models
were developed to understand the pressure-dependent thermal
conductivity of metals. Since electrons are believed to be
the main heat carriers in most metals, an analytical model
for the pressure-dependent electronic thermal conductivity
was developed by Bohlin [26] based on Bloch-Grüneisen
theory [27,28], and subsequently modified by Sundqvist and
co-workers [29]. According to this model, the electronic ther-
mal conductivity increases with pressure due to the reduced
electron-phonon coupling strength. This model is fairly ac-
curate in predicting the electronic thermal conductivity at a
relatively low-pressure regime for free-electron metals [29].
However, due to the limitation of the free-electron approxi-
mation, this model cannot accurately determine the pressure
dependence of thermal conductivity for complex transition
metals [29].

Recent advances in first-principles methods allow more
quantitative investigations for pressure-dependent thermal
conductivity of metals [15–17,30,31]. Allen’s model [32],
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which is the lowest-order variational approximation of the
solution to the Boltzmann transport equation, has been
combined with first-principles methods to obtain the elec-
tron thermal transport properties of metallic systems. This
method has been adopted to study the pressure effect of
free-electron metals, including Cu, Al, Au, and Ag [15,33].
Similar to the theoretical model derived by Bohlin [26],
their results also predict a positive correlation between elec-
tronic thermal conductivity and pressure, due to the decreased
electron-phonon interaction under pressure. However, this
method still shows non-negligible deviations from exper-
iments for metals with complex electronic structure [34].
More accurate first-principles methods, such as the Korringa-
Kohn-Rostoker method combined with the coherent potential
approximation [30,31], and the first-principles molecular dy-
namics [30,31], are used to predict the pressure-dependent
thermal conductivity of metals. However, the phonon trans-
port is not considered in these methods. Reviewing the
previous studies, although significant progress has been
made to predict and understand the pressure dependence
of thermal conductivity in metals, there are still two main
limitations. First, the contribution of phonons, which has
been shown to be important in many metals under ambi-
ent pressure [35–37], is often neglected. Second, the current
understanding is that, at intermediate temperature, the pres-
sure dependence of electronic thermal conductivity is due to
the reduced electron-phonon coupling. Although this is valid
for free-electron metals, whether this mechanism can be ex-
tended to metals with complex electronic structures remains
unclear.

In this work, we aim to develop better understanding of
the pressure effect on the electronic and phonon thermal con-
ductivity in metals. We adopt the mode-level first-principles
calculation method, which is proved to be accurate when ap-
plied to different types of metals [38,39] at ambient pressure.
Meanwhile, this method naturally includes both the electron
and phonon contributions at the mode level, which allows us
to examine the detailed mechanisms of the pressure depen-
dence of thermal conductivity. Three representative metals,
including, Al, Pt, and W, are chosen as representative pro-
totypes in this work. Al is a typical free-electron metal, Pt
possesses a complex Fermi surface [40], and W is known for
its high phonon contribution to its total thermal conductiv-
ity [41]. Pressure-dependent electronic and phonon thermal
conductivity of these three metals are accurately predicted
using the mode-level first-principles method. Moreover, a
detailed mode-level analysis is also carried out to under-
stand the mechanisms for the pressure dependence of thermal
conductivity.

II. MODE-LEVEL FIRST-PRINCIPLES METHOD

Here we adopt the mode-level first-principles calcula-
tion to study pressure-dependent electronic and phonon
thermal conductivity in metals. The details of our methodol-
ogy have been discussed in our previous works [38,39,42].
For brevity, we use the Boltzmann transport equations
(BTEs) with relaxation time approximation to calculate
the electrical conductivity (σαβ) and electronic thermal

conductivity (καβ

el ) [42],
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where α and β are the Cartesian coordinate components, q
is the electron charge, Nk is the total number of k points
in the first Brillouin zone and V is the volume of the unit
cell, vnk is the electron group velocity at mode nk (n is the
band index; k is the wave vector), ε is the electron energy,
f 0 is the equilibrium electron distribution function, ζ is the
Fermi energy, and τσ and τ κ are the momentum and energy
relaxation time, respectively [42]. Considering the following
expression of electron specific heat,
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the electronic thermal conductivity can be further simplified
to be

κ
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∑
nk
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nkτ
κ
nk(εnk, ζ , T ), (4)

where cel,nk is the mode resolved electron specific heat.
The specific heat and group velocity can be determined
from the electronic structure, while the calculation of relax-
ation time is more complicated. At intermediate temperature
range, the dominant scattering mechanism for electron is
electron-phonon scattering [42]. The expression and calcula-
tion method of electron transport relaxation time considering
this scattering mechanism can be obtained in our previous
work [42]. Note that one can also calculate the transport prop-
erties from the iterative method, which is believed to be more
accurate [43,44]. In this work we still adopted relaxation time
approximation (RTA) based on the following considerations.
First, for metals, the electron-phonon scatterings around 300
K and above are isotropic and elastic [14,45], and therefore the
difference between the iterative method and RTA is expected
to be small. Second, RTA requires a relatively small computa-
tional cost. Third, RTA can give exact relaxation time values,
which allows us to better analyze the results.

The phonon thermal conductivity can be expressed
with [46,47]

κ
αβ

ph = 1

Nq

∑
λ

cph,λv
α
λv

β

λ τλ, (5)

where Nq is the total number of q points sampled in the
Brillouin zone, cph,λ [48] is the mode resolved phonon heat
capacity for phonon mode λ, vα

λ and v
β

λ are the phonon group
velocity at the α and β directions, and τλ is the phonon
relaxation time, which mainly considers phonon-phonon scat-
tering and phonon-electron scattering at the temperature range
we consider. The specific heat cph,λ and group velocity
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vλ can be calculated from the phonon dispersion relations.
The relaxation time considering both phonon-phonon scat-
tering and phonon-electron scattering can be determined by
the Matthiessen rule [49] as 1/τλ = 1/τλ,pp + 1/τλ,pe, where
1/τλ,pp is the phonon-phonon scattering rate and 1/τλ,pe is
the phonon-electron scattering rate. The details for calculating
1/τλ,pe and 1/τλ,pp can be found in Ref. [39].

The first-principles calculations are carried out with
QUANTUM ESPRESSO [50]. To obtain lattice constants that
can better match the experimental data, we employ norm-
conserving pseudopotentials [51] with the Perdew-Burke-
Ernzerhof form of the exchange-correlation functional [52]
for Pt and Al, while the Perdew-Zunger parametrization [53]
and Bachelet-Hamann-Schlüter type norm-conserving pseu-
dopotentials [54] with local density approximation for the
exchange-correlation functional are employed for W. The
comparison between the pressure-volume relations is shown
in Fig. 2. We also consider the spin-orbit coupling (SOC)
effect for Pt because of the more accurate band structure
around the Fermi energy for calculation with SOC [40]. The
cutoff energy of the plane wave is set as 120 Ry, while the
convergence threshold of electron energy is set to be 10−10 Ry
for the self-consistent field calculation. The phonon disper-
sion relations are calculated by density functional perturbation
theory [55], with a 6 × 6 × 6 q grid and a self-consistency
threshold of 10−15 Ry. The phonon-phonon scattering rate is
calculated with the density functional perturbation method
using the D3Q package [56]. Since the SOC has little ef-
fect on the force constants and phonon frequencies, with
details in Appendix C, it is not considered in phonon ther-
mal conductivity calculations. The electron-phonon scattering
rate and phonon-electron scattering rate are computed us-
ing the electron-phonon Wannier (EPW) code [57]. Using
the maximally localized Wannier functions basis [58], the
electron-phonon matrix elements, band energies, and phonon
modes are interpolated from an initial coarse grid of 12 ×
12 × 12 and 6 × 6 × 6 electron and phonon vector grids, re-
spectively, to dense grids of 60 × 60 × 60 and 40 × 40 × 40
electron and phonon vector grids, respectively.

In the subsequent discussions we also compare our pre-
dictions with the widely used theoretical model developed
by Bohlin [26]. The theoretical model for pressure-dependent
electronic thermal conductivity is included in Appendix A.

III. RESULTS AND DISCUSSIONS

A. Validations at 0 GPa

In order to validate our first-principles simulations, we
first study the lattice constants, as well as the temperature-
dependent electrical conductivity and thermal conductivity at
0 GPa. The lattice constants are determined to be 4.02 Å for
Al, 3.93 Å for Pt, and 3.12 Å for W, while the corresponding
experiment values are 4.04 Å [59], 3.92 Å, and 3.16 Å [60],
respectively. All three lattice constants show good agreement
with experiment data.

The temperature-dependent electrical conductivity and
thermal conductivity of Al, Pt, and W are predicted at 0
GPa, as shown in Fig. 1. Note that phonon thermal conduc-
tivity is included in the predicted thermal conductivity. In the

FIG. 1. The temperature-dependent (a) electrical conductivity
(σ ) and (b) thermal conductivity (κ) of Al, Pt, and W at 0 GPa. The
experiment data are taken from Refs. [61–66], while the dashed line
in (b) shows the simulation results from the literature [41].

range of 200–900 K, electrical conductivity for Al, W, and
Pt decreases with temperature. This is related to the increase
in electron-phonon scattering rate with increasing tempera-
ture [39]. In comparison, the temperature-dependent thermal
conductivity shows different trends for different metals. The
thermal conductivity of Al becomes nearly temperature in-
dependent above 300 K, while the thermal conductivity of
Pt increases monotonically when temperature increases. Such
trend is related to the competition between the decrease in
electron lifetime and the increase in electron specific heat at
high temperature, as discussed in Ref. [42]. The temperature
dependence of Pt agrees well with previous works [63,67,68].
On the other hand, the thermal conductivity of W decreases
with temperature, mainly due to the decrease of phonon ther-
mal conductivity with temperature [41]. Note that we predict
that phonon transport contributes 30% to the total thermal
conductivity at 300 K for W, similar to previous works.

Compared to the experiment data, the predicted electrical
conductivity and thermal conductivity all show quantitative
agreement with experimental results. This confirms that our
mode-level first-principles calculation is reliable and can be
further adopted to the study of the pressure effect. There is
a slight deviation in the thermal conductivity of W from the
experimental results [66], which may be related to the slightly
smaller lattice constant predicted by first-principles calcula-
tions [69]. Above 300 K, the deviation between experimental
results and simulation results becomes larger, which is also
seen in the previous work [41].
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FIG. 2. Normalized unit cell volume V as a function of pressure
from first-principles calculation and the comparison with experiment
data of Al [70], Pt [71], and W [72]. The volume is normalized by
unit cell volume V0 at 0 GPa.

B. Pressure-dependent electronic thermal conductivity

Before studying the pressure dependence of thermal
conductivity, we first study the pressure dependence of nor-
malized unit cell volume V/V0, as shown in Fig. 2. The
normalized volumes of Al, W, and Pt are found to decrease
with pressure and become less pressure dependent at high
pressure. The nonlinear pressure dependence arises from the
atomic bond hardening at high pressure. Under the same pres-

sure, Al has the largest volume decrease among these three
metals. For instance, Al has around a 20% volume decrease at
30 GPa, while the volume decrease of both W and Pt is less
than 10%. The experiment data are also shown in Fig. 2, and
are in good agreement with our simulation results.

Since the electron transport properties are closely related
to the electron density of states (DOS), we further check the
pressure dependence of DOS for these three metals. Electron
DOS for Al, W, and Pt at 0 and 80 GPa are presented in Fig. 3.
The electron DOS of Al shows free-electron-like parabolas
at both 0 and 80 GPa, while the electron DOS of Pt and
W have irregular shapes around the Fermi energy. Moreover,
the electron DOS of all three metals expand to a larger en-
ergy spectrum with pressure. Meanwhile, the peaks of DOS
decrease with pressure in all three metals, and likewise, the
DOS around the Fermi energy of Al and Pt decrease from
0.40 to 0.24 states/eV atom, and 1.62 to 1.23 states/eV atom,
respectively. The electron DOS of W at Fermi energy is nearly
pressure independent, which is around 0.41 states/eV atom at
both 0 and 80 GPa. Moreover, the contribution from different
electron states is also shown in Fig. 3. The electron DOS of Al
around Fermi energy is mainly composed of free-electron-like
states, the s and p states. Meanwhile, the dominant states of
Pt and W are d states. The energy span of d states is narrower
than that of free-electron-like s and p states, and therefore less
dispersive, which is consistent with a previous study [73]. As
will be shown later, different pressure dependence of elec-
tronic thermal conductivity is related to the different pressure
dependences of electron DOS for Al, Pt, and W.

The pressure dependence of electronic thermal conduc-
tivity is shown in Fig. 4(a). We consider the temperature of
300 K for the subsequent discussions on the pressure effect of

FIG. 3. Electron density of states of Al, Pt, and W at 0 and 80 GPa.
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FIG. 4. Thermal conductivity of Al, Pt, and W at 300 K as a function of pressure (a) and (b) normalized volume reduction. Our simulation
results are compared with the theoretical model which is shown by dot-dash lines.

thermal conductivity. When pressure increases, the electronic
thermal conductivity of Al, W, and Pt increases almost linearly
with pressure. The electronic thermal conductivity of Al, Pt,
and W is 234, 64, and 147 W/mK, respectively, at 0 GPa,
while their electronic thermal conductivity increases to 957,
175, and 210 W/mK, respectively, at 80 GPa. The electronic
thermal conductivity of Al has the largest pressure depen-
dence among these three metals. This is related to the large
volume decrease of Al under the same pressure, as illustrated
in Fig. 2. Since the pressure effect on solids is essentially
through the change of volume, the electronic thermal conduc-
tivity as function of volume reduction is shown in Fig. 4(b).
When the volume is reduced by around 15%, the electronic
thermal conductivity of Al, Pt, and W increases to around 2.0,
2.7, and 1.4 times that at 0 GPa, respectively. Different from
the pressure dependence, the thermal conductivity change for
Pt is the largest with respect to volume reduction. On the
other hand, the volume dependence of the electronic thermal
conductivity is not linear, as clearly shown by Al. Also, we can
calculate the Lorenz ratio of these three metals under different
pressures. The pressure-dependent Lorenz ratio is shown in
Appendix B.

For comparison, electronic conductivity predicted by the
widely used theoretical model from Ref. [26] (see Ap-
pendix A) is also shown in Fig. 4 (results of theoretical
model and our simulation for W are almost overlapped).
According to Eq. (A3), the variation of thermal conductiv-
ity with volume is determined by the Grüneisen parameter
and the temperature-dependent parameter ξ . At 300 K, the
ξ of Al, W, and Pt are close to each other, and therefore,
the different Grüneisen parameters of these three metals lead
to different pressure dependences. At 0 GPa, the Grüneisen
parameters of Pt, Al, and W are 2.8, 2.0, and 1.8. Therefore,
the electronic thermal conductivity of Pt predicted from the

theoretical model also has the largest volume dependence,
which is consistent with our simulation results. Moreover,
results of the theoretical model also have good agreement with
the simulation results for Al in the volume reduction range
of 0%–15%. However, with even larger volume reduction,
the theoretical model underestimates the electronic thermal
conductivity of Al. As for Pt, the theoretical model underes-
timates the increase of thermal conductivity even for small
volume reduction. As for W, the theoretical model seems to
give quite good predictions of the electronic thermal conduc-
tivity.

In order to understand the different pressure effects on
electronic thermal conductivity, we further analyze the pres-
sure dependence of the three electron properties based on
Eq. (4), which are the electron specific heat (Cel ), the square
of group velocity (v2), and the lifetime due to electron-phonon
scattering (τ κ ). The pressure effect on these properties of Al,
W, and Pt is normalized and illustrated in Fig. 5. Note that the
group velocity and relaxation time are different for different
modes, and therefore the average values are presented, which
are defined as

〈τ κ〉 =
∑

nk |vnk|2τ κ
nk

∂ f 0

∂εnk∑
nk |vnk|2 ∂ f 0

∂εnk

, (6)

〈v2〉 =
∑

nk |vnk|2 ∂ f 0

∂εnk∑
nk

∂ f 0

∂εnk

. (7)

For Al, both Cel and 〈v2〉 have small variation with pres-
sure. The small variation in Cel can be attributed to the
trade-off between the decreasing electron DOS (Fig. 3) and
the simultaneously decreased volume. In comparison, the
electron lifetime of Al largely increases with pressure and
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FIG. 5. Normalized electronic thermal conductivity (κel/κel, 0), averaged square velocity (〈v2〉/〈v2
0〉), relaxation time (〈τ κ〉/〈τ κ

0 〉), and total
electron specific heat (Cel/Cel,0) of (a) Al, (b) Pt, and (c) W as a function of pressure.

has a similar trend as the pressure-dependent electronic ther-
mal conductivity. Therefore, the dominant contribution for
the increase of electronic thermal conductivity under pres-
sure is the increase of τ κ , which is consistent with previous
works [15].

On the other hand, the mechanism of pressure dependence
on Pt is shown to be different from that of Al. As illustrated
in Fig. 5(b), the electron specific heat of Pt also has small
variation with pressure. However, both group velocity and
electron lifetime significantly increase under pressure. At 80
GPa, the averaged square of electron velocity is around 1.8
times that of the 0 GPa value, while the electron lifetime
is 1.6 times that of the 0 GPa value. The increase of the
squared group velocity even surpasses the increase of electron
lifetime and becomes the main contribution to the increase
of electronic thermal conductivity with pressure. The theoret-
ical model fails to predict the large velocity increase under
pressure. Therefore, it underestimates the pressure-dependent
electronic thermal conductivity of Pt. According to Eq. (A3),
the pressure dependence of the electronic thermal conductiv-
ity of metals are determined by the summation of two terms.
The first term, ξγ , represents the pressure dependence related
to electron-phonon coupling, while the second is a constant
term, 1/3. The 1/3 term contains the pressure dependence
of the electron group velocity. Notably, the electron-phonon
coupling term ξγ is usually much larger than 1/3 [29], and
therefore the influence of electron group velocity is small
according to the theoretical model. Such small contribution
is true for free-electron metals, as illustrated by Al. However,
it is not true for complex transition metals such as Pt. It is
presumably due to the dominant d states around the Fermi
energy of Pt, as shown in Fig. 3. The group velocity of d
states has a larger response to the pressure increase than that of
free-electron-like s and p states. The electron group velocity
is the differential of the electron band energy [49], which
is denoted as v = 1/h̄(∂ε/∂k). Therefore, the electron group
velocity is closely related to the electron band structure. The
energy bands of the d state electrons are limited to a small

energy range with respect to the wave vector (less dispersive),
while those of free-electron-like electron states have a larger
energy range (more dispersive) [74]. Therefore, the electron
group velocity of d state electrons is smaller than that of free-
electron-like states [74]. The interatomic distance decreases
with the increase of pressure. This decrease induces a less
effective centrifugal barrier for the d band [75], resulting in
an additional energy expansion. As a result, the electron group
velocity of d band electrons increases under pressure.

Similar to Pt, the squared velocity of W also makes a
dominant contribution to the increase of electronic thermal
conductivity with pressure, as illustrated in Fig. 5(c). The d-
state electrons are also dominant around the Fermi energy of
W. However, the pressure dependence of the specific heat and
electron relaxation time of W is different from those of Pt and
Al. The electron specific heat shows a positive relationship
with pressure. As illustrated in Fig. 3, the electron DOS per
atom of W are nearly pressure independent. The decrease of
the volume at high pressure consequently leads to an increase
in the electron specific heat. On the other hand, the electron
lifetime is found to have small variation and has a small
decrease under high pressure in W. Such pressure dependence
is opposite to the predictions from the theoretical model. The
competing effect of these three properties leads to a coincident
consistency between the results of the theoretical model and
our simulations.

The electron lifetime of both Al and Pt increases with
pressure, while the electron lifetime of W decreases with
pressure. Therefore, the mechanisms behind it are expected to
be different. In order to understand the different mechanisms,
we first introduce an intermediate parameter, electron-phonon
coupling constant (λ) [32], which is defined as

λ = 2
∫ ∞

0

α2F (ω)dω

ω
, (8)

where ω is the phonon frequency, α2(ω) is effective electron-
phonon coupling function, and F (ω) is the phonon DOS. The
product of α2(ω) and F (ω) is the spectral function α2F (ω).
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(arb. units)

FIG. 6. Variations of α2F (ω) and phonon density of states of (a)
Al, (b) Pt, and (c) W as a function of phonon frequency.

The λ characterizes the strength of electron-phonon cou-
pling. At high temperatures, the electron relaxation time due
to electron-phonon coupling (τep) can be approximated by
1/τep = (2π/h̄) kB T λ [32]. From 0 to 60 GPa, the λ of Al,
Pt, and W changes from 0.48, 0.51, and 0.26 to 0.17, 0.38, and
0.28, respectively.

The α2F (ω) and phonon DOS at 0 and 60 GPa of these
three metals are presented in Fig. 6. It is shown that the
shape of the α2F (ω) is similar to the shape of phonon
DOS. At high pressure, the phonon DOS spread to higher
frequency, while the phonon DOS at the original frequency
range decrease. The large variation of the phonon DOS in
Al and Pt under pressure directly influences the pressure de-
pendence of α2F (ω). The α2F (ω) of these two metals also
shifts to higher frequency and its value at original frequency
decreases accordingly. According to Eq. (8), the spectral
function at higher frequency will have smaller weight in
the integral of the electron-phonon coupling constant. There-
fore, the overall electron-phonon coupling constant decreases
with pressure for Al and Pt. On the other hand, an opposite
relation is found in W. The peaks of phonon DOS of W
decrease with pressure, while the peaks of the α2F func-
tion increase with pressure. This implies a large increase of
the α2(ω) function with pressure, which even surpasses the
influence from the phonon DOS and leads to an increase
of α2F with pressure. Consequently, the electron-phonon
coupling strength increases with pressure in W. The α2(ω)
characterizes the averaged electron-phonon coupling matrix
elements on the Fermi surface, and electron DOS around
Fermi energy directly influences the change of α2(ω) [32].

FIG. 7. (a) Phonon thermal conductivity and (b) its ratio in total
thermal conductivity of Al, Pt, and W under different pressures.

Therefore, the increase of α2(ω) is possibly related to the
abnormal electron DOS change of W around the Fermi
energy.

C. Pressure-dependent phonon thermal conductivity

We further consider the phonon thermal conductivity under
pressure, the results are shown in Fig. 7(a). For both Al and
Pt, the phonon thermal conductivity increases with pressure,
while the pressure effect is more prominent in Al. From 0
to 80 GPa, the phonon thermal conductivity of Al increases
from 9 to 74.6 W/mK, about eight times, while the phonon
thermal conductivity of Pt increases from 3.4 to 11.4 W/mK,
only around four times. On the other hand, even though the
phonon thermal conductivity of W is the largest among these
three metals at 0 GPa, it is nearly pressure independent in
the pressure range of 0–80 GPa. Because of the different
pressure dependence of the electronic and phonon thermal
conductivity among these metals, the ratios of phonon thermal
conductivity in the total thermal conductivity are expected
to be different; these are presented in Fig. 7(b). The ratio
of phonon thermal conductivity in Al is 3.7% at 0 GPa,
which is the lowest among these three metals. Nonetheless,
its ratio increases to 7.2% as the pressure increases to 80
GPa. The ratio of phonon thermal conductivity in Pt is al-
most pressure independent, due to the comparable pressure
dependence of electronic and phonon thermal conductivity.
Although the phonon thermal conductivity of W has the high-
est ratio at 0 GPa, a decrease of the ratio at high pressure is
found due to the pressure-independent phonon thermal con-
ductivity and the increase of pressure-dependent electronic
thermal conductivity. The ratio of phonon thermal conduc-
tivity of W decreases from 30% at 0 GPa to around 20%
at 80 GPa. Despite such decrease, the phonon thermal con-
ductivity of W is still non-negligible with pressure up to 80
GPa.

In order to understand different pressure dependence of
phonon thermal conductivity for these three metals, an anal-
ysis of the phonon mode properties, similar to the electron
counterpart, is performed and presented in Fig. 8. The
phonon group velocity and relaxation time are average values
which are weighted by phonon specific heat, as illustrated in
Ref. [76]. Under the same pressure, Al has the largest volume
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FIG. 8. Normalized phonon thermal conductivity (κph/κph,0), averaged square of phonon velocity (〈v2
ph〉/〈v2

ph,0〉), relaxation time due to
phonon-electron scattering (〈τph−el〉/〈τph−el,0〉) and phonon-phonon scattering (〈τph−ph〉/〈τph−ph,0〉) and phonon specific heat (Cph/Cph,0) of (a)
Al, (b) Pt, and (c) W as a function of pressure.

reduction, and therefore, phonon thermal conductivity of Al
has the largest increase. At 15% volume reduction, the phonon
thermal conductivity of both Al and Pt increases to around
three times the 0 GPa value, while that of W still has small
variation. The phonon group velocity of all three metals has a
large increase with pressure. For Al and Pt with face centered
cubic (fcc) structure, the phonon lifetime due to the phonon-
phonon scattering increases in Pt and Al, which is consistent
with the pressure dependence in fcc argon crystal [12]. How-
ever, the phonon-phonon scattering increases with pressure
in W, which is opposite to that in Pt and Al. W has body
centered cubic (bcc) structure and has a small phonon-phonon
scattering rate at 0 GPa which has been discussed in Ref. [41].
In brief, the small phonon-phonon scattering rate results from
the relatively isotropic phonon branches, which have a small
difference. Such phonon dispersions provide few scattering
channels, so the scattering rate is small. However, under
high pressure, the lower transverse acoustic phonon branches
along the � − N direction become relatively softer than other
branches [77], and the three phonon branches are relatively far
from each other. This change opens more scattering channels
and the phonon-phonon scattering is consequently increased
under pressure.

One major difference between the phonon thermal con-
ductivity in metals and nonmetals is that an additional
scattering mechanism, phonon-electron scattering, influences
the phonon transport in metals. As illustrated in Fig. 8, the
relaxation time due to the phonon-electron scattering has
a small increase with pressure in Al, while that in Pt has
a small decrease with pressure. Meanwhile, the phonon-
electron scattering increases largely under high pressure in
W. The increase in W is likely due to the increase of
electron-phonon coupling matrix elements, as indicated by
the increase of α2(ω) with pressure in W. The increase of
phonon group velocity with pressure and the decrease of
phonon lifetime are competing mechanisms, and therefore,
lead to a pressure invariant phonon thermal conductivity
of W.

IV. CONCLUSIONS

In summary, the pressure effect on the electronic and
phonon thermal transport properties of W, Pt, and Al is
investigated by mode-level first-principles calculations. For
electronic thermal conductivity, applying pressure leads to an
increase of thermal conductivity for the three metals. How-
ever, different mechanisms are found in these metals. For
Al, the decrease of the electron-phonon scattering makes a
dominant contribution to the increase of electronic thermal
conductivity. For Pt and W, the increase of the electron group
velocity surpasses the decreasing electron-phonon scattering
and becomes the main contribution, mainly due to their domi-
nance of d state electrons around the Fermi energy. Applying
pressure also shows a positive effect on the phonon thermal
conductivity of Al and Pt, while the phonon thermal con-
ductivity of W is nearly pressure independent. According to
the mode property analysis, the phonon group velocity and
specific heat of all three metals increases with pressure. The
positive pressure dependence of the phonon lifetime is found
in both Al and Pt, which eventually results in an increase of
their phonon thermal conductivity with pressure. As for W,
the phonon lifetime due to both phonon-phonon and phonon-
electron scattering decreases with pressure. The collective
effects between phonon lifetime and group velocity lead to
a pressure invariant phonon thermal conductivity of W.
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APPENDIX A: THEORETICAL MODEL OF ELECTRONIC
THERMAL CONDUCTIVITY

The theoretical model for pressure-dependent electronic
thermal conductivity also starts from the BTEs. In order to
obtain a compact and treatable solution, this model imple-
ments the Debye model for phonons and the free-electron
model for electrons [78]. An expression for electronic thermal
conductivity is given by [26]

1

κel
= 4

CqF

θD

1

L0T

{( T

θD

)5

J5

(
θD

T

)[
1 + 3

π2

(
kF

qD

)(
θD

T

)2

− 1

2π2

J7
(

θD
T

)
J5

(
θD
T

)
]}

, (A1)

where C is a constant independent of the volume; θD is the
Debye temperature; L0 is the Sommerfeld value; T is the tem-
perature; kF and qD are the Fermi and Debye wave numbers,
respectively [74]. Jn(x) is the Debye integral defined as

Jn(x) =
∫ x

0

znez

(ez − 1)2 dz. (A2)

Reviewing the above equation, it implies that only kF con-
tains the information of the electron information, while all
the information of electron phonon coupling is related to the
Debye temperature θD. The change of 1/κel with respect to
volume can be obtained by [26]

∂ ln (1/κel )

∂ ln V
= γ − 1

3
− γ

∂
{
x−5J5(x)

[
1 + 3

π2 (kF /qD)x2 − 1
2π2 J7(x)/J5(x)

]}
∂ ln x

, (A3)

where x is defined as x = θD/T ; γ is the Grüneisen parameter
which is defined as γ = − ln θD/ ln V . Since kF /qD is a con-
stant according to Ref. [74], the differentiation with respect
to x is a universal coefficient independent of materials but
dependent on temperature. Temperature dependence of this
term can be found in Ref. [26]. Therefore, we can simplify
the right side of Eq. (A3) as ξγ−1/3, where ξ is the universal
coefficient which equals the summation of the coefficient be-
fore γ . The Grüneisen parameter can be calculated from the
mode Grüneisen parameter γλ, whose relation is [79]

γ =
∑

λ γλcph,λ∑
λ cph,λ

. (A4)

For the theoretical model, the mode Grüneisen parameters
at discrete volumes are obtained by PHONOPY [80]. Since
the calculation of the electronic thermal conductivity requires
an integral involving Grüneisen parameters, an expression
of Grüneisen parameters versus volumes is fitted by those
discrete values using the expression given in Ref. [81]. De-
bye temperature θD is related to the Grüneisen parameters
γ = −(∂ ln θD/∂ ln V ). Therefore, the Debye temperature can
be further determined by integrating the Grüneisen parameters

FIG. 9. Lorenz ratio of Al, Pt, and W under different pressure.

with respect to volume,

θD(V ) = θ0

( V

V0

)−γ∞
exp

(
−

{
3a

[( V

V0

)1/3

− 1

]

+b

n

[( V

V0

)n

− 1

]})
, (A5)

where γ∞ is the value of the Grüneisen parameter when the
pressure approaches infinity, which is 1/2 or 2/3 based on the
Thomas-Fermi theory [81]; V is the volume of materials, and
normalized by 0 GPa value V0; a, b, and n are the parameters
which need to be determined by fitting the Grüneisen parame-
ters calculated from first-principles calculation under different
pressure; θ0 is the Debye temperature at 0 GPa.

APPENDIX B: LORENZ RATIO AT DIFFERENT
PRESSURES

In experiments, the Wiedemann-Franz law is usually em-
ployed to evaluate the thermal conductivity of metals, as
κ = LσT , with L the Lorenz ratio. The Sommerfeld value
(L0 = 2.44 × 10−8 W �/K2) is widely used in practice. This
postulate is valid based on two conditions: (1) the phonon
thermal conductivity can be ignored; (2) the electron-phonon
scattering is elastic. The Lorenz ratios corresponding to elec-
tron thermal conductivity (Le) and total thermal conductivity

FIG. 10. Comparison between the phonon dispersion relations of
Pt with SOC and without SOC.

094313-9



ZHANG, LI, WANG, AND BAO PHYSICAL REVIEW B 106, 094313 (2022)

(L) of these three metals are shown in Fig. 9. The Le of Al
and W has little departure from the Sommerfeld value under
different pressure. Meanwhile, Le of Pt has a slight increase
with pressure.

The L and Le of Al and Pt are close to each other. This is
attributed to the relatively small phonon thermal conductivity.
On the other hand, L of W is around 30% larger than L0

at 0 GPa due to the large contribution from phonon thermal
conductivity, which is also observed in Ref. [41]. However,
L of W decreases to L0 as pressure increases. It is related to
the decrease in the ratio of phonon thermal conductivity under
high pressure, as shown in Fig. 7(b).

APPENDIX C: EFFECT OF SPIN-ORBITAL COUPLING
ON PHONON TRANSPORT

Spin-orbital coupling (SOC) effect is a relativistic ef-
fect which is known to cause the electron band splitting

and the opening band gap [82] in electron band structure.
However, the SOC effect can be neglected in the inves-
tigation of phonon transport. As seen from the details in
Fig. 10, the phonon dispersions of Pt with/without SOC
are almost identical. Therefore, the SOC has little effect
on force constants and thermal conductivity. We believe
it is reasonable to turn off the SOC in phonon thermal
conductivity calculation considering only phonon-phonon
scattering.

Furthermore, we employ the SHENGBTE package [47]
which can consider the SOC to calculate the phonon thermal
conductivity to verify the above postulation. The resulting
phonon thermal conductivity at 300 K and 0 GPa is 7.71 and
8.25 W/mK without the SOC and with the SOC, respectively.
The small difference suggests that the phonon thermal con-
ductivity obtained from D3Q without considering the SOC
effect is reliable.
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