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The mobility of carriers, as limited by their scattering with phonons, can now routinely be obtained from
first-principles electron-phonon coupling calculations. However, so far, most computations have relied on some
form of simplification of the linearized Boltzmann transport equation based on either the self-energy or the
momentum relaxation-time or constant relaxation-time approximations. Here, we develop a high-throughput
infrastructure and an automatic workflow and we compute 67 phonon-limited mobilities in semiconductors.
We compare the results resorting to the approximations with the exact iterative solution. We conclude that the
approximate values may deviate significantly from the exact ones and are thus not reliable. Given the minimal
computational overhead, our paper encourages reliance on this exact iterative solution.
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Carrier mobility is one of the most important characteris-
tics of semiconductor materials and is a key property in many
applications such as transistors, solar cells, thermoelectrics,
transparent conductors, and light-emitting devices. Having
reliable and efficient methods for computing these proper-
ties from first principles is therefore of crucial importance to
improve the predictive power of in silico design methods. De-
spite significant progress in the field since the late 2000s, very
few bulk semiconductors have been investigated so far due to
the complexity of the problem associated with the inherent
large computational cost. Only recently, efficient implementa-
tions such as EPW [1,2], PERTURBO [3], and ABINIT [4–7], have
allowed the community to report ab initio phonon-limited mo-
bilities for a small set of semiconductors [8]. These methods
are all based on density-functional theory for ground-state
properties and density-functional perturbation theory (DFPT)
for vibrational properties [9,10]. They all rely on Fourier-
based interpolation schemes for the electron-phonon (e-ph)
coupling matrix elements as the microscopic description of
e-ph scattering processes requires a very dense sampling of
the whole Brillouin zone (BZ) that is unrealistic for DFPT
calculations. Recently, another methodology has been pro-
posed with AMSET [11] where low-cost first-principles inputs
are used to define models for acoustic deformation potential
and piezoelectric and polar optical phonon scattering. This
approach effectively enables faster evaluations of phonon-
limited mobilities although not all the microscopic processes
are explicitly accounted for with ab initio quality.

In all these state-of-the-art methods, transport properties
are usually computed within the linearized Boltzmann trans-
port equation (BTE), where carriers are described in terms
of wave packets that propagate according to the semiclassi-
cal equations of motion between two consecutive scattering
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events. In principle, a fully ab initio description of transport
phenomena should take into account several different scat-
tering channels due to the interaction with, e.g., phonons,
electrons, crystalline defects, ionized impurities, and even
grain boundaries in the case of polycrystalline samples. In
practice, most of the studies reported so far have focused
on the contribution due to e-ph scattering. In a few works,
though, other effects such as the scattering by ionized im-
purities were also accounted for either in an indirect way
via semiempirical models [11,12] or via additional ab ini-
tio calculations [13–15]. At the level of the e-ph scattering,
the predictive power of ab initio methods has recently been
quantified by estimating the impact of various effects such as
spin-orbit coupling (SOC) or many-body corrections to the
e-ph vertex or effective masses in the case of silicon [12].
Even though a fully microscopic theory of transport properties
should take all these effects into account, it should be noted
that such corrections are usually applied within a given ap-
proximation to the BTE, usually based on a relaxation-time
ansatz. However, in the few cases (GaAs [16], SnSe [17],
and boron-V compounds [18]) for which the appropriateness
of the popular approximations to the BTE has been quanti-
fied, some limitations of these approximations were already
identified. Here, we assess their quality in a quantitative and
systematic way using a computational workflow that allows us
to investigate 67 phonon-limited mobilities among 54 semi-
conductors under different relaxation-time approximations in
a completely automated way.

The derivation of the BTE can be found in many pub-
lications such as Refs. [8,12,19,20]. In what follows, we
summarize the most important equations and focus on elec-
trons for the sake of brevity. Similar expressions can be easily
obtained for holes. Atomic units are used everywhere unless
stated otherwise. In semiconductors, the electron mobility
(μe) is obtained by renormalizing the conductivity by the
carrier concentration (ne) and considering only the states in
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the conduction band (CB):

μe,αβ = −1

�ne

∑
n∈CB

∫
BZ

dk
�BZ

∂ fnk

∂Eβ

vnk,α, (1)

with α and β the Cartesian coordinates, � the volume of the
unit cell, �BZ the volume of the first BZ, n the electronic band
index, k the wave vector, fnk the occupation of the state in the
steady configuration, E the electric field, and vnk the group
velocity given by vnk = ∇kεnk, where εnk is the band structure
of the material. If we limit the discussion to drift mobilities
where carriers are moving under the action of an electric field
only (as opposed to the Hall mobilities that also include the
effect of a magnetic field), the ∂ fnk/∂Eβ term entering Eq. (1)
is the solution of the following linear integral equation:

∂ fnk

∂Eβ

= ∂ f 0
nk

∂ε
vnk,βτ 0

nk + 2πτ 0
nk

∑
m,ν

∫
BZ

dq
�BZ

|gmnν (k, q)|2

× [(
n0

qν + f 0
nk

)
δ(εnk − εmk+q − ωqν )

+ (
n0

qν + 1 − f 0
nk

)
δ(εnk − εmk+q + ωqν )

]∂ fmk+q

∂Eβ

,

(2)

where τ 0
nk, that has the dimension of time, is given by

1

τ 0
nk

= 2π
∑
m,ν

∫
dq
�BZ

|gmnν (k, q)|2

× [(
n0

qν + f 0
mk+q

)
δ(εnk − εmk+q + ωqν )

+ (
n0

qν + 1 − f 0
mk+q

)
δ(εnk − εmk+q − ωqν )

]
. (3)

In Eqs. (2) and (3), f 0
nk is the equilibrium Fermi-Dirac oc-

cupation function; n0
qν is the Bose-Einstein distribution for

the phonon of wave vector q, mode index ν, and frequency
ωqν ; and gmnν (k, q) are the e-ph coupling matrix elements
defined as gmnν (k, q) = 〈ψmk+q|
qνV KS|ψnk〉, where ψnk and
ψmk+q are the Kohn-Sham (KS) Bloch states and 
qνV KS is
the phonon-induced variation of the self-consistent KS poten-
tial [4,5,21].

Once discretized in the BZ, Eq. (2) becomes a system
of linear equations that can be solved via the iterative BTE
(IBTE) approach that take advantage of the sparsity of the
scattering operator to reduce both memory and computational
cost. The main difficulty encountered when solving Eq. (2)
is that very fine homogeneous k-point meshes are required to
account for the coupling among all the ∂ fnk/∂Eβ terms and
to properly converge transport properties. For this reason, in
many studies the full solution of the BTE is usually replaced
by the so-called self-energy relaxation-time approximation
(SERTA), where the second term on the right-hand side of
Eq. (2) is completely neglected. This leads to an explicit
expression for ∂ fnk/∂Eβ in terms of other quantities readily
available. In physical terms, this simplification corresponds
to the relaxation-time approximation in which carriers are
assumed to relax to the equilibrium Fermi-Dirac distribution
f 0
nk with an exponential law and time constant τ 0

nk when the
external fields (electric and/or magnetic) are switched off.

Inserting this approximated solution in Eq. (1) gives

μSERTA
e,αβ = −1

�ne

∑
n∈CB

∫
BZ

dk
�BZ

∂ f 0
nk

∂εnk
vnk,αvnk,βτ 0

nk. (4)

The SERTA acronym stems from the fact that τ 0
nk is related

to the inverse of the imaginary part of the e-ph Fan-Migdal
self-energy [4,21] that gives the lifetime of a charged quasi-
particle excitation due to e-ph interactions. In other words,
the SERTA uses a relaxation-time ansatz to approximate the
true solution of Eq. (2) and assumes the transport relaxation
time to be equal to the lifetime of a charged excitation. This
is a reasonable but not necessarily correct assumption, espe-
cially because neglecting the second term on the right-hand
side of Eq. (2) corresponds to ignoring all the processes in
which carriers are scattered back into the state nk [8]. In
more geometrical words, the SERTA always underestimates
the mobility because it does not differentiate between for-
ward and backward scattering even though forward scattering
(small angle between vk and vk+q) does not deteriorate the
mobility as much as backward scattering [22]. Unlike thermal
transport where heat exchange occurs during all scatterings,
electric current scattering is much more efficient when the
direction of electron flow is altered [23,24]. These back-
scattering events can be partially accounted for using the
momentum relaxation-time approximation (MRTA) whereby
the integrand in Eq. (3) is now weighted by the efficiency
factor [8,11,25,26]:

αMRTA
mn (k, q) =

(
1 − vnk.vmk+q

|vnk|2
)

. (5)

Indeed, this favors forward scattering geometrically and,
therefore, the relative changes in the electron velocity due
to the scattering processes are better taken into account. Fi-
nally, an even more crude approximation consists in assuming
that the relaxation times are constant for all nk, i.e., τnk = τ

in Eq. (4). In this constant relaxation-time approximation
(CRTA), the mobility depends only on the band structure and
on τ as a phenomenological parameter. Since the computa-
tion of phonons and e-ph matrix elements is not needed, this
greatly reduces the computational cost. This is the main rea-
son why the CRTA has been widely employed in the past. In
particular, it has been implemented in BOLTZTRAP [27,28] and
extensively used, for instance, to rank large sets of materials
using a common lifetime [29–32] (or, equivalently, by looking
at the transport effective mass [33,34]). Another application
lies in understanding experimental results by determining the
lifetime in a specific material [28,35,36].

All these expressions have been implemented in the trans-
port module of ABINIT. Our approach, detailed in Ref. [4],
takes advantage of (i) the tetrahedron integration scheme to
reduce the number of e-ph transitions to be computed, (ii) a
Fourier interpolation of the scattering potentials in q space
including the proper treatment of dipole and quadrupole con-
tributions, and (iii) exact KS wave functions that are computed
only for the k points lying inside a small energy window
around the band edges. This procedure allows us to bypass the
generation of maximally localized Wannier functions, a major
advantage in our context as all the steps of our workflow can
be easily automated.
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Even though the CRTA, SERTA, and MRTA have been
widely used in the literature to characterize the transport of
electrons or holes, the validity of such approximations has
not yet been tested in a systematic way. Here, we analyze
the phonon-limited transport in 54 different semiconductors,
including 54 electron and 13 hole mobilities. This allows us
to directly probe the quality of these different approximations
to the IBTE. These 54 semiconductors have been selected by
the following procedure. In order to reduce the total com-
putation time, we consider only those semiconductors for
which phonon properties are available in the Materials Project
database [37,38] and discard materials with imaginary phonon
frequencies (vibrational instabilities) or those that are pre-
dicted to be thermodynamically unstable, i.e., with an energy
above hull larger than 50 meV/atom. The results of Ref. [30]
have then been used to remove all materials for which the
average transport effective mass is larger than 1. Finally, we
enforce two additional constraints that are needed in order to
be compatible with the previous DFPT calculations performed
with PBESOL scalar-relativistic norm-conserving pseudopoten-
tials including nonlinear core correction (NLCC) [39]. First,
we have considered systems with a single conduction/valence
band within an energy window of 0.25 eV above/below
the minimum/maximum. The motivation is that SOC has
been shown to have a significant impact on phonon-limited
mobilities [22]. Restricting our database to systems with a
single band allows us to avoid the worst-case scenario of
degenerate hole states that are split by SOC although it is
clear that a proper treatment of relativistic effects in mobil-
ity calculations would require the inclusion of SOC effects
both at the electronic and vibrational level. Secondly, we
have considered only space groups for which the dynami-
cal quadrupoles Q∗ are zero by symmetry [40]. As recently
shown in Refs. [4,5,22,41,42], dynamical quadrupoles play a
crucial role for obtaining reliable phonon-limited mobilities
in semiconductors. Unfortunately, the DFPT computation of
Q∗ is presently limited to norm-conserving pseudopotentials
without NLCC, hence we decided to restrict the discussion
to high-symmetry structures. Overall, our screening criteria
led to 54 materials (37 in the Fm3̄m space group, 16 in
Pm3̄m, and one belonging to the tetragonal P4/mmm space
group) and 67 mobilities (54 electron and 13 hole mobilities).
Although our dataset mostly consists of cubic systems, we
expect our analysis to hold for other structures as well.

Using our automated mobility computations, we can com-
pare the SERTA, MRTA, and CRTA results versus the exact
IBTE ones in a systematic way. Figure 1 shows this compari-
son of the CRTA [Fig. 1(a)] and SERTA/MRTA [Fig. 1(b)]
mobilities with the IBTE results for all the systems in our
dataset at 300 K. The numerical results can be found in Table
S1 of the Supplemental Material [43]. Obviously, the CRTA
mobility for a given material can be made exactly equal to
the IBTE value by an appropriate choice of τ . In our dataset,
a wide variety of lifetimes would have to be used ranging
from 7 fs for CsBr to 188 fs for KMgH3. Considering the
complete set of materials, a lifetime of 10.6 fs minimizes
the mean absolute percentage error but, as can be seen from
Fig. 1(a), the agreement with the IBTE is only valid for low
IBTE mobilities, as most of the systems in the dataset have
an IBTE mobility lower than 100 cm2 V−1 s−1 (see the insets

FIG. 1. Comparison of the (a) CRTA and (b) SERTA and MRTA
with the IBTE electron mobilities at 300 K. For the CRTA, the chosen
lifetime minimizes the mean absolute error. MRTA mobilities are in
red whereas SERTA mobilities are in blue. The black dotted lines
represent the IBTE results. The green, blue, and red solid lines are
linear fits of the CRTA, SERTA, and MRTA results, respectively.

of Fig. 1). However, even in this region, a material with
a low CRTA mobility may show a large relative error (see
Fig. S1 of the Supplemental Material [43]). It is clear from
Fig. 1(a) that the correlation is weak between the CRTA and
IBTE results. A large (low) CRTA result does not guarantee a
large (low) IBTE mobility. One can also compute Spearman’s
rank correlation coefficient ρ in order to quantify the ranking
capability of CRTA. A value of ρCRTA = 0.45 is obtained,
indicating that the CRTA is overall not able to correctly rank
materials from our dataset. This analysis therefore highlights
the importance of going beyond the CRTA for accurate re-
sults. In particular, in material screening or high-throughput
computing where this approach has been very popular, this in-
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dicates that the CRTA mobility or, equivalently, the transport
effective mass [30,33] should be used with extreme caution as
a first filter to identify materials with high mobility and should
be followed by a higher-level analysis of the transport if
possible.

It is clear from Fig. 1(b) that the SERTA and MRTA
both perform better than the CRTA. In particular, in terms of
ranking materials of our dataset, both of them prove to be ad-
equate, with ρSERTA = 0.97 and ρMRTA = 0.98. Additionally,
Fig. 1(b) shows that the MRTA performs overall better than
the SERTA in approximating the IBTE, with a mean absolute
percentage error of 18% for the former and 48% for the latter.
In the materials investigated here, the MRTA mobility is al-
ways higher than the one predicted by the SERTA. Indeed, we
specifically selected materials with a single band, that is often
located around � in the BZ. In this case, intravalley scattering
largely dominates, in particular with small wave vectors q
because the effective masses are lower than 1, hence the bands
are relatively dispersive [4]. Note that intravalley scattering
plays a crucial role even in cases where the band extrema
are not at �. If the important wave vectors q are small, then
αMRTA is between 0 and 1, and the mobility increases from the
SERTA to the MRTA. However, when compared to the IBTE,
there is no general rule for the MRTA and it can underestimate
or overestimate the mobility, implying that the efficiency fac-
tor shown in Eq. (5) may underestimate or overestimate the
back-scattering events. Since our results were performed at
300 K, some deviations could be observed at higher/lower
temperatures [16,17]. However, we do not expect significant
changes in the trends and these small differences seem depen-
dent on the material investigated as shown in Figs. S2 and S3
of the Supplemental Material [43].

In the literature, SERTA has recently emerged as the most
satisfactory approach. Indeed, for the few systems investi-
gated so far (such as Si [4,12,25] or GaAs [4,44]), it is
predicted that the SERTA mobilities are closer to experimen-
tal data than the MRTA or IBTE results. Indeed, in Si, the
differences between the SERTA, MRTA, and IBTE mobilities
are lower than 5%, all of them being very close to exper-
imental data [4,12,25]. However, in GaAs, there is a large
spread in the reported computed mobilities, which can partly
be explained by the different transport formalisms used for
the computations, since the SERTA (MRTA) underestimates
(overestimates) the IBTE solution by 52% (4%) [4,16]. Our
results demonstrate that large and difficult to predict errors
can be present when using SERTA or MRTA.

From Fig. 1 and Table S1, it is clear that some outliers
show very important deviations from the IBTE mobility. For
instance, in SrO, KH, KMgH3, and MgO, the MRTA leads
to errors larger than 60% when compared to the exact IBTE
solution.

While MRTA is performing better than SERTA, it seems
impossible to estimate when the MRTA approach will fail.
This indicates that both the SERTA and MRTA can be unre-
liable for some specific systems and the IBTE should always
be preferred. In particular, before comparing computed mobil-
ities to experimental data, we believe it is crucial to first make
sure that any approximation used in the process is reliable, or
at least to quantify the error on the final quantity. We point out
that using spatial and time-reversal symmetries, and a similar

FIG. 2. Flowchart illustrating the workflow used to automatically
compute phonon-limited mobilities.

filtering method as presented in Ref. [4], solving the IBTE can
be seen as a postprocessing of the SERTA that does not lead
to a significant increase of computational time or memory. It
is also worth noting that the type of charge carrier does not
seem to affect these results.

The computed IBTE mobilities overestimate the exper-
imental data, which is expected since other sources of
scattering (e.g., impurity scattering) are completely ignored.
In addition, most of the experimental mobilities reported
in the literature are measured using the Hall effect and it
is therefore necessary to weigh computational results by a
material-dependent Hall factor that typically ranges between
0.7 and 2 [22]. The inclusion of the Hall mobility in ABINIT is
left for future work.

The computation of the phonon-limited mobility is a rather
complex task involving many steps. It typically requires an
important human time and intervention. As a result, its au-
tomation has only been realized for very specific cases [45].
To fully automate all the different parts of the computation, in-
cluding the convergence studies for the BZ sampling, we have
developed a workflow within the ABIPY PYTHON package [46].
The main steps are schematically represented in Fig. 2, with
more details given in the Supplemental Material [43]. The
ingredients needed in Eq. (2) are the KS wave functions on the
dense mesh for the electronic part (in purple in Fig. 2) and the
DFPT scattering potentials and the interatomic force constants
on a coarse mesh (typical of DFPT) for the phonon part (in
blue in Fig. 2). The latter can be easily computed with another
ABIPY workflow, although in this paper we prefer to start from
a database of previous DFPT computations [37,47]. The first
step of the workflow consists in a ground-state calculation (in
orange in Fig. 2), with basic parameters reused from the DFPT
database. This allows us to determine the wave functions on
the fine mesh using a two-step procedure described in Ref. [4]
and in the Supplemental Material [43]. All the ingredients
required to compute the mobility on a given dense mesh are
then readily available. Since a convergence study is needed
with respect to this dense mesh, we perform the previous steps
multiple times for meshes of increasing density. Convergence
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is assumed to be reached when three consecutive grids lead to
mobilities a maximum of 5% away from each other.

In conclusion, we have obtained well-converged phonon-
limited mobilities for a rather large set of semiconductors.
We have developed and used an automatic workflow that
allows for the comparison of different approximations to the
BTE with the exact results. Our results show that SERTA
and to a lesser degree MRTA are not reliable in general and
that they are in many cases not good approximations to the
IBTE. This should be kept in mind when looking at previ-
ously published results using any of these approaches. The
fact that the SERTA/MRTA agree with experiments for a few
systems is not sufficient to establish these methods as a stan-
dard. Given that IBTE does not require more computational
power, it should be the recommended approach for comput-
ing transport properties. Finally, our paper demonstrates that
phonon-limited mobilities can be computed automatically in
a high-throughput manner, opening new avenues for materials
screening.
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