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Instabilities of intrinsic thermoacoustic modes in a thermoacoustic waveguide
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A recent study [H. Hao and F. Semperlotti, Phys. Rev. B 104, 104303 (2021)] investigated the dynamic
behavior of an infinite one-dimensional (1D) thermoacoustic waveguide (TAWG) and illustrated its ability to
sustain nonreciprocal and near zero-index sound propagation behavior; these properties can be very beneficial
in the design of acoustic devices, including acoustic diodes, amplifiers, and cloaks. Nevertheless, it is critical
to realize that when this concept is implemented in a finite-length waveguide, dynamic instabilities may occur
and either drastically reduce or completely hinder the ability of the TAWG to control and manipulate sound.
In this paper, we uncover and investigate the occurrence of either evanescent or intrinsic thermoacoustic
(ITA) modes in a 1D TAWG with anechoic terminations. The stability analysis clearly distinguishes these
two types of evanescent modes and highlights their different origin rooted in either acoustic or thermoviscous
effects. Numerical results reveal that ITA modes in anechoic-terminated TAWG are strictly connected to the
acoustic-driven evanescent modes, and evolve towards unstable modes as the TA coupling strength is increased.
This study may have important implications for the practical design of novel acoustic manipulating devices
enabled by TA coupling elements. The conclusions drawn in this study may also shed lights on the effective
suppression of instabilities in TAWGs.
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I. INTRODUCTION

During the past couple of decades, acoustic metamateri-
als have seen a significant development motivated by their
unique abilities for sound manipulation [1–4]. Acoustic meta-
materials are artificial structures designed to achieve unique
effective properties and wave propagation capabilities such as,
for example, negative or zero index properties [5–7], asym-
metric transmission [8–10], anomalous refraction [11–13],
focusing [14–16], and cloaking [17–19]. More recently, the
application of acoustic metamaterials to achieve nonreciprocal
acoustic transmission has drawn significant attention [20,21].
In a conventional acoustic medium, the transmission between
two points (a source and a receiver) is unaltered upon ex-
changing the source and the receiver locations; in other terms
the transmission of sound satisfy the principle of reciprocity
[22]. However, this reciprocal behavior can be intentionally
broken by designing nonreciprocal waveguides. These uncon-
ventional acoustic devices have been shown to hold significant
potential for applications like medical imaging [23] and sur-
face acoustic wave devices [24,25], to name a few.

To date, several viable nonreciprocal acoustic devices
have been proposed. They exploited distinct physical princi-
ples, for example, biased fluid motion [26], spatio-temporal
modulation [27,28], strong nonlinearities [29–31], and topo-
logical acoustics [32,33]. Thermoacoustic (TA) coupling
can also serve as another approach to break the acoustic
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reciprocity. Experimental demonstrations of TA diodes [34]
and TA amplifiers [35] have shown the potential for nonre-
ciprocal propagation when using periodically distributed TA
coupling elements (also known as regenerators, or REGs)
in a one-dimensional (1D) waveguides. In these devices,
time-harmonic waves propagating in the direction of the in-
creasing temperature gradient (imposed by the REGs) are
amplified, while the counter-propagating component is atten-
uated. The nonreciprocal behavior of time-harmonic waves in
TA-coupled periodic waveguides has been successfully mod-
eled and explained via a complex band structure analysis in
[36]. The nonreciprocity emerging in the TAWG was also
interpreted in terms of a nonreciprocal Willis material. More
recently, Olivier et al. [37] provided a closed-form mathe-
matical representation of the nonreciprocity of thermoacoustic
amplifiers in the framework of nonreciprocal Willis coupling.

In existing studies concerning nonreciprocal TA devices
(e.g., the TA amplifier in [35] and the infinite TA waveguide
(TAWG) in [36]), time-harmonic oscillations were imposed so
that every particle in the device oscillates at a constant ampli-
tude. In these previous studies, the TA device consisted in a
periodic structure whose unit cell was made up of a REG. In
the complex band structure analysis [36], the time-harmonic
frequency was considered as the input variable to calculate
the corresponding complex wavenumber of the infinite waveg-
uide. The imaginary part of the wavenumber was indicative
of the spatial amplification or attenuation. In the experiments
reported in [35], alternatively, the finite TA amplifier was
terminated by acoustic sensors that were tuned to match the
impedance at the ends of the unit cell. Such termination should
not be conflated with a nonreflecting boundary condition.
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Instead, it created proper reflections as if the end unit cell was
connected to a neighboring unit cell, so that the characteristics
of the TA waves in this finite structure were identical to those
of TA Bloch waves in an infinite waveguide [36]. Such treat-
ment assured the time harmonic character of the TA waves.
However, from a practical perspective the intrinsic modes of
a finite TAWG (either if terminated by a passive boundary
condition, such as an anechoic termination [37], a sound hard
[38] or sound soft termination [39], or connected to an exter-
nal acoustic load [40–44]), can be dynamically unstable. The
unstable modes are associated with complex eigenfrequencies
[45], so that the time-harmonic response no longer takes place.
This instability arises from the TA coupling elements, which
also function as energy sources, actively pumping energy into
the waveguide. When TA instability occurs, the amplitude of
the particle oscillations in the TAWG grows with time, thus
hindering its capability of sound manipulation.

The existence of TA instabilities has been known for cen-
turies. Modern research of TA instability mainly focuses on
its occurrence in (1) thermoacoustic engines [38–41,46,47],
and (2) combustion systems [48–50]. The TA instability is
beneficial for an ecofriendly energy conversion in the former
case, but detrimental to the structural safety and core functions
of the combustion system in the latter case. Nevertheless,
the thermoacoustically unstable modes in both configurations
originate either from the acoustic standing [39,41,51,52] or
traveling eigenmodes [53–55] in the finite structures. In other
words, the intrinsic acoustic modes exist regardless of the TA
coupling, while the TA coupling elements (REGs in TA en-
gines, or flames in combustors) destabilize them. It was only
recently discovered in a study conducted on a combustion
system that when a flame is inserted in a hollow waveg-
uide terminated by sound absorbing materials (or equivalently
with anechoic boundary conditions), unstable TA modes can
still develop despite the large acoustic losses provided by
the terminations [56,57]. These unstable modes do not rely
on any acoustic feedback provided by the structure. Recall
that a straight hollow waveguide with anechoic terminations
does not support acoustic eigenmodes because the right (left)-
propagating wave is prohibited by the absorbing boundary
condition on the left (right) end. Given that this unstable
mode was originated by the interplay between the flame and
the pressure fluctuations inside the anechoically-terminated
waveguide, this mode was coined as the intrinsic thermoa-
coustic (ITA) mode. ITA is well distinguished by the well
understood unstable acoustic modes in the TA systems.

In this paper, we investigate a REG-based TAWG ter-
minated by anechoic boundary conditions. We show that
the abrupt cross-sectional area change at the REG’s ends
gives rise to acoustic evanescent (AE) modes with either
pure imaginary or complex eigenfrequency, referred to as
the “overdamped” and the “oscillatory evanescent” modes,
respectively. The thermoviscous effect in the REG channels
leads to the occurrence of additional overdamped evanes-
cent modes, dubbed thermoviscous evanescent (TVE) modes,
which have imaginary sound speed in the REG. These TVE
modes do not take place in an inviscid waveguide. With a
sufficiently strong TA coupling, the local temperature gra-
dients imposed along the REGs destabilize the AE modes,
represented by a complex eigenfrequency with a negative

imaginary part. The destabilized AE modes in a 1D waveguide
with anechoic terminations share significant resemblance with
the ITA modes observed in combustion systems, so they are
referred to as the ITA modes of the TAWG. The eigenvalue
analysis further shows that the onset of the TA instability is fa-
vored by either higher temperature gradients or by increasing
the numbers of unit cells. Time-dependent numerical results
further substantiate the existence of ITA modes.

From a general perspective, the instability associated with
ITA modes is considered harmful for the performance of
TAWGs (e.g., for those TAWGs designed to achieve nonre-
ciprocal transmission). This is due to the fact that the unstable
intrinsic modes may lead to large-amplitude resonances that
not only threaten the structural integrity of the system, but also
destroy its target functionalities. In this regard, ITA modes
mitigation becomes a critical need. On the other side, the
energetic nature of the ITA modes might also be leveraged
for the design of a novel type of TA engines (TAEs) that
could be more tunable and compact. Regardless of the specific
end application, it is vital to understand the mechanism of
the ITA modes, so to either conceive approaches to predict-
ing and mitigating these modes, or to facilitate the practical
implementation of the new-generation TAEs that can effec-
tively exploit them. This study reveals the existence and the
mechanisms that control the formation of ITA modes in a
finite TAWG with anechoic terminations. This configuration
is especially relevant to sound propagation in finite TAWGs
that are critical either for experimental validation [37] or for
practical implementation of this concept in real-world devices.
The theoretical understanding of ITA modes will also facil-
itate the synthesis of mitigation strategies to tame dynamic
instabilities in TAWGs, thus maximizing its performance un-
der practical operating conditions.

II. PROBLEM STATEMENT

The benchmark system explored in this study involves a
finite TAWG consisting of N unit cells, as shown in Fig. 1(a).
The TAWG is connected to a hollow waveguide and termi-
nated by an anechoic termination on each side. Each unit
cell, as outlined in the dashed box in Fig. 1(a), has length
L and consists of a regenerator (REG) of length ls located
at the cell center. The REG is a porous material, which
can be regarded as a stack of short parallel plates separated
by thin channels. When passing through these channels, the
low-frequency acoustic waves are subject to considerable
thermoviscous effects. To facilitate an effective TA coupling,
a spatial temperature gradient is imposed on the REG so to
elevate the temperature from ambient temperature Tc [blue
color in REG section in Fig. 1(a)] at one end to the hot
temperature Th (red) at the other end. The hot end of the
REG is connected to a thermal buffer tube (TBT), terminated
by a cold heat exchanger (CHX) that recovers the reference
ambient temperature Tc = Tref. Note that the TBT enables
the continuous temperature distribution along the unit cell,
as depicted in Fig. 1(b, bottom), while also acting as a local
scatterer due to the temperature variation from Tref.

We adopt the plane wave assumption for the wave prop-
agating in the hollow ducts other than the REG, considering
the fact that the hollow ducts are much wider than the REG
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FIG. 1. (a) Schematic of the N-unit finite TAWG with anechoic terminations. Each unit cell (outlined by the dashed box) consists of a REG
that facilitates the thermoacoustic coupling. The inset in the dashed box illustrates the width change at the cold end of the REG in the minimal
unit. (b) (Top) The minimal unit of one unit cell in the TAWG being modeled and (bottom) the mean temperature distribution along the unit
cell. A spatial temperature gradient is imposed on the REG.

channels so the thermoviscous effects near the duct walls are
negligible. This assumption becomes invalid for the waves
inside the REG channels due to the non-negligible thermovis-
cous effects. Instead, inside the REG channels, the acoustic
field is described by Rott’s thermoacoustic linear theory
[58,59],

d p

dx
= − ρ0

1 − fv
(iω)u, (1)

du

dx
= −1 + (γ − 1) fk

γ P0
(iω)p + gu, (2)

where

g = fk − fv
(1 − fv )(1 − Pr)

1

T0

dT0

dx
. (3)

u and p are first-order cross-sectionally averaged particle
velocity and pressure, respectively. Note that the harmonic
assumption exp(iωt ) is adopted here, where ω = ωr + iωi

denotes the complex eigenfrequency, whose real and imag-
inary parts indicate the angular frequency and the decay
rate of the acoustic oscillation, respectively. ρ0, P0, and T0

are zeroth-order (mean-state) density, pressure, and temper-
ature, respectively, in the frequency domain. γ and Pr are the
specific heat ratio and the Prandtl number, respectively. fk and
fv are complex thermoviscous functions expressed as

fv = tanh[(1 + i)(hs/2)
√

ω/2ν]

[(1 + i)(hs/2)
√

ω/2ν]
,

fk = tanh[(1 + i)(hs/2)
√

Prω/2ν]

[(1 + i)(hs/2)
√

Prω/2ν]
, (4)

where hs is the width of the REG cell, and ν is the dynamic
viscosity.

When the thermoviscous effects are negligible, that is when
fv = fk = 0, the Helmholtz equation that leads to plane-wave
solutions is recovered from Eqs. (1) and (2). Considering the
plane wave assumption for the wide hollow ducts (outside the
REG), as well as the fact that the REG channels are identical
to each other, the modeling is simplified by only calculating
the acoustic field in a minimal unit, including one REG chan-
nel [36,60]. The portion of the domain that is actually modeled
is marked by the dashed lines in Fig. 1(a) and highlighted in
one unit cell in Fig. 1(b, top). With this simplification, the
width ratio s of the acoustic passages is kept unchanged so
that s = hs/h = Mhs/H , where hs, h, and H are the width of
one REG channel, of the minimal unit representation of the

hollow duct, and of the hollow duct, respectively [Fig. 1(a)].
M is the total number of channels in each REG. The inset in
Fig. 1(a) shows the width change at the cold end of the REG
in the minimal unit.

Before analyzing the eigenmodes in the finite TAWG, we
highlight that the TAWG differs from an inviscid waveguide
in two main aspects: (i) the strong thermoviscous effects in the
thin REG channels, captured by the thermoviscous functions
fv and fk in Eqs. (1) and (2), and (ii) the spatial tempera-
ture gradient imposed on the REG, captured by the unique
thermoacoustic coupling term g [Eq. (3)]. In the following,
we show that the thermoviscous effects lead to two types
of evanescent modes: the acoustic evanescent (AE) modes
and the thermoviscous evanescent (TVE) modes. With a suf-
ficiently strong temperature gradient, the AE modes can be
excited and eventually become dynamically unstable modes.

III. EVANESCENT MODES IN THE TAWG
WITH ZERO TEMPERATURE GRADIENT

In this section, we first investigate a single-cell system
in order to understand the thermoviscous effect of the REG
on the eigenmodes. Then, we analyze a two-cell system that
allows considering intercell interactions. In both configura-
tions, the spatial temperature gradient is set to zero so that
we can isolate the contribution of the thermoviscous effect to
the eigenmodes of the TAWG. Consequently, the temperature-
dependent material properties become constant, that is
ν = μref/ρref , and ρ0 = ρref = P0/RgasTref , where ρref and
μref are density and viscosity of air at ambient temperature
Tref . The numerical values of ρref , μref , and Tref are given in
Table I. For a given eigenfrequency ω,Æ’ the thermoviscous
functions fv and fk are constant along the REG channel [see
Eq. (4)]. The thermoacoustic coupling term gu in Eq. (1)
becomes negligible due to the zero temperature gradient [see
Eq. (3)].

TABLE I. Geometrical and material parameters of the thermo-
viscous one-cell system.

L[m] hs[mm] s ls[m] P0[Pa]
0.5 0.96 5.714 0.015 101325

μref [Pa · s] Tref [K] ρref [kg/m3] Pr γ

1.98 × 10−5 300 1.2 0.72 1.4
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FIG. 2. The forward and backward propagating components p+

and p− of the pressure fields in each section of (a) an inviscid one-cell
system, (b) a thermoviscous one-cell system, and (c) a thermoviscous
two-cell system.

A. Evanescent modes in a one-cell system

Considering a one-cell system with anechoic terminations,
as shown in Fig. 2(a) or 2(b), the pressure fields in the range
of x < −ls/2 and x > ls/2 are expressed as

p =
{

p−
a eikx, x < −ls/2

p+
a e−ikx, x > ls/2

(5)

where p+
a and p−

a are the amplitudes of the right and left
propagating components in the connecting duct [Figs. 2(a)–
2(c)], k = ω/a0 is the wavenumber in the hollow duct, and
a0 = √

γ P0/ρ0 is the ambient sound speed of air.
Without losing generality, the pressure field in the REG

channel (−ls/2 < x < ls/2) is developed based on Eqs. (1)
and (2)

p = p+
s e−ikd x + p−

s eikd x (6)

where p+
s and p−

s are the amplitudes of the right and left
propagating components in the REG channel [Figs. 2(a)–
2(c)]. fd captures the joint effect of thermal and viscous
diffusion, mathematically represented by fk and fv . Both fk

and fv are non-negligible in thin channels when the thermal
penetration depth is comparable to the hydraulic radius of the
channel. This aspect has been well understood in the thermoa-
coustic community (see [58,59] for example). A nonunity fd

( fd �= 1) in the REG channel shifts the local wavenumber kd

via the parameter kd = fd k. fd is mathematically expressed
as

fd =
√

1 + (γ − 1) fk

1 − fv
. (7)

The subscript d denotes the diffusion effect inside the REG
channels. Clearly, fd depends on frequency via the terms fv
and fk [see Eq. (4)].

Applying the continuity of pressure p and flow rate U =
uh (u denotes transversely averaged particle velocity) at
x = −ls/2 and x = ls/2 yields(

s fd − 1

s fd + 1

)2

= exp[i(2 fdkls)]. (8)

The eigenfrequency ω can then be obtained from Eq. (8),
considering that both fd and k are dependent on ω. To de-
rive a closed-form solution, we first drop the thermoviscous

FIG. 3. (a) No wave type (neither propagating nor evanescent) is
allowed in a straight duct with anechoic terminations. [(b)–(d)] In
the presence of heterogeneities, which can be either in the form of
(b) an abrupt width change, (c) a section subject to strong thermovis-
cous coupling, or (d) a flame, transmitting modes become possible
since the heterogeneity allows counter-propagating waves on both
sides.

effect of the REG by imposing fv = fk = 0, or equivalently
fd = 1. In practice, this aspect can be achieved by removing
the short stack of plates inside the REG, so that the plane
wave assumption also holds in the minimal unit of the REG
section, as shown in Fig. 2(a). With this assumption, Eq. (8)
leads to

ω = a0

ls

[
ln

(
s + 1

|s − 1|
)

i + nπ

]
(9)

where n is an integer. The imaginary part of the
eigenfrequency is always positive [that is ωi =
a0/lsln[(s + 1)/|s − 1|] > 0] that, according to the exp(iωt )
notation, represents the evanescent modes. The time-decaying
characteristics of these evanescent modes is due to the large
acoustic loss provided by the two anechoic terminations.
Equation (9) reveals that in an inviscid system, the abrupt
width change at the ends of the REG give rise to evanescent
modes inside the waveguide with anechoic terminations.
Note that Eq. (9) does not hold if s = 1. However, when the
thermoviscous effect in the REG channels is included (i.e.,
fd �= 1), the evanescent mode can still exist even if s = 1
[see Eq. (8)]. Note that the effects of s and fd on the left
hand side of Eq. (8) are commutative. In either case, the
appearance of the eigenmode in an anechoically-terminated
waveguide relies on the presence of heterogeneity inside the
structure. This heterogeneity, in the form of either an abrupt
channel width change [Fig. 3(b)] or a local thermoviscous
effect [Fig. 3(c)], allows the waves on both sides to be
transmitted in opposite directions, so that both absorbing
boundary conditions are satisfied. Looking back at the
analogy with combustion systems with anechoic terminations
[56,57], the flame serves as the local heterogeneity in the
acoustic field that allows the appearance of the eigenmodes
[Fig. 3(d)]. These modes exist even if no acoustic feedback
is provided by the boundaries. Remember that when
this heterogeneity is absent in a straight duct, no wave
modes are allowed if the duct is terminated anechoically
[Fig. 3(a)].
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FIG. 4. The pressure p mode shape (in arbitrary units [a.u.]) of the lowest three acoustic evanescent (AE) modes, (a) AE1, (b) AE2, and
(c) AE3, corresponding to n = 1, n = 2, and n = 3, respectively, in Eq. (9). The shaded area represents the location of the REG.

Based on Eq. (9), the AE modes can be further categorized
into the overdamped evanescent (OdE) mode if n = 0, and the
oscillatory evanescent (OsE) modes if n �= 0. The OdE mode
has a pure imaginary eigenfrequency (ω = iωi), while the
OsE modes have complex eigenfrequencies (ω = ωr + iωi).
The effective wavenumber of the OsE modes is expressed as
Re[k] = Re[ω]/a0 = nπ/ls, which depends only on the REG
length. Figure 4 shows the OdE mode and the lowest two OsE
modes (n =1 and 2) of the inviscid one-cell system. These
three modes are labeled as AE1, AE2, and AE3, respectively.
Note that the AE modes are ordered in terms of the value
of ωr . The lowest AE mode [Fig. 4(a)] has the lowest ωr

(ωr = 0 in this case), or equivalently, the longest wavelength
(λ = Re[2π/k] → ∞).

We highlight that the configuration of a straight waveguide
coupled with a local expansion (REG) bears a strong resem-
blance with the classical setup of bound-state in continuum
(BIC) in acoustics [61]. However, the AE modes explored in
this paper should not be conflated with the BIC. The argument
supporting this conclusion is threefold. Firstly, direct evidence
can be found in Fig. 4 where the gray thin strip denotes the
location of the REGs. It is evident how the eigenmodes do
not localize in these regions. This is in direct contrast to the
essential feature of BIC where the eigenfunction should be
localized either around or within the scatterer, i.e., the REG.
Secondly, it is one of the most fundamental observations in
thermoacoustics that the distribution of pressure p along the
transverse direction of the unstable TA modes is uniform. That
is also one of the fundamental assumptions adopted in the
classical thermoacoustic theory [58], as well as in this study,
so p is only x dependent. Therefore, these AE modes belong to
the extended modes, while the localized BICs are either even
(but not constant) or odd functions along y [61,62]. Last but
not least, the system under investigation is an open system,
considering that the waveguide is terminated anechoically on
both ends. Observing the complex-valued eigenfrequencies of
the AE modes (Fig. 4) leads to the conclusion that they are
all leaky modes, in contrast to the trapped resonant modes in
open systems with purely real eigenfrequencies [63,64]. Ad-
ditionally, the exponential growth of eigenfunctions in space
(Fig. 4) is another key feature of nontrapped modes in open
systems [64].

With the initial understanding of the evanescent modes
in the inviscid one-cell system, we remove the inviscid as-
sumption and explore the thermoviscous effects ( fd �= 1) on
the eigenmodes. We first examine the OdE modes whose

eigenfrequencies are purely imaginary. Inserting ω = iωi into
Eq. (4) yields

fv = tan[(hs/2)
√

ωi/ν]

(hs/2)
√

ωi/ν
,

fk = tan[(hs/2)
√

Prωi/ν]

(hs/2)
√

Prωi/2ν
. (10)

Equation (10) suggests that the thermoviscous functions fv
and fk become purely real with an imaginary ω. As a result,
fd can be either real ( fd = fdr ) or imaginary ( fd = i fdi ) de-
pending on the sign of the expression under the root square
in Eq. (7). Figure 5(a) shows the value of fd as a function of
ωi. The numerical values of relevant parameters used for the
calculation are listed in Table I.

When fd is real ( fd = fdr ), Eq. (8) is recast as

TE1: ωi = a0

ls fdr

ln

(∣∣∣∣ s fdr + 1

s fdr − 1

∣∣∣∣
)

. (11)

Additional derivations may be found in Appendix. TE1 stands
for transcendental equation 1; both the left- and the right-
hand terms of the equation are plotted in Fig. 5(b) versus
frequency ω/2π (or, effectively, the unknown ω) to seek a
graphical solution to Eq. (11). Interestingly, the OdE mode
of the inviscid one-cell system [described by Eq. (9) (n = 0)]
can be recovered from Eq. (11) by eliminating the thermo-
viscous contribution, or equivalently, by imposing fd = fdr =
1. However, the OsE modes of the thermoviscous one-cell
system, associated with complex eigenfrequencies, cannot be
directly obtained from Eq. (9). Discussions about the OsE
modes will be developed later in this section. It is noteworthy
that Eq. (11) is obtained under the assumptions that (i) ω

is imaginary, and (ii) fd is real, so recovering Eq. (9) from
Eq. (11) is equivalent to intersecting the generic (thermo-
viscous) case with the special (inviscid) case. However, this
intersection does not exist for the condition of imaginary ω

and imaginary fd , which leads to another group of solutions
discussed in the following.

When fd is imaginary, or fd = i fdi , Eq. (8) gives rise to

TE2: ωi = a0

ls fdi

[2tan−1(s fdi ) + (n − 1)π ], n = 0, 1, 2, ...

(12)

More detailed derivations may be found in Appendix. Re-
markably, Eq. (12) leads to another set of solutions to Eq. (8),
which is unique to the thermoviscous configuration. Unlike
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FIG. 5. (a) The value of fd as a function of ωi. fd can take either
purely real (blue solid) or purely imaginary (red-dashed) values for
a given ωi. The right-hand side (RHS, solid) and left-hand side
(LHS, dashed) of (b) TE1 [Eq. (11)] and (c) TE2 [Eq. (12)] plotted
in log scale in the range of ωi where fd is real (white area) and
imaginary (gray-shaded area), respectively. The inset in (c) shows the
intersections of the LHS and RHS when n takes the value 1, 2, and
3. The three intersections are labeled as TVE1, TVE2, and TVE3,
respectively.

the solutions to Eq. (11), this set of solutions is not seen in
Eq. (9). Therefore, the OdE modes described specifically by
Eq. (12) are dubbed thermoviscous evanescent (TVE) modes.
Notably, the local wavenumber in the REG of the TVE modes
turns to a real quantity, i.e., kd = fd k = − fdiωi/a0 despite
that the eigenfrequency is imaginary. In this sense, tÆ’he local
sound speed in the REG, cd = ω/kd becomes an imaginary
quantity, indicative of the dissipation of motion in time (yet
no attenuation in space, reflected by a real kd ).

Figures 5(b) and 5(c) show the left-hand side (LHS) and
right-hand side (RHS) of Eqs. (11) and (12), respectively.
Both Eq. (11) and Eq. (12) are transcendental equations that
are not amenable to an analytical solution. Therefore, we

are going to adopt the graphical approach to solve for these
two equations by finding the intersections of the follow-
ing two functions: F (ωi ) = LHS and G(ωi ) = RHS, where
F (ωi ) and G(ωi ) are both functions of ωi [horizontal axis in
Figs. 5(b) and 5(c)], where the values of the two functions
are determined by inserting continuously varying ωi into the
expression of either the LHS or the RHS, and plotted along
the vertical axis. Two curves, generated by calculating the
values of LHS and RHS for varying ωi, can intersect at certain
points [Figs. 5(b) and 5(c)], which denote the solutions to
the transcendental equation. Note that for Eq. (12), different
selections of value n lead to distinct curves for the RHS. In
Figs. 5(b) and 5(c), the white (gray) area in Fig. 5 indicates
the frequency range where fd is real (imaginary), or equiva-
lently, where Eq. (11) [Eq. (12)] holds true. The solutions to
Eqs. (11) and (12) are obtained by a graphical method and
shown as the blue dots in Figs. 5(b) and 5(c), respectively.
Due to the periodic nature of the function fd [the tangent
function is periodic, see Eq. (10)], both equations have infinite
numbers of solutions. For practical considerations, we focus
on the evanescent modes that have the smallest ωi, which
represent the least stable modes because they are more likely
to be excited by thermoacoustic instabilities. Also interest-
ing is the fact that the solutions to Eq. (12) with distinct
values of n are extremely close to each other. The inset in
Fig. 5(c) shows the zoom-in details near the intersections
of the solid curves [RHS of Eq. (12) with n taking the
value 1, 2, and 3] with the dashed curve [LHS of Eq. (12)].
The inset clearly suggests that the (imaginary) eigenfre-
quency of these modes are indistinguishable up to a four-digit
precision.

The aggregation of these modes is due to the fact that
the solutions appear near the boundary of the gray area,
which is also where the value of fd approaches its singularity
[Fig. 5(a)]. As a result, a little perturbation of ωi can lead
to a drastic change of the value of fd . Near the singularity,
fd → ∞, so the LHS of Eq. (8), [(s fd − 1)/(s fd + 1)]2 ≈ 1.
Considering that ω = ω̃ii is a solution to Eq. (8), there exists
a small perturbation δω so that [2 fd (ω̃i + δω )k(ω̃i + δω )ls] =
[2 fd (ω̃i )k(ω̃i )ls + 2mπ ], where m is a nonzero integer. With
the perturbed value of ωi, Eq. (8) still holds with the value
of its LHS being almost unchanged (approximately equal to
1). Consequently, despite the hardly distinguishable eigenfre-
quencies of the TVE modes, their corresponding fd functions
(or, equivalently, local wavenumbers kd = fdω/a0) can differ
considerably. Figures 6(d) and 6(e) show the mode shapes of
the lowest three TVE modes, labeled as TVE1, TVE2, and
TVE3, respectively in Fig. 5(c). The difference in the local
wavelength kd of the three modes is clearly demonstrated. The
TVE modes are ordered in terms of the local wavelength of
the REG, λd = 2π/kd , so that the lowest TVE mode has the
longest λd . Remember kd is real for TVE modes, although
ω is imaginary. As shown in Figs. 6(d) and 6(e), the local
wavelength λd of the REG is 4ls, 2ls, and 4/3ls for the TVE1,
TVE2, and TVE3 modes, respectively.

Note that solutions to Eq. (12) are not found when n = 0.
According to the definition in Eq. (7), fdi > 0 when fd is an
imaginary function. As a result, the RHS of Eq. (12) will be
negative when n = 0, since 0 < tan−1(s fdi ) < π/2, thus not
intersecting with the positive LHS, ωi.
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FIG. 6. The mode shapes of [(a)–(c)] the lowest three acoustic evanescent (AE) modes, and [(d)–(e)] the lowest three thermoviscous
evanescent (TVE) modes. The eigenfrequencies ω of the OdE modes AE1, TVE1, TVE2, and TVE3 are graphically calculated from
Figs. 5(b) and 5(c). The eigenfrequencies of the OsE modes, AE2 and AE3, are calculated by numerically solving Eq. (13).

Now we proceed to obtain the OsE modes of the ther-
moviscous one-cell system. It is nontrivial (if even possible)
to achieve the closed-form counterpart of Eq. (9) when in
presence of the thermoviscous coupling and assuming that ω

is complex-valued with both real and imaginary parts being
nonzero (OsE modes). Alternatively, we rewrite Eq. (8) as

Log

[(
s fd − 1

s fd + 1

)2]
= i(2 fdkls − 2mπ ), m = 1, 2, 3, ...

(13)

where Log(z) indicates the natural logarithm of the com-
plex quantity z. Equation (13) can be solved numerically
with a nonlinear root-finding package (we used the fsolve
package in MATLAB). Note that the m = 0 case is not in-
cluded in Eq. (13), since it leads to the solutions of either
Eq. (11) or Eq. (12). In fact, Eq. (13) is mathematically
equivalent to Eq. (8). Such manipulation is merely performed
to facilitate the implementation of the nonlinear root-finding
algorithm. Therefore, imposing the inviscid assumption ( fd =
1) in Eq. (13) leads to Eq. (9) as well.

Figures 6(b) and 6(c) show the eigenfunctions (mode
shapes) of the OsE modes associated with the complex eigen-
frequencies, calculated from Eq. (13) when m = 1 and m = 2,
respectively. The mode shapes plotted in Figs. 6(a)–6(c) show
an evident resemblance with their counterparts of the inviscid
one-cell system, plotted in Fig. 4. Hence, the modes plotted
in Figs. 6(a)–6(c) are referred to as the acoustic evanescent
(AE) modes of the thermoviscous one-cell system: AE1, AE2,
and AE3, respectively. We highlight that only AE2, AE3 and
beyond are solutions to Eq. (13), while AE1, with purely
imaginary eigenfrequency, is the solution to Eq. (11). Re-
member that the AE modes exist in the waveguide whether

the thermoviscous effect takes place or not, while the TVE
modes do not appear in an inviscid system. Figure 6 further
suggests that the mode shapes are either even or odd, in terms
of their spatial symmetry. For example, AE1, AE3, and TVE2
are even, while AE2, TVE1, and TVE3 are odd. In fact, the
anechoic terminations on both sides require that the specific
impedance p/u in the duct on the right (left)-hand side of the
REG is equal to z0 (−z0), where z0 is the characteristic acous-
tic impedance of air. Hence, the specific impedance along the
one-cell waveguide has to be an odd function of the spatial
coordinate x, achieved by either an oddly distributed p with an
evenly distributed u, or an evenly distributed p with an oddly
distributed u.

B. Evanescent modes in a two-cell system

Following the analytical assessment of the evanescent
modes in a one-cell system, we investigate the modes in a
two-cell system, as sketched in Fig. 2(c), to understand the
effect of intercell interactions on the eigenmodes.

Considering the symmetry of the two-cell system, the pres-
sure field in the x > 0 range [see Fig. 2(c)] is expressed as

p =
⎧⎨
⎩

pr (e−ikx ± eikx ), 0 < x < lr/2
p+

s e−ikd x + p−
s eikd x, lr/2 < x < lr/2 + ls

p+
a e−ikx, x > lr/2 + ls.

(14)

where the ± sign is replaced by a + sign considering p is an
even distribution about x = 0, or equivalently, d p/dx|x=0 =
0. Instead, the − sign holds if p is an odd distribution about
x = 0, or equivalently, p|x=0 = 0. The continuity constraints
of pressure p and flow rates U at x = lr/2 and x = lr/2 + ls
give rise to

(
s fd − 1

s fd + 1

)(±(s fd − 1)exp[ik(lr/2)] + (s fd + 1)exp[−ik(lr/2)]

±(s fd + 1)exp[ik(lr/2)] + (s fd − 1)exp[−ik(lr/2)]

)
= exp[i(2 fdkls)]. (15)
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FIG. 7. The eigenfrequencies and mode shapes of [(a)–(d)] the lowest four AE modes, and [(e)–(h)] the lowest four TVE modes of the
two-cell system. The top and bottom rows plot the modes that are even and odd distributions of p, respectively.

According to Fig. 2(c) and Table I, the length of the con-
necting duct lr = L − ls = 0.485 [m]. Equation (15) is then
solved graphically for the OdE modes, and numerically
with a nonlinear root-finding package for the OsE modes,
respectively.

Figure 7 summarizes the eigenfrequencies and eigenmodes
of the lowest four AE modes [Figs. 7(a)–7(d)] and the low-
est four TVE modes [Figs. 7(e)–7(h)]. The top and bottom
rows show the even and odd symmetric modes of pressure p,
respectively. For a waveguide that consists of even number
of unit cells, e.g., N = 2, the TVE modes appear in pairs
for a given λd . For example, Figs. 7(e) and 7(f) plot the
even and the odd modes that have identical λd = 4ls, thus
labeled as TVE1e and TVE1o modes, respectively. The eigen-
frequencies of these two modes are hardly distinguishable
for practical considerations, and approximately equivalent to
the eigenfrequency of the TVE1 mode of the one-cell sys-
tem [see Fig. 6(d)]. By comparing Fig. 6 and Fig. 7, the
eigenfrequencies of the TVE modes are not altered signifi-
cantly by the intercell interaction, in that they are primarily
determined by the local wavelength λd of the thermoviscous
channel. However, the eigenfrequencies of the AE modes of
the two-cell system are considerably different from their coun-
terparts of the one-cell system. Comparing Figs. 7(a)–7(d)
with Figs. 6(a)–6(c), a significant difference in the frequency
ω and the wavelength λ of the OsE modes is observed.
In the two-cell system, the two thermoviscous channels are
connected by an inviscid duct [the section −ls/2 < x < ls/2
shown in Fig. 2(c)], so that they construct a resonating struc-
ture in which the forward and backward propagating waves
can interfere constructively to form a (time-decaying) stand-
ing wave pattern. Figure 7(b) shows the mode shape of the
lowest oscillatory AE mode, or AE2. Remember that AE1
is an OdE mode, shown in Fig. 6(a). The wavelength of the
AE2 mode is λ = 4(lr + 2ls), that is much larger than its
counterpart in the one-cell system [λ = 4ls, see Fig. 6(b)]. As
a result, the angular frequency, Re[ω] corresponding to this
mode is effectively reduced in the two-cell system. In fact,
with more unit cells connected to construct the waveguide,
the resonating structure becomes longer, which leads to the

reduction of the angular frequency in each mode that is higher
than AE1.

IV. INTRINSIC THERMOACOUSTIC MODES IN THE
TAWG WITH A NONZERO TEMPERATURE GRADIENT

In this section, we will explore the evolution of the evanes-
cent modes with an increasing temperature gradient applied
on the REG. The spatial temperature gradient, accompanied
by the thermoviscous effect in the REG channels, constructs
the complete thermoacoustic coupling, represented by the gu
term in Eq. (2).

With a spatially varying temperature distribution T0, the
thermoviscous functions fv and fk are no longer constant
along the REG channel for a given ω, since the dynamic
viscosity ν is temperature dependent [see Eq. (4)]. Therefore,
Eqs. (1) and (2) do not allow analytical solutions. Instead, we
conduct the analyses via the finite element method (FEM)
using the commercial software COMSOL Multiphysics. In
the FEM model, we numerically solve the 2D conservation
equations of continuity, momentum and energy for the REG
channels, from which the acoustic pressure p, the particle
velocity field u, and the perturbation temperature T can be
obtained. The boundaries of the REG channels are defined as
no-slip, isothermal walls [Fig. 1(b, top)] to enforce the ther-
moviscous diffusion in the channels. The acoustic pressure
field in the inviscid ducts that connect the REG channels is
obtained by solving the 2D Helmholtz equation. The temper-
ature profile T0 [Fig. 1(b, bottom)] is assigned as the base state
to each unit cell in the TAWG. The normal impedance at the
two ends of the TAWG is set to z0, so that no reflection is
allowed at the boundaries.

A. Eigenvalue analyses of the TAWG imposed
with a nonzero temperature gradient

To calculate the complex eigenfrequencies of the N-cell
TAWG, we conduct eigenvalue analyses, in which the hot-
end temperature Th of each cell [Fig. 1(b)] was input as
a variable that represents the strength of the TA coupling.
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FIG. 8. The eigenfrequency plots of the (a) two-cell (N = 2), (b) five-cell (N = 5), and (c) ten-cell (N = 10) TAWGs under varying hot
temperature Th imposed on the REGs. In (a)–(c), the horizontal and vertical axes denote the real and imaginary parts of the eigenfrequency
ω/(2π ) = ωr/(2π ) + iωi/(2π ), respectively. The pink shaded areas in (b) and (c) denote the unstable regions, where ωi < 0. The mode shapes
of (d) the ITA1 mode of the two-cell system, (e) the ITA1 mode of the five-cell system, and (f) the ITA2 mode of the five-cell system, at selected
values of Th. The gray-shaded areas in (d)–(f) indicate the locations of the REGs in each system. The mode shapes plotted in (d) and (e) are
normalized so that the pressure at the mid-point is p = 1 [a.u.]. The mode shapes in (f) are normalized by the maximal absolute value |p| of
each curve for easier visual comparison. The dots in (a)–(c) and the curves in (d)–(f) are colored by the value of Th (see the color bar).

Figures 8(a)–8(c) show the complex eigenfrequencies
ω/(2π ) = ωr/(2π ) + iωi/(2π ) of a two-cell (N = 2), five-
cell (N = 5), and ten-cell (N = 10) TAWG, respectively. The
horizontal and vertical axes represent the real and imaginary
parts of ω/(2π ), respectively. Th was continuously varied
from 300 [K] to 1200 [K] to generate Figs. 8(a)–8(c). In all
three cases, the modes with angular frequency in the selected
range ωr/(2π ) < 140 [Hz] are plotted.

In each case shown in Figs. 8(a)–8(c), a cluster of solutions
appears near (or on) the imaginary axis, despite of the varia-
tion of Th. The eigenfrequencies of these modes are dominated
by their positive imaginary parts. By inspecting their mode
shapes (not shown in Fig. 8), we observed that these modes
evolve from the TVE modes analyzed in Sec. III. Remember
when Th = Tref = 300 [K], the TAWG is equivalent to the
thermoviscous waveguide that were investigated in Sec. III.
When subject to a stronger TA coupling (higher Th), these
evanescent modes become more stable, which is represented
by an increasing ωi. Therefore, they are practically trivial,
since the time-decaying nature of these modes are not altered
by the TA coupling.

However, with the appearance of a non-negligible TA cou-
pling, a unique type of solutions appears that originates from
the AE modes. In the two-cell TAWG [N = 2, Fig. 8(a)], the
mode labeled with ITA1 that has a purely imaginary eigen-
frequency when Th = 300 [K] acquires an oscillatory motion
in time, represented by a nonzero ωr ; this behavior becomes
more pronounced as Th increases. By checking the evolution

of the mode shape with Th, shown in Fig. 8(d), we realize
that this mode is the AE1 mode of the two-cell system, when
Th = 300 [K]. For comparison purposes, we normalized all
the mode shapes in Fig. 8(d), so that the value of the pressure
eigenfunction at the midpoint of the TAWG is p = 1 [a.u.],
where a.u. denotes arbitrary units. These modes that appear
due to the TA coupling are therefore referred to as the intrinsic
thermoacoustic, or ITA, modes. When the TA coupling is ac-
tivated, the even symmetry of AE1 is broken, but a clear con-
nection between the mode shape of the AE1 mode [Fig. 7(a)]
and that of the ITA1 modes shown in Fig. 8(d) is ob-
served. Specifically, the ITA1 mode at Th = 300 [K] shown in
Fig. 8(d) is identical to the AE1 mode plotted in Fig. 7(a). As
Th is increased, the mode shape is gradually deformed as the
even symmetry is broken [Fig. 8(d)]. We will show later that
each AE mode in the N-cell thermoviscous system will evolve
towards an ITA mode when the TA coupling is activated,
or equivalently Th �= Tc. For the two-cell system, the angular
frequency ωr of the AE2 mode is 195.72 [Hz] [Fig. 6(c)], so
the higher AE modes, as well as their associated ITA modes,
do not appear in the displayed range of frequency in Fig. 8(a).

Now, we consider a TAWG consisting of five unit cells
(N = 5). Figure 8(b) plots the eigenfrequencies of this five-
cell system. Similar to the two-cell system, the ITA1 mode
(that is also the AE1 mode when Th = 300 [K]) appears. Fig-
ure 8(e) shows the mode shapes of the ITA1 mode at selected
Th values. At Th = 300 [K], the eigenfunction p of the ITA1
mode, or equivalently the AE1 mode, is even symmetric. With
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the increase of Th, the even symmetry is broken, as also seen
in the two-cell system [Fig. 8(d)]. In Fig. 8(b), an additional
curve appears. By tracking the evolution of the eigenfunction
of this mode with Th, shown in Fig. 8(f), we confirm that
this mode is the ITA2 mode. Remember that the ITA2 mode
is identical to the AE2 mode when Th = 300 [K]. Note the
odd symmetry of the eigenfunction p when Th = 300 [K]. In
a thermoviscous waveguide, the angular frequency ωr of AE
modes (that are higher than AE1) decreases with the increas-
ing number N of unit cells, due to the increased length of the
resonating structure, as concluded in Sec. III. This aspect ex-
plains why in the displayed angular frequency range, only one
ITA mode appears in the two-cell TAWG, but two ITA modes
appear in the five-cell configuration. Analogously, increasing
the cell number to N = 10 lets four ITA modes appear in the
angular frequency range of ωr/(2π ) < 140 [Hz], as shown in
Fig. 8(c).

In the five-cell TAWG, as the TA coupling is sufficiently
strong, the decay rate ωi of the ITA1 mode turns to negative
value [Fig. 8(b)], which is indicative of the onset of TA insta-
bility. The onset temperature Th of the dynamic instability of
the ITA1 mode is approximately Thon = 980 [K]. Remember
the onset temperature of TA instability is the hot temperature
at which the TA system is marginally stable [53,65]. With a
hot end temperature Th > Thon , the ITA1 mode is unstable.
In the ten-cell system, as shown in Fig. 8(c), the onset tem-
perature of the ITA1 mode is significantly reduced to about
Thon = 520 [K]. Remarkably, in the ten-cell system, the ITA2
mode also becomes unstable at Thon = 820 [K]. In theory, the
two-cell system may also sustain unstable ITA modes granted
that the TA coupling is sufficiently strong. We tracked the
evolution of the eigenfrequency of the ITA1 mode of the
two-cell system with varying Th until Th = 10000 [K], which
is far beyond the temperature range displayed in Fig. 8(a). At
Th = 10000 [K], ω/(2π ) = 163.63 + 6.876i [Hz]. Compared
to the eigenfrequencies plotted in Fig. 8(a), the decay rate ωi

is much closer to the boundary of the unstable region, i.e.,
ωi = 0. Nevertheless, this range is of low practical relevance
given that this temperature exceeds the operating range of
most solid materials typically used to build the REG.

Based on the above observations, we draw the conclusion
that the tendency of a TAWG to become dynamically unstable
increases either (1) when in presence of high hot-end tem-
peratures Th, or (2) with an increasing number of unit cells.
The REGs in the TAWG are TA coupling elements that are
capable of injecting thermal energy into the sound field. On
one hand, a higher Th, or effectively a steeper spatial tem-
perature gradient, increases the potential for thermo-acoustic
energy conversion. On the other hand, the increased number
of unit cells brings an increased number of energy sources
(that is of REGs), thus favoring the onset of the TA insta-
bility. We merely note that, in the TA community, it is a
common practice to construct a multiple REG, or multistage,
system in order to enhance the performance of TA devices
[38,42,43,55]. Despite the fact that the TA instability is a key
mechanism for TA energy conversion devices, it is detrimental
to the application of TAWGs. Considering the periodic nature
of TAWGs, involving a large number of unit cells is inevitable
in the design and construction of TAWGs. Therefore, spe-
cific measures to mitigate TA instabilities have to be taken

into account in the design process of TAWGs. We note that
extensive studies on the suppression of TA instability have
been conducted in the combustion literature. Several effective
instability suppression measures have been proposed, includ-
ing the use of passive (e.g., acoustic liners [66] or Helmholtz
resonators [67]) or active [68] elements. Although the design
of instability suppression in the TAWGs is beyond the scope
of this study, the author believes that the existent TA noise mit-
igation techniques that are effectively applied to combustion
systems are applicable to the design of TAWGs.

B. Time-dependent simulations of the unstable ITA modes

To corroborate the TA instability of the ITA modes pre-
dicted by the eigenvalue analyses, we will evaluate the time
response of the TAWG under an incident wave packet. In the
time-dependent simulations, we attach an inlet duct and an
outlet duct of length L′ = 20 [m] to each side of the N-cell
TA system, shown in Fig. 9(a). The two ducts are terminated
by anechoic boundary conditions. At time instant t = 0, a
spatial wave packet, shown in Fig. 9(a) is enforced as an initial
condition. The windowed wave packet pwp is expressed as

pwp = wH (x − ξ )pg(x − ξ ) (16)

where ξ is the x coordinate of the center of the windowed
pulse, wH is a Hann window expressed as wH = (cos[2(x −
ξ )π/D] + 1)/2, D is the total length of the Gaussian pulse
pg. pg has a carrier wavenumber kc = 5.50 [rad/m] with 15%
bandwidth. When propagating in a duct filled with ambient
air, this carrier wavenumber corresponds to the carrier fre-
quency ωc/π = 300 [Hz], which is arbitrarily selected such
that it is well separated from the eigenfrequency of the dom-
inant ITA mode (ITA1) that could be potentially destabilized.
The Gaussian pulse pg is truncated where the envelop falls
40 dB below the peak.

Consider a temperature gradient T0(x) with Th = 750 [K]
being imposed on the REGs of the N-cell TAWG. As pre-
dicted by the eigenvalue analyses conducted earlier, this
selected Th is below the onset temperature of the ITA1 mode
in the five-cell TAWG, yet in between the onset temperature
of the ITA1 and ITA2 modes in the ten-cell TAWG. Fig-
ures 9(b.1) and 9(b.2) show the space-time plots of the wave
packet propagation in the five-cell (N = 5) TAWG, when the
wave packet impinges from both the left- and the right-hand
sides of the TA section, respectively. The two red-dashed lines
represent the boundaries of the TA section. In each case,
the initial wave packet, once released, splits into two wave-
fronts. The wavefront that (backward) propagates towards the
end of the TAWG is absorbed by the anechoic termination,
while the wavefront that (forward) propagates towards the TA
section starts interacting with the N-cell TA section. Upon
interaction, this wavefront gets partially reflected and partially
transmitted, with the amplitude being amplified or attenuated
depending on the TA coupling. The reflected and transmitted
waves are eventually absorbed by the anechoic terminations
on both sides. The TA coupling breaks the reciprocity of
the acoustic wave propagation in the waveguide, as already
discussed in [36] and [37]. Therefore, the strength of the
reflected or the transmitted waves is different in both cases,
although the initial wave packet is symmetrically released
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FIG. 9. (a) The schematic of an N-cell TA section connected to inlet and outlet ducts terminated by anechoic boundary conditions. At
t = 0, a wave packet is released in the inlet duct. Only the case where the wave packet impinges from the left hand side of the TA section is
shown. (b) The space-time plot of the five-cell (N = 5)/ten-cell (N = 10) TAWG in which the wave packet impinges from the (b.1)/(b.3) left
and (b.2)/(b.4) right hand side of the TA section, respectively. The hot temperature Th imposed on the REGs is Th = 750 [K]. (c) The time
response of the acoustic pressure evaluated at the intersection of the TA section and the outlet duct [marked as the red dot in (a))] in the case
that the wave packet impinges from the left-hand side of the (c.1) five-cell and (c.2) ten-cell TA section. The acoustic pressure is plotted in log
scale, so the negative-valued pressure is neglected.

on either side of the TA section. Clearly, if the wave packet
propagates through the TA section in the direction of the rising
temperature in the REG, as shown in Fig. 9(b.1) or 9(b.3), both
the reflected and transmitted waves carry more energy than
when the wave packet propagates in the opposite direction
[Fig. 9(b.2) or 9(b.4)].

When the same wave packet is launched in the ten-cell
(N = 10) TAWG, similar phenomena take place, as shown
in Figs. 9(b.3) and 9(b.4). However, regardless of the side of
the TA section the initial wave packet impinges from, a wave
with significantly different wavelength appears in the TAWG,
after the initial transients are absorbed by the boundaries.

The amplitude of this wave grows with time. Note that in
Figs. 9(b.3) and 9(b.4), the color of the wave pattern becomes
darker with time. Remember that Th = 750 [K] exceeds the
onset temperature of the ITA1 mode in the ten-cell TAWG,
so this wave is expected to be the ITA1 mode being ex-
cited. Also note that the range of the color map is limited to
p ∈ [−0.5, 0.5] [Pa] in order to visualize the propagation of
the initial wave packet. Any pressure fluctuation of the excited
ITA1 mode that is higher than 0.5 [Pa] is conflated in the dark
red region.

To further substantiate the appearance of the excited ITA1
mode, we probed the pressure fluctuation at the right end
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of the TA section [shown as the red dot in Fig. 9(a)]; in
this case, the wave packet impinges from the left, as shown
in Fig. 9(a). The probed pressure is plotted in Figs. 9(c.1)
and 9(c.2), respectively for the N = 5 and N = 10 con-
figurations. Figure 9(c) is plotted in the log scale, so all
pressure fluctuations with negative values are neglected. In
the five-cell configuration, no ITA1 mode is excited af-
ter both the reflected and transmitted waves are absorbed.
However, in the ten-cell configuration, a single-frequency os-
cillation emerges after approximately t = 0.15 [s], and grows
with time exponentially. One can recover the angular fre-
quency and the growth rate, or equivalently the negative
decay rate, in Fig. 9(c.2), by calculating the peak-to-peak
time duration (period Tp = 2π/ωr) and the slope of the red
dashed-straight line [slope sk = −(log10e)ωi], respectively.
From Fig. 9(c.2), the eigenfrequency of the ITA1 mode
is calculated as ω/(2π ) = ωr/(2π ) + iωi/(2π ) = 42.5532 −
7.2670i [Hz], that is in excellent agreement with the result re-
turned by the eigenvalue solver for the ITA1 mode, ω/(2π ) =
42.5920 − 7.2766i [Hz]. The numerical results summarized
in Fig. 9 provide clear evidence that with a sufficiently strong
TA coupling, the ITA modes can be excited by the temperature
gradient being imposed on the REGs.

V. DISCUSSION

Traditionally, TA instabilities appear in a finite-sized sys-
tem. The TA coupling destabilizes the pre-existent acoustic
modes, such as the standing-wave modes in a long duct termi-
nated by either sound hard or sound soft boundary conditions.
Therefore, the angular frequency ωr of the unstable acous-
tic modes is close to the uncoupled angular frequency. In
practice, the length ls of the TA coupling element, e.g., the
REG, is much shorter than the total length L of the whole
device, so the angular frequency is primarily determined by
the wavelength of the acoustic modes, or the total length L.
However, for the ITA modes explored in this study, either the
angular frequency ωr or the decay (growth) rate ωi is very
sensitive to the temperature gradient, or equivalently the value
of Th [see Figs. 8(a)–8(c)]. Remember that the existence of the
ITA modes does not rely on any acoustic feedback provided
by the boundary of the finite waveguide, so one may not
be able to accurately estimate the frequency of the unstable
ITA modes by considering solely the uncoupled structure.
Especially noteworthy is the most unstable mode, which is
the ITA1 mode. This mode degenerates to the overdamped
AE1 mode when Th = 300 [K], which has ωr = 0. In practice,
numerical simulations involving the complete TA coupling
have to be conducted to determine the accurate frequency of
the ITA modes, to facilitate an effective TA noise mitigation
strategy. For example, a properly crafted Helmholtz resonator
that targets the eigenfrequency of the unstable ITA mode can
be leveraged for suppression of the TA noise [69,70].

The sensitivity of the eigenfrequencies of the ITA modes
to the variation of Th should not be mainly attributed to the
dependence of the sound speed on temperature. In the ther-
moacoustic literature [58,59] it is already well documented
that the change in sound speed due to a change in the tem-
perature gradient does not alter the acoustic stability of the
system. The eigenfrequencies of a closed system, such as a

conventional TA engine, with the diffusion effects ( fv and fk)
neglected, may still vary with the increase of the tempera-
ture gradient but will never acquire negative imaginary parts
(since the lack of thermal and viscous conduction prohibits the
energy conversion inside the REG). Analogously, in an ane-
choically terminated waveguide, the variation of sound speed
(due to temperature) in the real-value domain does not change
the intrinsic propagation versus the loss/gain characteristics
of the waves. Specifically, for ITA1 mode in the TAWG, the
variation of the temperature gradient without thermoacoustic
coupling will only vary the value of ω so that it moves along
the imaginary axis on the complex plane but will not give rise
to a complex-valued ω with nonzero real part. Recall that the
imaginary-valued ω is solely due to the significant energy loss
at the anechoic terminations. Therefore, an unstable ITA mode
is not achievable through this route. In gases, the dependence
of material properties (or, equivalently, the sound speed) on
the temperature is not separable from the variation of the
thermoacoustic coupling strength induced by the spatial tem-
perature variation. However, in metallic materials the sound
speed is not significantly affected by the temperature changes.
The longitudinal sound speed in aluminum alloy 6061 varies
approximately 4% when the temperature is raised from am-
bient temperature to 600 [K] [71]. Previous studies [38,51]
showed that in an aluminum-based solid-state TA engine, the
strength of the thermoacoustic instability (imaginary part of
ω) is still easily controlled by the temperature gradient. Con-
sidering the similarity of gaseous and solid media in regard
to their continuum nature, this aspect may serve as indirect
evidence that the variation of the eigenfrequency (both real
and imaginary parts) of the ITA modes in TAWG is not a
trivial effect due to the temperature dependence of the sound
speed change, but rather caused by the alteration of the ther-
moacoustic coupling inside the REG channel.

In combustion systems, ITA modes refer to those unstable
modes that do not rely on acoustic feedback. In this regard, we
do find strong resemblance between the dominating unstable
mode (ITA1) in the TAWG and the ITA modes in combustion
system. In this study, we find that the eigenfrequency of the
ITA1 mode of the TAWG is neither sensitive to the number of
cells N nor to the unit-cell length L. The most straightforward
evidence of the insensitivity to N is acquired by observing
the ITA1 modes in Figs. 8(a)–8(c) when Th = 300 [K] (or
equivalently the AE1 modes in respective cases). We notice
that the eigenfrequency of this mode is quite insensitive to the
increase of the number of cells N ; and its value is very close
to the eigenfrequency of AE1 of the one-cell configuration,
i.e., ω/2π = 38.925i [Hz] [see Fig. 5(a)]. This aspect clearly
suggests that ITA1 modes exist (either in stable or unstable
form) in a TAWG regardless of the number of cells. However,
with the current design, the destabilization of this mode with
a practical temperature gradient (Th < 1200 [K]) requires a
multiple-cell system, as discussed in Sec. IV A. Most impor-
tantly, the multicell system is more practically significant for
the implementation of TAWGs. Also note that, in Fig. 3, we
showed that the existence of evanescent modes relies on the
heterogeneity in the acoustic waveguide. The AE1 mode (with
purely imaginary eigenfrequency) can be considered as the
unexcited (stable) ITA1 mode. In a multicell structure, how-
ever, the whole section that allows internal acoustic reflections

094304-12



INSTABILITIES OF INTRINSIC THERMOACOUSTIC … PHYSICAL REVIEW B 106, 094304 (2022)

TABLE II. Eigenfrequency of the AE1 mode of a two-cell
TAWG vs different unit-cell length L.

L [m] 0.3 0.4 0.5 0.6 0.7

ω/2π [Hz/s] 38.7612i 38.7364i 38.7226i 38.7078i 38.6920i

(from the REG of the first cell to the REG of the last) can
be considered as the heterogeneity that allows the waves on
both sides of it to being transmitted in opposite directions
towards the two anechoic terminations. Note that, even in a
one-cell system, the internal acoustic reflection also exist in
the heterogeneity, i.e., the REG. This heterogeneity (being
either a single REG in the one-cell system or the repeating
structure including several REGs in a multicell system), gives
rise to the AE modes at ambient temperature (Th = 300 [K]),
and further leads to the ITA modes with an increasing Th.
However, the internal reflection generated by this heterogene-
ity does not have significant effects on the eigenfrequency of
ITA1, regardless of the number of cells.

Note that the eigenfrequency associated with AE1 of the
one-cell waveguide is the solution to Eq. (11), which is not
dependent on the length of the cell. For a two-cell waveguide,
in which intercell interactions may take place, the eigenfre-
quency of AE1 mode is governed by Eq. (15). The solution
to this equation that represent the eigenfrequency of the AE1
mode, or equivalently, the ITA1 mode at Th = 300 [K], under
different values of L is solved for and tabulated below:

Table II clearly shows that the eigenfrequency of the ITA1
mode at Th = 300 [K] in a two-cell waveguide is also insen-
sitive to the unit-cell L. From Figs. 8(a)–8(c), as Th increases,
the eigenfrequency of the ITA1 mode starts deviating from
that of the AE1. Therefore, we deduce that the size of the unit
cell has minimal impact on the eigenfrequency of the ITA1
mode of a multicell waveguide.

The above discussion substantiates the argument that the
ITA1 mode in a TAWG behaves as a close analog to ITA
modes in combustion systems. More importantly, the ITA1
mode bears the most practical significance since it is the
most unstable mode. For higher order ITA modes (ITA2 and
beyond), we do notice that their eigenfrequencies have de-
pendence on the structures of the waveguide (length L and
cell number N), which suggests that the formation of these
modes results from a superposition of effects including both
the intrinsic thermoacoustic coupling and the structural ge-
ometry. To some extent, these modes may be considered as
spurious ITA modes. Nevertheless, these modes are still sig-
nificantly different than any unstable TA mode explored in
REG- or stack-based TA systems, in that the real part of the
eigenfrequencies of those systems has a strong dependence on
the geometrical structure but little dependence on the temper-
ature gradient. From a high-level perspective, the combustion
ITA modes stem from the interaction between the velocity
fluctuation and the time-fluctuation in heat release rate of the
premixed flame at a localized point in space [56,57], while
the REG in the TAWG is a distributed heat source. However,
for an observer (probe) anchored at a specific point in the
REG channel, what is observed (measured) is a fluctuation
of the heat release rate in time. This aspect occurs because

the oscillatory motion of the gas parcel is accompanied by a
temperature fluctuation, which further leads to the fluctuation
of the temperature difference between the core and the wall of
the REG channel at the probed point. Recall that the wall tem-
perature is constant in time and that the temperature difference
is proportional to the conduction-induced heat release rate. In
this regard, the ITA modes in TAWG behave analogously to
its counterpart in combustion systems.

Now, we revisit the two existing experimental studies of
TAWGs, which were referred to as the TA diode [34] and
the cascade TA amplifier [35], respectively. The TA diode
[34] consisted of four unit cells, or equivalently, four REGs,
which were connected to an inlet duct and an outlet duct. A
loudspeaker was placed on the end of the inlet duct to generate
harmonic waves, while the outlet duct was ended with an
anechoic termination. The highest hot temperature Th reported
in [34] is Th = 690 [K]. Yet, no TA instability was observed
or recorded in the experiments. Based on our analyses in
Sec. IV, the absence of instability may be attributed to the
fact that Th = 690 [K] is below the onset temperature for the
ITA modes of the four-cell system experimented in [34]. With
the distinction between the selection of parameters in [34] and
the present study acknowledged, we note that in the five-cell
setup explored in this study, the onset temperature for the
ITA1 mode is Thon = 980 [K], higher than the selected Th used
in the four-cell system in [34].

The TA amplifier investigated in [35] consists of eight unit
cells, in which the hot ends of the REGs were kept at Th =
673 [K]. However, the eight-cell device was terminated by a
loudspeaker on each side. The loudspeakers were tuned so
that the impedance at the ends of each unit cell was identical
to ensure a harmonic oscillation at any point inside the am-
plifier. Such treatment artificially manipulated the reflection
and transmission in each unit cell, which allowed a spatial
amplification of the time harmonic wave. This phenomenon
was well captured by the complex band structure analyses
conducted in [36]. With the impedance boundary conditions
being imposed by the loudspeakers (or Floquet periodicity in
[36]), no unstable modes existed in the eight-unit amplifier.
Nevertheless, terminating the finite periodic TAWG with well-
tuned impedance may not always be feasible in practice, so
specific TA instability suppression treatments have to be in
place in the application of TAWGs.

Although the unstable ITA modes in the REG-based
TAWG resembles their counterparts in the combustion sys-
tems (subject to flame-acoustic coupling), they are still quite
different thermoacoustic instabilities, especially considering
the large losses in the present TAWG system. The key con-
tribution of this paper lies in the comprehensive theoretical
framework that is capable of capturing and explaining the evo-
lution of the ITA modes from the AE modes upon increased
TA coupling. The numerical modeling methodology adopted
to predict the complex eigenfrequency of the ITA modes also
benefits the practical design of effective instability mitigation
treatments.

We have considered the ITA instability as a potential
risk for the application of TAWGs, especially when they are
designed for spatial amplification [35], nonreciprocal trans-
mission [34,36,37], or cloaking [36]. However, we believe
that the understanding of the ITA mechanisms may also bring
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opportunities for further practical implementations, should
the self-excited acoustic energy be properly leveraged. One
significant difference between the ITA instability and its coun-
terpart in a conventional TA engine lies in the fact that the
modal frequency of the ITA instability is much more sensitive
to the variation of temperature gradient than to the change
of the actual device size. This aspect, as seen in Figs. 8(a)–
8(c), may lead to the design of tunable vibration sources (i.e.,
engines) that can output oscillatory motion of tunable frequen-
cies just by controlling the temperature gradient applied to the
TAWG. In this regard, the development of TA energy conver-
sion devices may benefit from this discovery both in terms of
(1) additional power output flexibility, and (2) the potential for
more compact devices. The ITA modes in TAWGs may also
be implemented for the discovery of nonlinear acoustic waves,
the most immediate being the generation of solitary waves in
a straight waveguide, as a counterpart of the TA solitary wave
in a looped tube [72].

VI. CONCLUSIONS

In this paper, we comprehensively analyzed the acous-
tic modes in a finite TAWG that is terminated by anechoic
boundary conditions. In the absence of the spatial temperature
gradient along the REGs, the abrupt cross-sectional area ex-
pansions at the REG ends induce AE modes having complex
eigenfrequencies. The thermoviscous effects in the thin REG
channels bring a unique set of eigenmodes, dubbed the TVE
modes, that do not appear in the inviscid waveguide. The
TVE modes have purely imaginary frequencies, yet purely
real local wavenumber kd in the REG channels. Neverthe-
less, when the TA coupling (the spatial temperature gradients)
is negligible, the acoustic modes (whether the AE or TVE
modes) in the waveguide are evanescent modes that strongly
decay with time, due to the large acoustic losses introduced
by the anechoic terminations.

However, with the increase of the temperature gradients,
the AE modes evolve towards unstable modes, with the imag-
inary part of their eigenfrequencies turning from positive- to
negative valued. The appearance of these unstable TA modes,
referred to as the ITA modes, is attributed to the intrinsic in-
teraction between the thermal energy introduced by the spatial
gradients and the pressure acoustic fields in the anechoically
terminated system with no positive acoustic feedback. This
paper provides the first demonstration of the existence of
ITA modes in REG-based TA systems; these modes possess
marked differences compared with the unstable standing or
traveling TA modes in traditional TA devices. The angular
frequency of the ITA modes is highly sensitive to the hot
temperature Th imposed on the REGs.

The existence of ITA modes hinders the practical applica-
tions of TAWGs, which posses several intriguing capabilities
of sound manipulation, e.g., nonreciprocal and/or zero-
index transmissions. However, the analytical and numerical
framework introduced in this paper is capable of accu-
rately predicting the angular frequency and growth (decay)
rate of each ITA mode, thus shedding lights on the design
of effective instability suppression strategies. On the other
hand, the extensive study on ITA modes presented in this
paper may also shed light on the development of novel
TAEs with enhanced tunability and compact dimensions.

More importantly, the analysis methodologies adopted in this
study may have implications on addressing stability issues of
active acoustic devices that leverage other multi-physics
coupling elements such as, for example, electroacoustic
devices.

APPENDIX A: DERIVATION OF TE1 AND TE2

In this section, we provide the detailed derivation from
Eq. (8) to TE1 [Eq. (11)] and TE2 [Eq. (12)], respectively.

Assuming ω = iωi and fd = fdr , both sides of Eq. (8) are
real valued. Applying real-valued natural logarithm to Eq. (8)
yields

2ln

∣∣∣∣ s fdr − 1

s fdr + 1

∣∣∣∣ = −2 fdr

ω

a0
ls. (A1)

Note that k = ω/a0 is applied. Rearranging Eq. (A1) leads to
Eq. (11).

TABLE III. List of symbols

e Euler’s number
i Imaginary unit
L Unit-cell length
H Unit-cell width
M REG channel number
ls REG length
h Width of minimal unit
hs REG width
s Width ratio
Th Temperature at REG hot end
Thon Onset temperature of instability
Tc Temperature at REG cold end
Tref Reference ambient temperature
μref Reference viscosity of air
Rgas Gas constant
ρ0 Zeroth-order (mean) density
P0 Zeroth-order (mean) pressure
T0 Zeroth-order (mean) temperature
a0 Zeroth-order sound speed
γ Specific heat ratio
Pr Prandtl number
z0 Characteristic impedance of air
fv Complex viscous diffusion function
fk Complex thermal diffusion function
fd Complex thermo-viscous diffusion function
ω Complex eigenfrequency, ω = ωr + iωi

ωc Carrier frequency of wave packet
δω Small perturbation to frequency
k Complex wavenumber
kd Local wavenumber in REG channel
λ Wavelength
λd Local wavelength in REG channel
Tp Time period
sk Slope of fitted line
n, m Indices
N Cell number
p Transversely averaged first-order pressure
u Transversely averaged first-order particle velocity
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Assuming ω = iωi and fd = i fdi , both sides of Eq. (8) are
complex-valued. Applying complex-valued natural logarithm
to Eq. (8) yields

2[ln(is fdi − 1) − ln(is fdi + 1)] = −2i fdi

ωi

a0
ls. (A2)

Recall that the natural logarithm of a complex number z is
calculated as ln(z) = ln(|z|) + iarg(z). Therefore, divided by
−2i on both sides, Eq. (A2) is recast into

arg(is fdi + 1) − arg(is fdi − 1) = fdi

ωi

a0
ls. (A3)

Further manipulation leads to

tan−1(s fdi ) − (π − tan−1(s fdi )) + nπ = fdi

ωi

a0
ls (A4)

where n is natural number (n = 0, 1, 2 , ...). Rearranging
Eq. (A4) leads to Eq. (12) in the main text.

APPENDIX B: NOMENCLATURE

The symbols that are used in this paper are tabulated in
Table III.
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