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Dynamical signatures of point-gap Weyl semimetal
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We demonstrate a few unique dynamical properties of point-gap Weyl semimetal, an intrinsic non-Hermitian
topological phase in three dimensions. We consider a concrete model where a pair of Weyl points reside on the
imaginary axis of the complex energy plane, opening a point gap characterized by a topological invariant, the
three-winding number W3. This gives rise to surface spectra and dynamical responses that differ fundamentally
from those in Hermitian Weyl semimetals. First, we predict a time-dependent current flow along the magnetic
field in the absence of an electric field, in sharp contrast to the current driven by the chiral anomaly, which
requires both electric and magnetic fields. Second, we reveal a type of boundary-skin mode in the wire geometry
which becomes localized at two corners of the wire cross section. We explain its origin and show its experimental
signatures in wave-packet dynamics.
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I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional (3D)
crystals with pairs of isolated band degeneracy points known
as Weyl points (WPs) [1–9]. When the chemical potential
lies near the degeneracy points, the low-energy quasiparticles
are Weyl fermions, i.e., massless chiral fermions obeying the
Weyl equation. In the simplest case, a Weyl semimetal has two
WPs with opposite chirality ±1 located at ±b in momentum
space with effective Hamiltonian H± = ±v(k ∓ b) · s ± b0.
Here s refers to the (pseudo)spin and v plays the role of
the speed of light. The two WPs, as the source and drain
of Berry flux in momentum space, carry integer topological
charge ±1. This gives rise to a host of fascinating phenomena,
including the emergence of gapless excitations in the form of
Fermi arcs on surfaces and anomalous Hall effect. Remark-
ably, WSMs realize the so-called chiral anomaly in quantum
field theory [10–16]. For example, in the presence of both E
and B fields, an effective chiral chemical potential b0 ∝ E · B
is established, leading to an electrical current j ∝ B(E · B).

WPs have been realized and probed in a wide range
of physical systems [8,9,17–21]. In solids, Weyl quasipar-
ticles are often coupled to other degrees of freedom such
as phonons, magnons, or external fields or bath to acquire
finite lifetime [22–24]. In recent years, non-Hermitian (NH)
Hamiltonians [25–28] have been fruitfully applied to model
electronic materials [29–32] and photonic systems with gain
and loss [33–40], fueled by the state of the art experimental
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capability for NH engineering. This motivates us to exam-
ine generalized models of WSM as open quantum systems
described by NH effective Hamiltonians. The rich, unique
topological properties of NH systems cannot be captured by
the classification framework developed for Hermitian topo-
logical band insulators [41–46]. Since the energy eigenvalues
live on the complex plane, the bands can have point gaps
[47–49]: The spectrum encloses a simply connected area that
contains the reference energy and cannot be smoothly de-
formed into a gap along the real or imaginary axis. The point
gap lies at the heart of a few spectacular properties [27,28]
such as the NH skin effect [50–64], where an extensive num-
ber of eigenmodes are localized at the boundary.

Recent work has begun to reveal some unique features of
NH semimetals [65–79]. Reference [69] analyzed a model
with eight WPs on the complex energy plane to predict the
appearance of skin modes at surfaces perpendicular to an
applied magnetic field. Reference [70] considered WPs with
different lifetimes as a limit of exceptional topological insu-
lators and related the emergence of Fermi arcs to a point-gap
invariant. Experimentally, another kind of Weyl exceptional
ring [72] has been realized both in optical waveguides [78]
and phononic crystals [79]. Despite the progress and ex-
tensive studies which focus on the static properties of NH
topological systems, their dynamical properties remain poorly
understood. What are the unique effects in dynamics and
electromagnetic response dictated by the NH band topology?

In this paper, we investigate a minimal model of NH WSM,
with a pair of WPs located on the imaginary axis, E = iγ±, see
Fig. 1. The point gap on the complex energy plane dictates the
bulk topology and dynamical response. We predict an effect–
time-dependent current induced by magnetic field, j(t ) ∝ B,
that saturates at long time. This dynamical chiral magnetic
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FIG. 1. Schematics of point-gap WSM. (a) A pair of WPs are
split along the kz axis, leading to surface Fermi arcs. The two WPs
carry opposite charges (±) and have different imaginary energies
iγ±, i.e., different dissipation rates. (b) The energy spectra of the
lattice model Eq. (2) on the complex plane. The two WPs are located
on the imaginary energy axis. The point gap surrounded by the
bulk bands is characterized by invariant W3(Ep) = 1 for reference
energy Ep inside the point gap. The parameters are b = 0.9, δ = 0.2,
γ = −0.5, m = 3.1

effect here differs fundamentally from that in Hermitian WSM
because it does not require an E field, is time dependent,
and is driven by the different dissipation rates of the WPs.
Furthermore, we showcase the existence of a unique type of
boundary-skin mode using the Chern number and the spectral
winding number, and propose their observation through wave-
packet dynamics.

This paper is organized as follows. In Sec. II, we introduce
a minimal model of NH WSM with a pair of EPs of different
imaginary energies and demonstrate the existence of point gap
and the relevant bulk topological invariants. In Sec. III, we
study the dynamical charge pumping effect in the presence
of electromagnetic field. We solve the Landau levels and cal-
culate the pumped charge during time evolution. In Sec. IV,
we discuss the boundary-skin modes in wire geometry due to
the point-gap topology. In Sec. V, we turn to the wave-packet
dynamics as an alternative signature of the point-gap WSM.
We conclude in Sec. VI and discuss possible experimental
realizations of the point-gap WSM in photonic and condensed
matter system. We leave detailed derivations and calculations
to the Appendices. Appendix A provides details on our lattice
model’s spectral windings and symmetries. In Appendixes
B and C, we explicitly derive the Landau levels under an
orbital magnetic field and dynamical charge pumping with
imaginary Landau levels, respectively. We investigate the sur-
face Fermi arcs as the bulk-edge correspondence of point-gap
WSM in Appendix D and the energy spectra and wave-packet
dynamics along a z wire in Appendix E. In Appendix F, we
propose the possible realizations of the lattice Hamiltonian in
coupled microring resonators and condensed matter systems.
In Appendix G, we discuss the observation of the dynamical
effects.

II. MODEL HAMILTONIANS AND
TOPOLOGICAL INVARIANTS

Consider a pair of WPs, labeled by subscripts ± and lo-
cated at k = (0, 0,∓bz ) with imaginary energies E = iγ±.

They are described by the effective Hamiltonian

H± = kxsx + kysy ± (kz ± bz )sz + iγ±s0. (1)

Here the Pauli matrices s j with j = x, y, z denote the
(pseudo)spin degrees of freedom and s0 is the identity matrix.
The two WPs are separated in momentum space by 2b =
(0, 0, 2bz ). Note they have opposite chirality ±1 and different
dissipation rates, i.e., inverse lifetimes. For simplicity, we
assume the group velocity of the Weyl fermions is isotropic
and set v = 1. We also assume the system overall is dissipative
and γ± < 0.

As a concrete example, we consider a four-band lattice
model. Its Hamiltonian in momentum space reads

Hk = τxak · σ + mkτzσ0 + bτ0σz + iδτxσ0 + iγ τ0σ0. (2)

Here the Pauli matrices τ j (σ j) denote the orbital (spin) de-
grees of freedom, τ0 and σ0 are identity matrices. The first
term with ak = (sin kx, sin ky, sin kz ) describes spin-orbit cou-
pling, and mk = cos kx + cos ky + cos kz − m. Without the last
two NH terms, the model furnishes a prototype of WSM [3]
with a pair of zero-energy WPs separated along the kz axis.
Upon the introduction of γ and δ, the two WPs split along the
imaginary axis, accompanied by the opening of a point gap
inside the bulk bands as depicted in Fig. 1(b). Near the WPs,
Hk reduces to the continuum model Eq. (1), with bz and γ±
functions of b, m, and δ, after we rescale the momentum so
the group velocity along x, y, z becomes the same v. A more
general lattice model was previously introduced in Ref. [70].
The key features of point-gap WSM do not depend on the
specific lattice model chosen.

The band topology of Hk is characterized by a point-gap
invariant, the three-winding number [41,42]

W3(Ep) = − 1

24π2

∫
BZ

d3k εi jkTr[QiQjQk], (3)

where Ep is a chosen reference energy inside the point gap,
Qi = (Hk − Ep)−1∂ki (Hk − Ep), and εi jk is the Levi-Civita
symbol. This is possible owing to the existence of a point
gap, so Hk for each momentum k within the Brillouin zone
(BZ) can be continuously deformed into a unitary matrix
[41,42,69–71]. It can be checked that for our model W3(Ep) =
1. To understand the boundary and skin modes in point-gap
WSM, two kinds of topological indices of lower dimensions
are also needed. Consider a general direction l̂ , let us label
the momentum along l̂ as kl and define transverse momen-
tum k⊥ = k − kl l̂ . For fixed values of k⊥, Hk defines a 1D
Hamiltonian h1D(kl ) where the parametric dependence on k⊥
is suppressed for brevity. The spectral winding number for
h1D(kl ),

wl (Ep) = 1

2π i

∫
dkl∂kl [ln det(h1D(kl ) − Ep)], (4)

is an integer when Ep lies within the point gap of h1D. In
particular, we find wx = wy = 0, due to the NH time-reversal
symmetry [42,80]: TxH (kx, ky, kz )T −1

x = H (−kx, ky, kz ) and
TyH (kx, ky, kz )T −1

y = H (kx,−ky, kz ), where Tx = τ0σzT ,
Ty = T and T stands for transposition. Note the difference
from the Hermitian systems; here time-reversal symmetry Tx,
Ty include the transpose operation. For a fixed value of kl ,
Hk reduces to a 2D Hamiltonian h2D(k⊥). Provided that the
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FIG. 2. Dynamical charge. pumping by magnetic field B along y.
(a) The complex energy spectra for B = 2π/Lx . The color indicates
the biorthogonal expectation value 〈ψL|τxσy|ψR〉 for each eigenstate.
The two chiral Landau levels in Eq. (5) carry opposite pseudospin
sy = τxσy. The inset schematic: A net current j(t ) arises due to the
imbalance of the current carried by the two chiral Landau levels.
(b) The total pumped charge Q(T ) with respect to time T for B =
2pπ/Lx , with p = −4, −3, ..., 4 from bottom to top. The parameters
are b = 0.9, δ = 0.2, γ = −0.5, m = 3.1, and Lx = 50.

bands of h2D at Re(E ) < 0 and Re(E ) > 0 are separated, we
can define a total Chern number C(kl ) for all the Re(E ) < 0
bands. For example, we find C(kz ) = 1 for kz ∈ [−bz, bz] and
zero otherwise.

III. DYNAMICAL CHARGE PUMPING
BY MAGNETIC FIELD

The electromagnetic response of point-gap WSMs deviates
drastically from Hermitian WSMs. To illustrate this, we first
provide an intuitive picture for the chiral magnetic response
using the low-energy Hamiltonian Eq. (1). Without loss of
generality, suppose the magnetic field is along the y direction
with magnitude B [81]. In Landau gauge A = (0, 0,−Bx),
solving for the eigenvalues of Eq. (1) with minimal cou-
pling yields the Landau levels [see detailed derivations in
Appendix B]:

E±
n=0 = ±ky + iγ±, (5)

E±
n �=0 = sgn(n)

√
k2

y + 2eB|n| + iγ±. (6)

Here the superscripts ± denote the two Weyl nodes, while the
subscript n labels the Landau levels. The two zeroth Landau
levels E±

0 are chiral: They have opposite group velocity and
different dissipation rate γ+ �= γ−. Thus, as time goes on, the
difference in dissipation rate sets up a density imbalance of
fermions moving in the y and −y directions, resulting in a net
charge current j(t ) along the magnetic field, see the inset of
Fig. 2(a). (The n �= 0 levels are particle-hole symmetric and
do not contribute to the net current.) More specifically, let us
assume at t = 0 the system is Hermitian (γ± = 0) and all the
Landau levels at negative energies are filled. After the NH
terms are turned on, the net current at t > 0 is [see detailed
derivations in Appendix C]

j(t ) = 
D

2π
(e2tγ+ − e2tγ− ), (7)

where 
 is a high-energy cutoff and D = BLxLz/2π , with
Lx,z, the system length along the x, z direction is the degen-
eracy of each chiral Landau level. The total charge pumped
by magnetic field over time lapse T is

Q
(T ) =
∫ T

0
dt j(t ) = 
D

4π

[
e2γ+T − 1

γ+
− e2γ−T − 1

γ−

]
. (8)

After a long time, it saturates to a finite value

Q
(∞) = 
D(γ+ − γ−)

4πγ+γ−
∝ B|γ+ − γ−|, (9)

where in the last step |γ+ − γ−| 
 |γ+ + γ−| is assumed.
We stress that the current is time-dependent and flows in
the absence of electric field. In contrast, in Hermitian WSM
the current is zero if no electric field is applied [13]. The
accumulation of charge leads to a finite electric polarization
P ∝ B in finite-size samples, which can be taken as a defining
signature of point-gap WSM.

More generally, if an electric field of magnitude E is ap-
plied in parallel to B, chiral anomaly also contributes to the
current. In this case, the density of left- and right-moving
fermions, N±, can be found to take the form [see detailed
derivations in Appendix C]:

N±(t ) =
(


D

2π
± e2EB

8π2γ±

)
e2γ±t ∓ e2EB

8π2γ±
. (10)

In the limit E = 0, it reduces to Eq. (7) above by identifying
j(t ) = N+ − N− (recall the velocity is set to 1). After a long
time, a steady current is achieved:

jE (t → ∞) = −e2EB

8π2

(
1

γ+
+ 1

γ−

)
. (11)

Alternatively, we can numerically compute the current in-
duced by magnetic field based on the lattice Hamiltonian
Eq. (2). Figure 2(a) shows the energy spectra. In the presence
of B = Bŷ, the original WPs are replaced by a pair of highly
degenerate chiral modes that fill the Landau gap of size ∼√

B
to connect the bulk bands with Re(E ) < 0 and Re(E ) > 0.
Assume the initial state |�0〉 is a half-filled trivial insulator
with dispersion ετσ (k) = −(cos kx + cos ky + cos kz ) for each
spin and orbital component. The time evolution is governed by
the density matrix ρ(t ) = |�(t )〉〈�(t )| with the time-evolved
state |�(t )〉 = e−iHt |�0〉. The total charge pumped by mag-
netic field after time lapse T is

Q(T ) = 1

Lz

∑
kx,kz

∫ T

0
dt

∫
dky Tr[ρ(t )∂ky H]. (12)

Here ∂ky H is the velocity operator along y. Figure 2(b) plots
the function Q(T ) for different magnetic fields. The saturation
value Q(∞) is proportional to the magnetic field and vanishes
for B = 0, in agreement with the analytical results above.
Flipping the magnetic field results in a charge pumped to the
opposite direction.

The electromagnetic response of Hermitian WSM
can be described by a field theory with action S =
(e/2π )2

∫
dtd3r θ (r, t )E · B [12–16]. Here the axion field

θ (r, t ) = 2(b · r − b0t ) is linear in the separation of WPs
in energy and momentum bμ = (b0, b) with natural units
c = h̄ = 1. It predicts the chiral magnetic effect, i.e., a
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FIG. 3. Boundary-skin modes and wave-packet dynamics for a
wire along m̂ = [101]. (a) Energy spectra with open (in blue) versus
periodic (in purple) boundary conditions in the ŷ and n̂ = [101̄]
direction, showing the emergence of in-gap modes for open bound-
aries. The in-gap modes in green are obtained under open y and
periodic n̂ boundaries. The inset illustrates the wire with cross-
section boundaries (red lines). (b) Total probability distribution ρin

of the corner-localized in-gap modes. Middle inset: Total probability
distribution of all other modes, which exhibit skin effect along n̂.
(c) The time evolution of a wave-packet initially localized at site
(1,13) (left panel) and (13,25) (right panel) of the cross section that
measures 25 × 25. The wave packet has width W 2

1 = 1, W 2
2 = 6. The

spinor wave function is |ξ0〉 = (1, 1, 0, 0)T . The lattice momentum
along the wire is chosen as km = −0.25. Other parameters are the
same as Fig. 1.

current j = −(e2/2π2)b0B which vanishes in equilibrium
with b0 = 0. The attempt to generalize the field theory to
point-gap WSM is hampered by an obstacle: the divergence
of the Fujikawa integral even for small NH perturbations
such as γ±. Thus, the dynamical chiral magnetic response
found here cannot be explained by analytically continuing
j = −(e2/2π2)b0B via 2b0 = i(γ+ − γ−). The failure of
this formula illustrates that we are dealing with a genuinely
unique effect [82]. The theory developed in Ref. [71] cannot
be applied here either, because the charge U(1) symmetry
assumed in Ref. [71] is broken by the NH terms in Eq. (1).

IV. BOUNDARY-SKIN MODES IN WIRE GEOMETRY

The nontrivial bulk topology leads to the appearance of
Fermi-arc surface states that fill the entire point gap [70]. In
Appendix D, we studied the in-gap Fermi arcs for different
surface terminations. It also manifests in the emergence of a
unique type of boundary-skin modes when the semimetal is
cleaved to have intersecting surface planes. Consider, for ex-
ample, a wire with a rectangular cross section and extending in
the [101] direction m̂ = x̂ + ẑ (red arrow, insets of Fig. 3). For
convenience, we label the [101̄] directions as n̂ = x̂ − ẑ, so
(ŷ, m̂, n̂) are orthogonal to each other. The spectra of the wire
for different boundary conditions are compared in Fig. 3(a)

for a particular value of km = k · m̂. Shown in purple is the
spectrum for periodic boundary conditions along ŷ and n̂, and
blue is for open ŷ and n̂ boundaries where the in-gap modes
are visible. It turns out that these in-gap modes are concen-
trated around two corners of the cross section, according to
their total probability distribution ρin(i, j) = ∑

q |ψq(i, j)|2
shown in Fig. 3(b). Here (i, j) labels the sites, q labels the
in-gap modes, and ρin is rescaled to have maximum 1. As
km is varied, the spatial distribution of these corner modes
evolves smoothly, e.g., it is extended for km = 0 and localizes
at two other corners as km switches signs. Clearly, they are
distinct from the chiral edge modes in Chern insulators and
cannot be described by the Chern number C(km) [defined
below Eq. (4)] alone. For open boundaries, the continuum
modes with energies overlapping with the bulk spectrum are
pushed to localized at the left and right edges, as shown
by their total probability distribution ρcont(i, j) in the middle
inset of Fig. 3(b). An extensive number of continuum modes
residing near the boundary is known as the NH skin effect.
Here the skin effect depends on the orientation/geometry of
the surfaces. For example, the skin effect is absent for a z wire
with open x, y boundaries [see Appendix E for details]. This is
due to the vanishing of the 1D spectral winding wx = wy = 0
protected by the NH symmetries Tx and Ty. For a given kz,
the 2D Hamiltonian H2D(kx, ky) describes a NH Chern insu-
lator, with the chiral edge modes revealed from the Chern
number C(kz ).

We now show that these corner modes can be understood
as chiral edge states under the spell of 1D skin effect. Let
us start from a point-gap WSM with two open surfaces at
y = 1, L and periodic in the two other directions m̂ and n̂. This
realizes a 2D slab described by Hamiltonian h2D(km, kn). Its
spectrum, shown in green in Fig. 3(a) for a given km, features
two chiral edge modes at y = 1, L, respectively, that cross the
bulk gap and disperse with kn. Note that for given km, h2D

can be regarded as a 1D effective Hamiltonian h1D(kn). h1D

has point gaps on the complex energy plane, and the corre-
sponding 1D spectral winding number wn along the direction
n̂ is finite, giving rise to 1D skin effect. Thus, upon opening
two additional boundaries normal to m̂, the skin effect leads
to further localization of the surface modes to the left/right
corner. These corner modes [in blue, Fig. 3(a)] indeed reside
within the point gap of h1D(kn). We call them boundary-skin
modes because they derive from the chiral edge modes of NH
Chern insulators due to the 1D skin effect. Since the finite
Chern number is in turn derived from W3, the emergence
of boundary-skin modes observed in Figs. 3(a) and 3(b) can
serve as signatures of point-gap WSM. We note the number of
boundary-skin modes, bulk-skin modes, and chiral-edge states
scale with system size as L, L2, and L, respectively.

V. WAVE-PACKET DYNAMICS

Besides dynamical charge pumping, we propose an alter-
native route to extract the topological signatures of point-gap
WSM from wave-packet dynamics which can be performed
in photonics experiments [63]. Let (x1, x2) be the coordinates
within the cross-section area in the wire geometry. At time
t = 0, we prepare a Gaussian wave packet localized at (a1, a2)
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of zero velocity in the plane

|ψ0〉 = N0e−(x1−a1 )2/W 2
1 −(x2−a2 )2/W 2

2 eikl xl |ξ0〉, (13)

where W1,2 are the width of the packet, N0 is the normalization
factor, |ξ0〉 denotes the spinor part of the wave function, and kl

is the momentum along the wire at a fixed value. Figure 3(c)
depicts the time evolution of a wave packet in the cross sec-
tion of a [101] wire. The left panel shows that the wave packet
initially residing near the middle point of the y edge travels di-
rectly through the bulk to reach the opposite edge. This occurs
because the wave packet has large overlap with the skin modes
that reside on the y edge [see Fig. 3(b)] but negligible overlap
with the in-gap states which are more concentrated around the
corners. The skin modes are not completely localized, giving
the wave packet the chance to permeate into the bulk, while
for a wave packet initially on the [101̄] edge (right panel),
it first moves counter-clockwise along the edges and starts
to permeate into the bulk more significantly once it arrives
at the y edge. The evolution dynamics is distinct from that
of a z wire, where the wave packet moves chirally along the
edges of the cross section and does not go into the bulk; see
numerical simulations in Appendix E. Thus, the existence of
boundary-skin modes can be inferred from the wave-packet
dynamics.

VI. CONCLUSION AND DISCUSSION

To conclude, we predict dynamical charge pumping and
boundary skin modes as unique features of NH WSM and
attribute them to the point-gap topology and non-Hermicity.
These phenomena have no analogs in Hermitian semimetals
and cannot be described by the previous field theory frame-
work. Our work lays a foundation for future experiments
to explore the dynamics of NH semimetals. The dynamical
effects do not rely on fine-tuning to a specific energy window
and are more feasible to identify for simulations in photonic
and cold atomic platforms. It is straightforward to extend the
analysis to other types of topological semimetals [3,83]. For
example, by setting ak = (sin kx sin ky, cos ky − cos kx, sin kz ),
we obtain a double-charged NH WSM with point-gap invari-
ant W3(Ep) = 2. The lattice Hamiltonian can, in principle, be
implemented in photonic lattices and electrical metamaterials
[84–86]. As detailed in Appendixes F and G, we propose
a realization of the lattice Hamiltonian Eq. (2) using micr-
ring resonator arrays with losses, where the couplings (both
phase and amplitude) between neighboring resonators can
be controlled independently through intermediate waveguides
[87–90]. In condensed matter systems, the NH dissipation
terms can be implemented either through a tailored orbital-
dependent coupling with a lossy mode or electron-phonon
scattering [70].

ACKNOWLEDGMENTS

This work is supported by AFOSR Grant No. FA9550-
16-1-0006 (H.H., E.Z., and W.V.L.), NSF Grant No.
PHY-2011386 (H.H. and E.Z.), the start-up grant of IOP-
CAS (H.H.), and the MURI-ARO Grant No. W911NF17-
1-0323 through UC Santa Barbara and the Shanghai

 Im
(E

)

Re(E)

Re(E)

Re(E)

 Im
(E

)

 Im
(E

)

FIG. 4. Energy spectra of the lattice Hamiltonian Hk [model
Eq. (2) in the main text] on the complex plane. (a) Open-arc spectra
by varying kx with fixed ky = 0.5, kz = 0.5. (b) Open-arc spectra by
varying ky with fixed kx = 0.9, kz = 0.5. (c) Closed-loop spectra by
varying kz with fixed kx = 0.9, ky = 0.5. The 1D winding number
W1z(Ep) is labeled when the reference energy Ep is chosen inside the
corresponding spectral region.

Municipal Science and Technology Major Project (Grant No.
2019SHZDZX01) (W.V.L.).

APPENDIX A: SPECTRAL WINDINGS AND
NON-HERMITIAN SYMMETRY

The lattice Hamiltonian Hk [see model Eq. (2) in the main
text] contains both Hermitian and NH terms. The Hermitian
part describes a prototype WSM with a pair of WPs inside
the kz axis. The NH terms further split the two WPs along the
imaginary axis. Such WP configuration breaks time-reversal
symmetry; however, if we consider the one-dimensional (1D)
Hamiltonian h1D(kx ) with fixed (ky, kz ) momentum or h1D(ky)
with fixed (ky, kz ) momentum, the lattice Hamiltonian re-
spects the following NH time-reversal symmetry [42,80]:

TxH (kx, ky, kz )T −1
x = H (−kx, ky, kz ), (A1)

TyH (kx, ky, kz )T −1
y = H (kx,−ky, kz ), (A2)

where Tx = τ0σzT , Ty = T and T represents for transposi-
tion. The symmetry Tx (or Ty) relates the (100)/(1̄00) (or
(010)/(01̄0)) surfaces to each other and rules out the skin
effect along x (or y) direction. To visualize this, we plot the
energy spectra along each momentum direction, while keep
the other two momenta fixed. As depicted below in Figs. 4(a)
and 4(b), the spectra by varying kx or ky trace open arcs on
the complex plane, indicating the absence of skin modes once
the open boundary along the x or y direction is taken. The
spectra by varying kz form closed loops. For an open z bound-
ary, the extended modes under periodic boundary conditions
would collapse into skin mode [47–49]. Further, the presence
or absence of skin modes under open boundary can be ver-
ified from the 1D winding number along the correspondin
g momentum direction. Due to the above NH time-reversal
symmetry, W1x(Ep) = W1y(Ep) = 0, while W1z(Ep) can be
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nonzero when the reference energy Ep is suitably chosen [see
Fig. 4(c)].

APPENDIX B: CHIRAL LANDAU LEVELS
WITH AN APPLIED MAGNETIC FIELD

In the presence of a background magnetic field (for neutral
atoms, the magnetic field can be mimicked utilizing the syn-
thetic gauge field technique), the Weyl Hamiltonian coupled
to a gauge field is obtained through replacing k → k − eA.
For a magnetic field along y direction, we take the gauge
potential A = (0, 0,−Bx). The low-energy Hamiltonian near
the two WPs with opposite charge ±1 (or chirality) reads
(h̄ = c = 1)

H±(B) = kxsx + kysy ± (kz + eBx ± bz )sz + iγ±s0. (B1)

We take the +1 Weyl node with imaginary energy γ+ as an
example. Squaring the Hamiltonian yields

[H+(B) − iγ+s0]2 = k2
y + k2

x + (kz + eBx + bz )2 − eBsy.

(B2)

Note the motion in the xz plane (perpendicular to B) is exactly
described by the quantum harmonic oscillator, except with
the minimum of the potential shifted in coordinate space. The
Landau quantization in the xz plane leads to the familiar levels

(E+ − iγ+)2 = eB(2n + 1) + k2
y − eBsy (n = 0, 1, 2, ...),

(B3)

each with degeneracy D = eBLxLz

2π
. The last term (Zeemann

splitting) depends on the spin polarization along the magnetic-
field direction. When sy = +1 and n = 0, we get the zeroth
Landau level in the main text with linear dispersion,

E0+ = ky + iγ+, (B4)

while for n � 1, The n-th states of sy = −1 are degenerate
with the (n + 1)-th states of sy = +1. They together constitute
the higher Landau levels in the main text, with dispersion

En+ = ±
√

k2
y + 2eBn + iγ+ (n � 1). (B5)

It is worth mentioning only the zeroth Landau level has def-
inite spin polarization along the magnetic field; while the
higher Landau levels are constituted of both polarization com-
ponents, with degeneracy 2D. Similarly, for the −1 Weyl node
with imaginary energy γ−, the zeroth Landau level has spin
polarization sy = −1 and dispersion

E0− = −ky + iγ−. (B6)

APPENDIX C: DYNAMICAL CHARGE PUMPING
WITH IMAGINARY LANDAU LEVELS

We start from the zeroth Landau levels, which are chiral
and possess different dissipation rates as depicted in Fig. 5.
The chiral Landau levels that emerge under a magnetic field
produce a time-dependent parallel current. To see this, we
calculate the amount of charge pumped over time lapse T .
We suppose the system at t = 0 fills all the Landau levels
(i.e., Dirac sea) of Re(E ) < 0 and denote the initial state as

FIG. 5. Schematics of the zeroth Landau levels with linear dis-
persions along ky. The right-moving (red) and left-moving (blue)
fermions have imaginary energy iγ+ and iγ−, respectively. 
 is the
momentum cutoff. At time t = 0, all the Re(E ) levels are filled
(solid dots).

|�0〉. The subsequent time evolution |�(t )〉 = e−iHt |�0〉 is
nonunitary and governed by the density matrix

ρ(t ) = |�(t )〉〈�(t )|
=

∑
m,n

e−i(En−E∗
m )t |φn〉〈φn|�0〉〈�0|φm〉〈φm|, (C1)

where |φn〉 denotes the eigenfunction of the corresponding
Landau level. We set the momentum cutoff as 
. The time-
dependent current along the magnetic field is then

j(t ) =
∫ 


−


dky

2π
Tr[ρ(t )∂ky H]. (C2)

Here ∂ky H is the particle velocity along the magnetic field.
The 1

2π
factor is the density of states. As the higher Landau

levels are symmetric with respect to the ky axis, only the chiral
Landau levels contribute to the current. The time-dependent
current is simply given by

j(t ) = 
D

2π
[e2γ+t − e2γ−t ]. (C3)

We can clearly see j(t ) is the net current coming from both the
left and right movers. The total pumped charge during time
T is

Q
(T ) =
∫ T

0
dt j(t ) = 
D

4π

[
e2γ+T − 1

γ+
− e2γ−T − 1

γ−

]
.

(C4)

In the following, we provide a field-theory perspective
of the dynamical current. The dynamical charge pumping is
due to interplay of non-Hermiticity and the chiral Landau
levels. We restrict to the zeroth Landau levels with oppo-
site chirality and denote the corresponding field operator
describing the chiral fermions as χ (t, y). In this notation,
we have incorporated the (x, z) dependence into χ (t, y). The
effective (1 + 1)D action describing the two chiral landau
levels is

S =
∫

dtdy iχ̄ (t, y)

[
∂/− γ+ − γ−

2
γ 1 − γ+ + γ−

2
γ 0

]
χ (t, y).

(C5)
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Here we have utilized the notation of gamma matrices as γ 0 =
σx, γ 1 = −iσy and γ 5 = γ 0γ 1 = σz, which obey the Clifford
algebra {γ μ, γ ν} = 2gμν in signature (1,−1).

The field χ (t, y) can be decomposed into two chiral
components χ±(t, y) = 1

2 (1 ± γ 5)χ (t, y), corresponding to
different eigenvalues of γ 5. In terms of χ±(t, y), the action
reads

S =
∫

dtdy i[χ†
+(t, y)(∂t + ∂y − γ+)χ+(t, y)

+χ
†
−(t, y)(∂t − ∂y − γ−)χ−(t, y)]. (C6)

Without the dissipation terms, the action Eq. (C5) has both
the charge and chiral U(1) symmetry, indicating the con-
servation of gauge current jμ = χ̄γ μχ and chiral current
jμ5 = χ̄γ μγ 5χ in classical level. In terms of the two chiral
components, j0 = χ

†
+χ+ + χ

†
−χ− ≡ N+ + N− measures the

total density of right- and left-moving fermions and j1 =
χ

†
+χ+ − χ

†
−χ− ≡ N+ − N− measures their density difference

(or current). Vice versa for jμ5 , j0
5 = N+ − N− and j0

5 = N+ +
N−, respectively, measures their density difference and total
density. The existence of the dissipation terms breaks both
symmetries, leading to the nonconservation for both the left-
and right-movers.

The equation of motion extracted from action Eq. (C5) is

∂/χ −
[
γ+ + γ−

2
γ 0 + γ+ − γ−

2
γ 1

]
χ = 0. (C7)

The solutions are given by

χ+(t, y) = (t − y)eγ+t , χ−(t, y) = (t + y)eγ−t . (C8)

We can clearly see their physical meaning: χ± represents
the right/left-moving fermions with damping rate γ±, respec-
tively. The fermion density operator satisfies the following
damping relation:

∂t N+ = 2γ+N+, ∂t N− = 2γ−N−. (C9)

The fermion density of the right and left movers are then
N+(t ) ∝ e2γ+t and N−(t ) ∝ e2γ−t . As the two chiral compo-
nents move in opposite directions (y and −y), their density
difference j1(t ) = j0

5 (t ) = N+(t ) − N−(t ) induces a net cur-
rent proportional to (e2γ+t − e2γ−t ) along the magnetic field,
which coincides with the previous density-matrix calcula-
tions.

It is worth mentioning the case when an additional electric
field E parallel to magnetic field B is applied. As is well-
known in quantum field theory, the electric field would induce
the chiral anomaly, which breaks the chiral symmetry in the
quantum level. The chiral anomaly shifts the density of right
and left movers by ± eE

2π
, respectively. Taking into account this

effect, we arrive at the following relation:

∂t N± = ±e2EB

4π2
+ 2γ±N±. (C10)

The solutions are given by

N±(t ) =
(

N0± ± e2EB

8π2γ±

)
e2γ±t ∓ e2EB

8π2γ±
. (C11)

Here N0,± is the initial fermion density for the right (+)
and left (−) movers, respectively. For the initial configuration

FIG. 6. Complex Fermi arcs and skin effect at open surfaces.
(a) Energy spectra for a point-gap WSM with two open surfaces
(see the pink surface in inset) normal to the x direction, separated by
distance Lx = 25. The colors indicate the inverse participation ratio
(IPR) that measures the localization of eigenstates. The in-gap modes
consist of Fermi arcs to fill the entire point gap. (b) Same as (a) but
for open surfaces normal to the [101̄] direction with L[101̄] = 25.
The IPR shows skin effect, i.e., an extensive number of continuum
modes (outside the point gap) become localized near the surfaces.
The parameters are b = 0.9, δ = 0.2, γ = −0.5, m = 3.1.

depicted in Fig. 5 with momentum cutoff 
, N0± = 
D
2π

. It is
easy to see:

Case (i): When γ+ = γ− = 0, i.e., no dissipation for both
the left and right movers, ∂t j0 = 0, ∂t j1 = e2EB

2π2 , which returns
to the well-known chiral anomaly. The total particle density is
conserved; however, the chiral density is not conserved.

Case (ii): When γ+ = γ− �= 0, i.e., the left and right
movers have the same dissipation rate, j1(t ) = e2EB

4π2γ+
(e2γ+t −

1). When the electric field E = 0, the net current is zero.
Case (iii): When γ+ �= γ− �= 0 and E = 0, i.e., without the

electric field, j1(t ) = 
D
2π

(e2γ+t − e2γ−t ), which is consistent
with the previous density-matrix discussions. Even without
electric field, a time-dependent current is induced due to the
dynamical imbalance between left and right movers.

Case (iv): When t is very large, the competition between
the NH dissipation and electric-field driving is balanced, and
we arrive at the steady-state solution: N±(t → ∞) = ∓ e2EB

8π2γ±
.

APPENDIX D: ANISOTROPIC SURFACE FERMI ARCS

The bulk-boundary correspondence in point-gap WSM is
more complicated than the Hermitian case. This is partly
due to the appearance of skin modes, which depends on the
orientation of the surfaces. We first focus on one of the key
signatures of WSM, Fermi arcs on open surfaces. Figure 6(a)
shows the spectra for open boundaries at x = 1, L (the pink
surface parallel to the Weyl node separation in the inset)
obtained from numerical solution of the lattice model. Owing
to the point-gap invariant W3(Ep) = 1, surface modes emerge
inside the point gap. Here, for clarity, only the spectra of a
few dozen discrete values of transverse momenta k‖ = (ky, kz )
are shown. The surface modes become close packed to fill the
entire point gap region if all k‖ are included. Consider, for ex-
ample, the zero-energy surface states at ky,z = 0, whose wave
functions can be found analytically. (The solution is provided
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at the end of this section.) The complex energy spectrum for
small values of ky,z is given by

Es(k‖) ∝ ±ky + iαkz, (D1)

where ± is for the surface at x = 1 and L, respectively, and
α depends on system parameters. At zero chemical poten-
tial, μ = ReEs = 0, the surface modes disperses as Es ∝ ikz

and form a continuum with varying ImEs for kz ∈ [−bz, bz]
to connect the two WPs, i.e., a complex Fermi arc. Fermi
arcs for other values of μ are obtained similarly by solv-
ing ReEs(k‖) = μ. The in-gap modes can be viewed as a
collection of Fermi arcs. Remarkably, together they form a
single-sheet handkerchief on the complex E plane, covering
the hole of the point gap area exactly once (recall W3 = 1 in
our model). More generally, one can prove that the complex
Fermi arcs cover the point-gap area W3(Ep) times [70].

In comparison, Fig. 6(b) depicts the spectra for the
(101̄)/(1̄01) open surfaces perpendicular to the diagonal x̂ −
ẑ. The false color represents the inverse participation ratio
(IPR) that measures the wave function localization

IPR[|ψ〉] =
∑

j

|〈 j|ψ〉|4. (D2)

Here j labels the lattice layers along x̂ − ẑ, and a high IPR
value indicates the localization of wave function |ψ〉 near the

two open surfaces. While the complex Fermi arcs fill the point
gap, certain states with energies belonging to the continuum
bulk bands have appreciable IPR, i.e., they are pushed from
the bulk to localize near the surfaces. This is an example
of NH skin effect and it can be understood by analyzing
h1D(kl ) with l̂ = x̂ − ẑ. Skin effect occurs whenever the spec-
tral windings along l̂ , as defined in Eq. (4), are nonzero. We
can check that wl (Ep) is indeed finite for certain Ep outside
the point-gap region, in agreement with Fig. 6(b). Note the
skin effect depends on the orientation of the open surface. For
the x-open boundary shown in Fig. 6(a), all the continuum
states remain extended. Skin effect is absent in this case be-
cause spectral windings along the x and y direction vanish,
wx = wy = 0.

1. Solution of the surface states Eq. (D1)

For the lattice Hamiltonian Hk [see Eq. (2) in the main
text], when the x direction is open, ky and kz are good quantum
numbers and surface states emerge inside the point gap. We
first consider the special case with ky = kz = 0. The surface
states can be either on the (100) or (1̄00) surfaces. To pro-
ceed, we rewrite the tight-binding form of Hamiltonian Hk
along x direction (the constant NH term iγ τ0σ0 is dropped
off):

Hx−open =
∑

c†
x+1

τzσ0 + iτxσx

2
cx + c†

x−1

τzσ0 − iτxσx

2
cx + c†

x [(2 − m)τzσ0 + bτ0σz + iδτxσ0]cx. (D3)

Here cx denotes the annihilation operator for the xth lattice
site. Suppose there are L unit cells along x direction. We
take the trial wave function for the (1̄00) surface state (i.e.,
localized at x = 1) as

|χ1̄00〉 =
∑

x

βx
1 |x〉|φ1〉, (D4)

where |φ1〉 is the spinor part and |β1| < 1. At site x, the Harper
equation is (�0 = τzσ0)

�0

[
1 − τyσx

2
β−1

1 + 1 + τyσx

2
β1 + (2 − m + bτzσz − δτyσ0)

]
|φ1〉 = 0, (D5)

In the above equation, we have assumed the surface-state
energy to be zero, which will be validated at the end of the
discussion. The b term and δ term in parentheses commute
with τyσx. The eigenstates of τyσx with eigenvalue +1 are

|+1〉 = (−i, 0, 0, 1)T

√
2

, |+2〉= (0,−i, 1, 0)T

√
2

. (D6)

The eigenstates of τyσx with eigenvalue −1 are

|−1〉 = (i, 0, 0, 1)T

√
2

, |−2〉 = (0, i, 1, 0)T

√
2

. (D7)

It is easy to see from Eq. (D5) that | + 1〉 and | + 2〉 can be
taken as the basis of the (1̄00) surface states. We assume the
spinor part of the solution to be

|φ1〉 = p1| + 1〉 + p2| + 2〉. (D8)

Combing the normalization condition |p1|2 + |p2|2 = 1, we
set p1 = cos θ , p2 = sin θeiφ ; the Harper equation reduces to
following complex equations

(β1 − m + 2 + b) cos θ − δ sin θeiφ = 0,

−δ cos θ + (β1 − m + 2 − b) sin θeiφ = 0. (D9)

The solutions are given by β1 = −√
δ2 + b2 + m − 2

(note |β1| < 1 is required for the (1̄00) surface), θ =
arctan β1−m+2+b

δ
, and φ = 0. For the (100) surface, we take

the trial wave function as

|χ100〉 =
∑

x

βL−x
2 |x〉|φ2〉, (D10)

where |φ2〉 denotes the spinor part. |−1〉 and |−2〉 can be taken
as the basis of the (100) surface states. A similar procedure
yields the solution of the Harper equation. To summarize,
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we have the following surface states solutions (neglecting the
total normalization factor):

|χ1̄00〉 ∼
∑

x

βx|x〉[cos θ | + 1〉 + sin θ | + 2〉], (D11)

|χ100〉 ∼
∑

x

βL−x|x〉[cos θ | − 1〉 − sin θ | − 2〉]. (D12)

Now we are ready to work out the surface states of a
finite-size system along the x direction. For a finite x layer,
the top and bottom surface states couple together. The surface
modes should be the superposition of both |χ1̄00〉 and |χ100〉
and simultaneously localized on both x = 1 and x = L. It is
easy to calculate the finite-layer coupling:

〈χ100|Hx−open|χ100〉 = 〈|χ1̄00|Hx−open|χ1̄00〉 = 0,

〈χ100|Hx−open|χ1̄00〉 = 〈|χ1̄00|Hx−open|χ100〉
∼ βL[−b − (2 − m)]. (D13)

The small off-diagonal term (scaling as βL) will pin the sur-
face state to be the superposition of |χ100〉 and |χ1̄00〉 as

|χ±〉 = |χ100〉 ± |χ1̄00〉√
2

. (D14)

In the following, we consider the effect of nonzero
but small ky, kz terms. To be concise, we only consider
the spinor part and neglect the total normalization fac-
tor of |χ1̄00〉 and |χ100〉. For the ky term, we have the
following relations: 〈+1|τxσy| + 1〉 = −〈+2|τxσy| + 2〉 =

−〈−1|τxσy| − 1〉 = 〈−2|τxσy| − 2〉 = 1 and other terms are
zero. Hence 〈χ1̄00|τxσy|χ1̄00〉 = −〈χ100|τxσy|χ100〉 = cos 2θ ,
and 〈χ1̄00|τxσy|χ100〉 = 〈χ100|τxσy|χ1̄00〉 = 0. In the surface-
state subspace spanned by |χ1̄00〉 and |χ100〉, the ky term yields
an energy splitting proportional to ± cos 2θky, which would
pin the surface states to be localized at one single surface.

For the kz term, 〈+1|τxσz| + 2〉 = −〈+2|τxσz| + 1〉 =
−〈−1|τxσz| − 2〉 = 〈−2|τxσz| − 1〉 = i and all other terms
are zero. Unlike the ky term which is diagonal in the basis,
the kz term is nondiagonal. |χ1̄00〉 and |χ100〉 are not the eigen-
vectors of the new Hamiltonian when a nonzero kz term is
included. To extract the effect of kz term, we first solve the
following Harper equation without NH δ term:

�0

[
1 − τyσx

2
β−1

1 + 1 + τyσx

2
β1

+ (1 + cos kz − m + bτzσz + i sin kzτyσz )

]
|φ1〉 = 0.

(D15)

Following the same procedure before, we solve the zero-
energy surface states of this Hermitian topological insulator.
As {τyσz, τyσx} = 0, the τyσz term would mix the ± subspace
of τyσx: τyσz| + 1〉 = | − 2〉; τyσz| + 2〉 = −| − 1〉; τyσz| −
1〉 = −| + 2〉; τyσz| − 2〉 = | + 1〉. We set the trivial spinor
wave function for the (1̄00) surface to be

|φH1〉 = cos θH | + 1〉 + sin θH eiφH | − 2〉. (D16)

Solving the Harper equation yields (m′ = 1 + cos kz − m)

βH1 = −1 + b2 − sin2 kz − m′2 −
√

4(b2 − m′2) + (1 − b2 + sin2 kz + m′2)2

2(m′ − b)
,

θH = − arctan
sin kz

β−1
H1 + m′ + b

,

φH = −π

2
. (D17)

Similarly, we can solve the spinor wave function for the (100)
surface. The solutions are listed as below:

|φH1〉 = cos θH | + 1〉 − i sin θH | − 2〉, (D18)

|φH2〉 = cos θH | − 1〉 + i sin θH | + 2〉. (D19)

Now let us consider the effect of NH δ term on the
basis |φH1,2〉: 〈φH1|iτxσ0|φH1〉 = 〈φH2|iτxσ0|φH2〉 = i sin 2θH

and 〈φH1|iτxσ0|φH2〉 = 〈φH2|iτxσ0|φH1〉 = 0. These relations
mean that the NH δ term induces an equal energy shift for both
surface states. When kz is nonzero but small, θH ∝ kz, and the
energy shift for the surface states is ∝ ikz. In Eq. (D5), we
have implicitly taken the surface-state energy to be zero for
a finite NH δ term. Note that when kz = 0, θH = 0, hence
the NH term does not change the surface-state energy for
kz = 0.

APPENDIX E: ENERGY SPECTRA AND WAVE-PACKET
DYNAMICS ALONG z WIRE

In the main text, we have considered the energy spectra
under [101]-wire and the corresponding wave-packet dynam-
ics. Here, as a comparison, we investigate energy spectra and
wave-packet motion along the z wire and show the anisotropic
nature of NH WSM. The spectrum of a z wire with open
x, y boundaries is shown in Fig. 7(a) in blue for a particular
kz. Boundary modes with energies inside the point gap are
revealed by comparing to the continuum spectrum (in purple,
overlaid by blue) obtained by assuming periodic boundary
conditions in both the x and y directions. The spatial distribu-
tion ρ of the in-gap modes in Fig. 7(b) clearly shows that they
reside along the four edges. Here ρ is the probability at each
site (i, j), ρ(i, j) = ∑

n |ψn(i, j)|2/ρmax, with ρmax the maxi-
mum value of ρ(i, j) and n labeling the in-gap modes shown
in Fig. 7(a). For a given kz, the 2D Hamiltonian H2D(kx, ky) de-
scribes a NH Chern insulator. The appearance of edge modes
can be predicted from the Chern number C(kz ). Skin effect
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FIG. 7. Energy spectra and wave-packet dynamics along z wire. (a) Energy spectra for a wire extending along z with open (in blue) versus
periodic (in purple) boundary conditions in the x, y directions, showing the emergence of in-gap edge modes for open boundaries. The inset
illustrates the z wire with its cross-section boundaries indicated by red lines. The lattice momentum along the wire (red arrow) is chosen as
kz = −0.5. (b) Total probability distribution ρ of the in-gap modes, which confirms that they are localized at the edge of the cross section.
The middle inset show the total probability distribution of all other modes, and there is no sign of skin effect. (c) The time evolution of a
wave packet initially localized at site (1,13) with momentum kz = −0.5. It undergoes chiral motion along the edges of the cross section that
measures 25 × 25 [91]. The wave packet has width W 2

1 = 2, W 2
2 = 6. The spinor wave function is set as |ξ0〉 = (1, i, 0, 0)T . Other parameters

are the same as Fig. 1.

is absent in this geometry: The total probability distribution
of the continuum (as opposed to in-gap) modes shown in the
middle inset of Fig. 7(b) is almost a constant, in accordance
with wx = wy = 0. Here ρ(i, j) is defined similarly, with n
summed over all continuum modes. Recently, it was argued
that NH skin effect is universal: It occurs whenever the energy
spectra of a 2D or 3D system take up a finite area on the com-
plex energy plane [60]. In point-gap WSM, the bulk spectra
unavoidably occupy a finite area due to the splitting of WPs
along the imaginary axis. One can check that skin modes do
appear for other (e.g., diamond shaped, not shown) geometries
of the z-wire cross section. Such geometry-dependent skin
effect is typical of many 2D and 3D NH systems.

Figure 7(c) depicts the time evolution of a wave packet
initially localized at the left edge of a z wire. It moves counter-
clockwise along the edges (see animation in Ref. [91]). This
unambiguously demonstrates the edge modes [see Fig. 7(b)]
are chiral. This is because the cross section of the z wire, as a
2D system for fixed kz, can be regarded as a Chern insulator.

APPENDIX F: POSSIBLE REALIZATION IN MICRO-RING
RESONATORS AND CONDENSED MATTER MATERIALS

The lattice model -see Eq. (2) in the main text] can be
realized using coupled micro-ring resonators. Let us rewrite
the Hamiltonian Eq. (2) in a new basis: τx → τz, τz → −τx;
σx → σz, σz → −σx, which corresponds to a unitary trans-
formation U = ei π

4 τyσ0 ei π
4 τ0σy . In the new basis, the imaginary

terms are on-site lossy terms, and the lattice model reads

Hk = sin kxτzσz + sin kyτzσy − sin kzτzσx

− (cos kx + cos ky + cos kz − m)τxσ0 − bτ0σx

+ iδτzσ0 + iγ τ0σ0. (F1)

We consider a 3D cubic lattice formed by ring resonators,
as depicted in Fig. 8(a). Each unit cell consists of four
ring resonators (denoted by different colors and numbered
1,2,3,4) to mimic the 2 × 2 orbital and spin degrees of free-
dom. In our notation, the τz = 1 subspace corresponds to
{1, 2} sites; τz = −1 subspace corresponds to {3, 4} sites.
σz = +1 subspace corresponds to {1, 3} sites; σz = −1 sub-
space corresponds to {2, 4} sites. The resonators have the

same resonant frequency and different loss rates, denoted as
γ1,2,3,4, respectively. For our case, we set γ1 = γ2 �= γ3 = γ4.
The Hamiltonian Eq. (F1) contains both intercell and intracell
couplings. The key ingredient implementing the couplings
between two resonators is the intermediate connecting ring
[87,88] as depicted in Fig. 8(b). The corresponding Hamilto-
nian describing the couplings of the two resonators (labeled L
and R) takes the following form:

−κa†
RaLei2πϕ − κa†

LaRe−i2πϕ, (F2)

where aL/R represents the annihilation operator of optical
modes in the left/right resonator. κ is the coupling rate and
can be tuned by the overlapping between waveguide modes.
4πϕ is the propagating phase difference inside the connecting
ring, coming from the different lengths of the upper and lower
branches. The phase ϕ can be adjusted through, e.g., changing
the length (or the refraction index) of the connecting waveg-
uides [87,88].

Through the intermediate waveguide, all terms in Hamilto-
nian Eq. (F1) can be realized. For the intercell couplings, we
take sin kxτzσz term as an example. Similar discussions apply

FIG. 8. Experimental implementation of the lattice Hamiltonian
using coupled arrays of microring resonators. (a) Cubic lattice
formed by the microring resonators. Each unit cell contains four
sites, denoted by 1 (green), 2 (blue), 3 (purple), 4 (red), with loss rate
γ1,2,3,4, respectively. For each resonator, only the counter-clockwise
(or clockwise) propagating modes are considered. (b) Schematics of
the coupling between two resonators (denoted as L and R) through
an intermediate waveguide (gray). Due to the different lengths of the
upper and lower branch, a phase difference 4πϕ is induced.
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to the other terms. We rewrite this term in real space:

∑
r

− i

2
[a†

1(x + 1, y, z)a1(x, y, z) − a†
1(x, y, z)a1(x + 1, y, z)]

+ i

2
[a†

2(x + 1, y, z)a2(x, y, z) − a†
2(x, y, z)a2(x + 1, y, z)]

+ i

2
[a†

3(x + 1, y, z)a3(x, y, z) − a†
3(x, y, z)a3(x + 1, y, z)]

− i

2
[a†

4(x + 1, y, z)a4(x, y, z) − a†
4(x, y, z)a4(x + 1, y, z)].

(F3)

Here the summation is over the unit cells r = (x, y, z). The
subscript labels the lattice site inside each unit cell. For ex-
ample, the first term represents the coupling between site-1
[green color in Fig 8(a)] at nearest unit cells along the x
direction. It is easy to see from Eq. (F2) that this term can
be reproduced by setting ϕ = 1

4 . Similarly, we can reproduce
the other three terms by simply adjusting the phase difference
of the intermediate waveguides as ϕ = − 1

4 , − 1
4 , and 1

4 , re-
spectively. For the intracell coupling term, we take the −bτ0σx

term as an example. In real space, this term is expanded as
∑

r

−b[a†
1(x, y, z)a2(x, y, z) + a†

2(x, y, z)a1(x, y, z)]

− b[a†
3(x, y, z)a4(x, y, z) + a†

4(x, y, z)a3(x, y, z)]. (F4)

To realize this term, we can set the phase difference of the
intermediate waveguide (connecting 1,2 or 3,4 inside the same
unit cell) as ϕ = 0.

In practice, the 3D configuration does not require arranging
the resonators on the cubic lattice. All one needs is to establish
the connectivity (coordinate number) of the resonators. Also,
it is worth mentioning that instead of coupling together mul-
tiple resonators to form a genuine 3D lattice, one can utilize
the so-called synthetic dimension [92–96], e.g., the equally
spaced resonant frequency, to effectively realize the 3D lattice
model on a 2D resonator array. The couplings between the
multiple resonances are implemented through external modu-
lation [97] and applying the external perturbation corresponds
to choosing the lattice coupling scheme and the gauge fields.

Besides microring resonators, the lattice model can also be
mimicked using electric circuits, where the NH Hamiltonians
can be simulated by the admittance matrix. In condensed mat-
ter materials, the NH dissipation terms can be implemented
either through a tailored orbital-dependent coupling with a
lossy mode or electron-phonon scattering [70]. For the case of
coupling to an additional f orbital, when the f electron has no
dispersion and sits close to the chemical potential, an effective
NH term of the form as in Eq. (2) dominates. In a recent work
on Kondo-WSM [24] (candidate material Ce3Bi4Pd3) which
contains strongly correlated localized f electrons and itinerant
conduction electrons in a zincblende lattice, DMFT studies
revealed that due to the breaking of inversion symmetry, the
quasiparticle lifetimes at different sublattices are distinct. For
the case of electron-phonon couplings, at low energies (on the
scale of the point gap, measured from the energy of the WPs),

the imaginary part of the electron self-energy is approximately
a constant but depends on momentum and hence differs at the
two WPs. Since Weyl materials typically have strong spin-
orbit coupling, the anisotropy (or momentum dependence) of
the lifetime is natural when there is a spin imbalance in the
bath to which the electrons are coupled, such as in magnetic
WSMs [98].

APPENDIX G: OBSERVATION OF
THE DYNAMICAL EFFECTS

As discussed in the main text, the dynamical charge pump-
ing effect comes from the two chiral Landau levels with
mismatched dissipation rates. The effective magnetic field
for photons is equivalent to the complex, position-dependent
coupling. For example, we can take the magnetic field B =
Bŷ along the y direction and its associated gauge potential
A = (0, 0, Bx). Through Peierls substitution k → k − eA, the
coupling along the z direction is replaced by an x-dependent
phase. In coupled-resonator settings, the effective magnetic
field can be fine-tuned as in Fig. 8(b) by adjusting the length
(or refraction index) of the connecting waveguides or by
dynamical modulating [97] the refraction index through an
electro-optic modulation on the ring resonator. To observe
the complex chiral Landau levels, a continuous-wave laser
light is injected into the resonator, with a tunable detun-
ing δω. The complex band structures can be extracted from
the momentum- and detuning-dependent transmission signal
s(k, δω) from the output port [96,99,100].

Taking the advantage that the system parameters, in partic-
ular, the dissipative terms, as well as their time-dependence
(e.g., sudden quench of model parameters) can be easily and
precisely controlled in photonic systems, it is promising to
implement quantum dynamics and experimentally observe
the dynamical effects induced by the NH band topology. In
contrast, in condensed matter materials, it is challenging to
implement quantum quench or wave-packet motion detection.
The topological features, including the surface Fermi arcs,
the chiral Landau levels, and the boundary-skin modes, may
be directly observed from the momentum-resolved spectrum
measurement. In microring resonators, the amplitude proba-
bility c(t ) = (cnx,ny,nz (t )) serves as the wave function. Here
n = (nx, ny, nz ) is the index of the lattice site. Its time evo-
lution explicitly reads

i
dc(t )

dt
= Hc(t ). (G1)

In the main text, we have discussed the wave-packet dynamics
for different system parameters and boundary conditions [see
Figs. 3(c) and 7(c)]. As the wave-packet motion depends on
the overlapping of the initial wave-packet with the eigenstates
of the Hamiltonian, it can reveal the existence of surface Fermi
arcs and boundary skin modes. These dynamical effects do not
depend on the fine-tuning of the system parameter to some
specific energies. For the dynamical charge pumping effect,
we can prepare a sequence of initial wave packets (with each
one localized mainly at one lattice site to mimic the trivial
ground state) and measure the time-dependent amplitude dis-
tributions.
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