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Steady off-diagonal long-range order state in a half-filled dimerized Hubbard chain
induced by a resonant pulsed field
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We show that a resonant pulsed field can induce a steady superconducting state even in the deep Mott insulating
phase of the dimerized Hubbard model. The superconductivity found here in the nonequilibrium steady state is
due to the η-pairing mechanism, characterized by the existence of the off-diagonal long-range order (ODLRO),
and is absent in the ground-state phase diagram. The key of the scheme lies in the generation of the field-induced
charge density wave (CDW) state that is from the valence bond solid. The dynamics of this state resides in the
highly excited subspace of the dimerized Hubbard model and is dominated by a η-spin ferromagnetic model.
The decay of such long-living excitation is suppressed because of energy conservation. We also develop a
dynamical method to detect the ODLRO of the nonequilibrium steady state. Our finding demonstrates that
the nonequilibrium many-body dynamics induced by the interplay between the resonant external field and
electron-electron interaction is an alternative pathway to access a new exotic quantum state, and also provides
an alternative mechanism for enhancing superconductivity.
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I. INTRODUCTION

Driving is not only a transformative tool to investigate a
complex many-body system but also makes it possible to cre-
ate a nonequilibrium phase of quantum matter with desirable
properties [1–7] . It can significantly alter the microscopic be-
havior of a strongly correlated system and manifest a variety
of collective and cooperative phenomena at the macroscopic
level. Spurred on by experiments in ultracold atomic gases,
the nonequilibrium strongly correlated systems have been the
subject of intense study over the last decade [8–22]. Addi-
tionally, pump-probe spectroscopy offers a new avenue for
the exploration of available electronic states in correlated ma-
terials [23]. Among them, the most striking is the discovery
of photoinduced transient superconducting behaviors in some
high-Tc cuprates [24–26] and alkali-doped fullerenes [27,28].
All these advances have revived interest in the fundamental
behavior of quantum systems away from equilibrium.

Nonequilibrium control of quantum matter is an intriguing
prospect with potentially important technological applications
[29–32]. Experiments with various materials and excitation
conditions have witnessed phenomena with no equilibrium
analog or accessibility of chemical substitution, including su-
perconductinglike phases [6,24,27,33], charge density waves
(CDW) [34–36], and excitonic condensation [37]. Among
various nonequilibrium protocols, the generation of the η-
pairing-like state possessing the off-diagonal long-range order
(ODLRO), originally proposed by Yang for the Hubbard
model [38], plays a pivotal role in which the existence of
doublon and holes facilitate the superconductivity [39–48]
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. Therefore, how to stabilize a system in a nonequilibrium
superconducting phase with a long lifetime is a great chal-
lenge and is at the forefront of current research. Besides,
constructing a clear and simple physical picture to realize the
nonequilibrium superconducting phase for the experiment is
also the goal of on-going theoretical investigation.

It is the aim of this paper to unveil the underlying mech-
anism of superconductivity in a nonequilibrium matter. The
core is how to excite a Mott insulator to a pairing state (CDW
state) within the highly excited subspace. Then it evolves to
a steady ODLRO state. To this end we consider a repulsive
dimerized Hubbard model, in which the dimerization can
control the type of the ground state but does not change the
magnetic correlation. The strong dimerization can make the
main component of the antiferromagnetic ground state change
from a Néel state to a valence bond solid where the electrons
belonging to the different unit cells are not entangled with
each other. This allows that the resonant pulsed field can
drive the spin singlet state to a double-occupied state in each
unit cell so that the CDW state is constructed in the entire
lattice. The doublons and holes can significantly enhance the
conductivity of the system. Figure 1 illustrates this core dy-
namics of the proposed nonequilibrium scheme. Note that the
nonresonant external field will also increase the conductivity
of the system, but will not form a CDW state with maximized
doublons and holes. This does not favor the superconductivity
in the subsequent dynamics. Due to the energy conservation,
the system can stay in the highly excited subspace, which
shares the same energy shell with the CDW state, for a long
time. The corresponding doublon dynamics can be fully cap-
tured by the effective η-spin ferromagnetic model that can
be obtained through the virtual exchange of the particles.
In this context, such an effective Hamiltonian can drive the
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FIG. 1. Schematic illustration of the dynamical pairing process
considered in this work. The system is initialized in a dimerized
Hubbard model at half-filling. The strong dimerization divides the
whole 2N lattice into N unit cells. In each unit cell, two electron
spins form a spin 0 singlet due to the antiferromagnetic interaction,
while not being entangled with the spins of other unit cells. Hence,
the ground state is a valence bond solid. The resonant pulsed field F
plays the role in each unit cell individually such that the CDW state
can be generated after a period T/2 with T = π/�. Then the CDW
state will evolve to an ODLRO state via doublon diffusion, which is
the key to realizing the nonequilibrium superconducting phase.

CDW state to a steady state which distributes evenly in the
lattice and possesses the long-range η-spin correlation. This
is the characteristic of the system entering the nonequilib-
rium superconducting phase. By introducing the magnetic
flux, we further develop a method of detecting this kind of
nonequilibrium phase of matter based on the performance
of the Loschmidt echo (LE). Specifically, the characteristic
that the LE shows periodical behavior rather than a constant
value around 1 can be used to detect whether the system is
in the superconducting phase. It is hoped that these results
can motivate further studies of both the fundamental aspects
and potential applications of the nonequilibrium interacting
system.

The remainder of this paper is organized as follows. In
Sec. II we first present the pairing dynamics induced by
the resonant pulsed field. Second, we explore the long-time
dynamics of a single doublon and extend the results to the
multidoublon case, which paves the way to achieve the effec-
tive η-spin model and hence facilitates the understanding of
the steady ODLRO state. In Sec. III we propose a dynamical
scheme to excite the system into the nonequilibrium super-
conducting phase based on the repulsive dimerized Hubbard
model. Correspondingly, a dynamical detection method is
constructed to examine such a phase. Finally, we conclude our
results in Sec. IV. Some details of our calculation are placed
in the Appendixes.

II. TWO SIMPLE MODELS TO ELUCIDATE
THE UNDERLYING MECHANISM

Recently, much attention has been paid to the realization
of the superconductivity in the deep Mott insulator phase
via out-of-equilibrium dynamics, e.g., quench dynamics. The
underlying mechanism can be attributed to the η-pairing state
induced by the external field. From a deep level, however,

such a statement is neither complete nor is the corresponding
dynamic process clear. In this section we provide two exam-
ples to unravel the field-induced superconductivity. Two such
models correspond to the two key parts of the entire dynamic
process, namely the pairing induced by the external field and
the formation of the long-range correlation via diffusion of the
doublon.

A. Pairing induced by a resonant tilted field

We start from the one-dimensional (1D) Hubbard model
subjected to a tilted field, the Hamiltonian of which is given
by

H = Ho + He, (1)

with

Ho = −κ
∑
j,σ

(c†
j,σ c j+1,σ + H.c.) + U

∑
j

n j,↑n j,↓, (2)

He = F
∑
j,σ

jn j,σ , (3)

where ci,σ (c†
i,σ ) is the annihilation (creation) operator for

an electron at site i with spin σ (=↑,↓), and ni,σ = c†
i,σ ci,σ .

κ is the hopping integral between the nearest-neighboring
sites, while U > 0 is the on-site repulsive interaction. To gain
further insights into the field-induced paring, we first analyze
the symmetry of the system. When the tilted field is switched
off, the system Ho respects the spin symmetry characterized
by the generators

s+ = (s−)† =
∑

j

s+
j , (4)

sz =
∑

j

sz
j, (5)

where the local operators s+
j = c†

j,↑c j,↓ and sz
j = (n j,↑ −

n j,↓)/2 obey the Lie algebra, i.e., [s+
j , s−

j ] = 2sz
j and

[sz
j, s±

j ] = ±s±
j . Because of the commutation relation [Ho,

η+] = Uη+, the system has a set of eigenstates generated by
the η-pairing operators, i.e., {(η+)Nη |Vac〉} where |Vac〉 is a
vacuum state with no electrons and Nη is the number of η

pairs. Here η operator can be explicitly written down as

η+ = (η−)† =
∑

j

η+
j , (6)

ηz =
∑

j

ηz
j, (7)

with η+
j = (−1) jc†

j,↑c j,↓ and ηz
j = (n j,↑ + n j,↓ − 1)/2 sat-

isfying commutation relation, i.e., [η+
j , η−

j ] = 2ηz
j and

[ηz
j, η±

j ] = ±η±
j . At half-filling, the ground state (GS) of Ho

resides in the subspace with quantum number s2 = 0, sz = 0,
and is often refereed to as the antiferromagnetic ground state
in the large U limit (U/κ � 1). It mainly consists of the
Néel state. To give further insight into the pairing mecha-
nism, we consider a two-site system, wherein the GS becomes
a single valence bond state with the form of (c†

1,↑c†
2,↓ −

c†
1,↓c†

2,↑)/
√

2|Vac〉. The presence of He does not break the first
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FIG. 2. Sketch of the resonant pairing mechanism in the two-site
Hubbard model at half-filling. The system can be divided into two
subspaces labeled by the spin quantum numbers s = 0 and s = 1.
We focus on the subspace with s = 0. The double-occupied bases
are denoted by red and purple lines and the green line indicates the
valence bond state that is the GS when U/κ � 1. In the absence of
F , there exists an energy difference of U between two such types of
states. The resonant F places the valence bond state and red double-
occupied state on the same energy shell such that the kinetic term
allows a transfer between these two states. The gap 2F prohibits the
tunneling from the lower two states to the upper purple state and
hence protects the formation of the CDW state in the whole lattice.

spin symmetry but changes the property of the GS. What we
are interested in is how does the system respond to the tilted
field if the system is initialized in the GS of Ho. For clarity,
the matrix form of Hamiltonian (1) is written as

H =

⎛
⎜⎜⎝

U + 2F −√
2κ 0

−√
2κ 3F −√

2κ

0 −√
2κ U + 4F

⎞
⎟⎟⎠, (8)

in the invariant subspace s2 = 0, sz = 0 under the basis of
{| j〉}, where

|1〉 = c†
1,↑c†

1,↓|Vac〉, (9)

|2〉 = 1√
2

(c†
1,↑c†

2,↓ − c†
1,↓c†

2,↑)|Vac〉, (10)

|3〉 = c†
2,↑c†

2,↓|Vac〉. (11)

The presence of tilted field F modulates the energy gap be-
tween the three bases such that the system can exhibit rich
dynamic behavior in addition to doublon hopping in the large
U limit. Specifically, when we choose the resonant field, that
is, F = U , the energies of states |1〉 and |2〉 are close to res-
onance, but there is an energy gap 2F between them and |3〉.
Hence, one can envisage that the evolved state will only oscil-
late periodically with respect to two such bases if the system
is initialized in the valence bond state |2〉. For simplicity, we
sketch the effect of the resonant F in Fig. 2. Correspondingly,
the propagator can be given as U = eiσx�t in the basis of {|1〉,
|2〉}, and the transfer period is T/2, where T = π/� with
� = √

2κ . Figure 3 is plotted to exhibit this transfer process
with the initial state being a valence bond state, which agrees
with the theoretical prediction. In the experiment, the consid-
ered square pulsed field is not easy to realize due to its sharp
transition with time. For more realistic fields that vary slowly
with time, one can also arrive at the same result by carefully
modulating parameters. As the examples, we consider two

different types of Fj (t ) ( j = 1, 2) possessing the smoothed
forms of

F1(t ) = F0

2
[thanh

(t − T/2)

δ
− thanh

(t − T )

δ
], (12)

F2(t ) = 1.45F0e−α2(t−3T/4)2
, (13)

with δ = 0.1 and α = 4(ln2)1/2/T . F0 is assumed to be equal
to U . Here δ controls the slope of the curve on both sides and
the half-width of the Gaussian pulsed field F2(t ) is assumed
to be T/4 such that it can excite the system to the CDW
state. To check the effect of these two realistic fields, the
fidelity O(t ) = |〈1|e−iHt |2〉| is introduced, where |2〉 is the
initial valence bond state and |1〉 is the target double-occupied
state. Figure 4 shows clearly that Fj (t ) plays the same effect as
that of square pulsed field F (t ). So far we have demonstrated
that the resonant tilted field can transfer the GS of Ho to a
doublon state. The key point lies that F places two such states
on the same energy shell.

When we consider a Peierls distorted chain such that the
nearest-neighbor hopping of Ho is staggered, the GS still
has quantum number s2 = 0 and sz = 0 [49]. However, the
strong dimerization and large U prescribe that GS is the direct
product of a single valence bond in each dimerized unit cell
forming a valence bond solid. This guarantees that the pulsed
field takes effect in each unit cell so that the double-occupied
states can be prepared individually with the same duration
time T/2. As a consequence, the system is excited to the CDW
state residing in the high energy sector. We sketch this process
in Fig. 1 for clarity. This dynamical process plays a vital role
in the formation of the nonequilibrium superconducting state.
In a later section we will show that such a state can develop
into a superconducting state.

B. Doublon dynamics

The dynamics of a spatially extended system of strongly
correlated fermions poses a notoriously complex many-body
problem that is hardly accessible to exact analytical or numer-
ical methods. In this section we first study the single doublon
dynamics in a uniform Hubbard model, which may shed
light on multidoublon dynamics in the subsequently proposed
scheme. To begin with, we assume that the two fermions
are initially at the same site j0, i.e., |ψi〉 = c†

j0,↑c†
j0,↓|Vac〉.

Two fermions occupying the same site with strongly repulsive
interaction U form a doublon manifested by the fact that
the total double occupancy D = ∑

j〈Dj〉 stays near 1. The
corresponding local double-occupation operator is given by
Dj = n j,↑n j,↓. It is a long-living excitation, the decay of which
is suppressed because of energy conservation [50]. Hence, in
the large U limit, the doublon dynamics can be fully captured
by the following effective η-spin model, in powers of κ/U :

Heff = −κ ′ ∑
j

(
η j · η j+1 − 1

4

)
, (14)

which is obtained by a unitary transformation to project
out the energetically well separated high-energy part of the
spectrum [51]. In its essence, a small cluster is enough to cap-
ture the feature of doublon movement and doublon-doublon
interaction due to the absence of the long-range coupling.
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FIG. 3. Dynamical pairing of the two-site Hubbard model at half-filling for the different pulsed fields: (a1) and (b1) F/U = 0.3; (a2) and
(b2) F/U = 0.7; (a3) and (b3) F/U = 1. The other system parameters are (a1)–(a3) U = 5κ and (b1)–(b3) U = 10κ . It can be shown that the
resonant pulsed field can bring about the transition of the initial state from the valence bond state to pairing state. The corresponding transfer
period is π/2�, which agrees with the theoretical result in the main text. When the nonresonant external field is introduced, there will still be
some double-occupancy components in the evolved state, which is beneficial to the conductivity of the system. In principle, the larger U , the
larger the gap in the system and therefore more efficient this transition. However, we can find that, by comparing (a) and (b), the efficiency of
this dynamical scheme is still good even when a small U is applied.

One can safely extend the result to a large system. In Ap-
pendix A a simple two-site case is provided to elucidate this
mechanism. Note that we neglect the energy base mU com-
pared with Eq. (A7) in Appendix A. Here κ ′ = 4κ2/U and
η j = (ηx

j , η
y
j, ηz

j ). For the repulsive interaction, Heff describes
a η-spin ferromagnetic model, the ground state of which is
η-pairing state with the form of |ψg

eff (M )〉 = (η+)M/
√


|Vac〉
where M denotes the filled number of doublons and the
normalization efficient is 
 = CM

N . The discussion about
the uniform Hubbard model is instructive for the effective
Hamiltonian based on the dimerized Hubbard model in the
subsequent section since dimerization does not alter the prop-
erty of GS according to Lieb theorem [49]. It is worthy
pointing out that such a paring ground state usually relates
to the superconductivity of the system due to the following
j-independent correlation relation [38,41]

∣∣〈ψg
eff (M )

∣∣η+
i η−

i+ j

∣∣ψg
eff (M )

〉∣∣ =
{

M(N−M )
N (N−1) , for j 	= 0,

M
N , for j = 0.

(15)

It also served as the building block to realize ODLRO state
in the subsequent nonequilibrium dynamic scheme. To gain
further insight, we first focus on the single-doublon case such
that

∑
j η

z
jη

z
j+1 only provides an energy base and plays no

effect on the dynamics. Hence, Eq. (14) takes the form of the

tight-binding model with the effective hopping −κ ′/2, that is

Heff = −κ ′

2

∑
j

(η+
j η−

j+1 + η−
j η+

j+1). (16)

Performing the open boundary condition, the resulting free
tight-binding Hamiltonian is diagonalized by a simple trans-
formation (see Appendix B for more details). According to
Appendix B, one can readily obtain the evolved state as

|ψ (t )〉 =
∑

j

g( j0, j, t )η+
j |Vac〉, (17)

with

g( j0, j, t ) =
∞∑

l=−∞
iC

1
l. j0 , jJC1

l. j
(2κ ′t ) − iC

2
l. j0 , jJC2

l. j
(2κ ′t ) (18)

and

C1
l. j0, j = j − j0 + lN + 1, (19)

C2
l. j0, j = j − 1 + j0 + (l − 1)N, (20)

where Jl denotes the lth Bessel function of the first kind. We
concentrate on the property of the evolved state after a long
timescale. To this end, two physical quantities are employed to
characterize |ψ (t )〉. The first is the expectation value of d†

l dl
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FIG. 4. Comparison of three typical pulsed fields. The system is
initialized in the valence bond state with U = 5κ and F0 = U . (a) The
shape of F (t ) and Fj (t ). Here F (t ) represents a square pulsed field
with F (t ) = F0 for T/2 � t � T . The fidelity O(t ) first oscillates
because |2〉 is not the eigenstate of the system. When the pulsed field
is applied, O(t ) approaches 1. The only difference between three
such pulsed fields is the maximum value of O(t ), which is indicated
by a red dashed line. The idea case of O(t ) = 1 requires that the
interaction U is large enough such that |2〉 is the eigenstate of Ho;
the resonant pulsed field F0 = U ; and the exact duration time T/2. It
can be shown that these two types of the pulsed field can fulfill the
task that excites the system to the CDW state although Fj (t ) does not
fully meet these conditions.

which can be given as

Dl = 1

τ

∫ τ

0
Dl (t )dt , (21)

where Dl (t ) = 〈ψ (t )|d†
l dl |ψ (t )〉 represents the doublon oc-

cupancy per site and d†
l = c†

l,↑c†
l,↓. Here τ characterizes the

relaxation time that the system reaches to the steady state. The
second is the averaged doublon-doublon correlation

Cl1,l2 = 1

τ

∫ τ

0
Cl1,l2 (t )dt , (22)

where Cl1,l2 (t ) = |〈ψ (t )|η†
l1
ηl2 |ψ (t )〉|. Note that Eq. (15) can

be employed as a benchmark to examine whether the system
reaches the superconductivity. Straightforward algebra shows
that Dl = 1/(N + 1) which is irrelevant to the location of the
initial state j0. It also indicates that the doublon is evenly

distributed on each lattice site. Hence, one can expect that
Cl1,l2 is independent of the relative distance between the two
doublons. Due to the complexity of the analytical solution
of Cl1,l2 , we fix l1 = 1 and examine the value of C1,l2 as a
function of l2 in Fig. 5. It is shown that C1,l2 does not depend
on l2. As the number of the doublons increases, the correlator
C1,l2 still stays at a constant value, which is almost Dl =
M/(N + 1), manifesting that the result is not only applicable
to the case of dilute doublon gas. Figures 5(a1)–5(c1) clearly
show that the correlations oscillate around the red lines. The
values of those lines are 0.0833, 0.2045, and 0.2727, respec-
tively, which are obtained by setting M = 1, 3, 6, and N = 12
in Eq. (15). This indicates that such a nonequilibrium system
can favor the existence of the steady ODLRO state |ψg

eff (M )〉
on a long timescale in which η-pairing mechanism plays a
vital role. Such a feature is exactly what makes the system
superconducting. In addition, we can also see that the system
needs a certain relaxation time to enter into the nonequilib-
rium superconducting phase in Fig. 5. In such a dynamic
process, the doublons gradually diffuse throughout the whole
lattice and finally forms a steady state with a long-range cor-
relation manifested by the oscillation of the correlator around
the red line. For the Hubbard model at half-filling in Fig. 5(c),
one can roughly infer that such duration time is 4N/κ ′, which
will be used to estimate the timescale of the subsequent dy-
namical scheme. So far we have demonstrated the dynamic
mechanism that can generate the superconducting state from
the Mott insulator phase via pulsed field. In what follows, we
will propose a scheme to prepare the ODLRO state based on
the dimerized Hubbard model.

III. SCHEME TO PREPARING AND DETECTING
THE ODLRO STATE

In this section we concentrate on how to generate the
ODLRO state via out-of-equilibrium dynamics based on the
SSH Hubbard model. Furthermore, we propose a dynamic
method of detecting such a nonequilibrium superconducting
phase.

A. Dynamical preparing of the ODLRO state

According to the two dynamic mechanisms proposed
above, we will give the method of generating ODLRO state
through the dimerized Hubbard model. The considered 1D
time-dependent Hamiltonian can be given as

Hd = Hd
o + Hd

e , (23)

where

Hd
o = −

N−1∑
j=1

∑
σ=↑,↓

(κ1c†
2 j−1,σ c2 j,σ + κ2c†

2 j−1,σ c2 j,σ + H.c.)

+U
2N∑
j=1

n j,↑n j,↓, (24)

Hd
e = F (t )

2N∑
j=1

∑
σ=↑,↓

jn j,σ , (25)
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FIG. 5. (a1)–(c1) Time evolution of the correlations Cl1,l2 (t ) for 2, 6, and 12 filled particles of 12-site Hubbard model. (a2)–(c2) The
averaged doublon-doublon correlators C1,l2 as a function of l2. For simplicity, l1 is assumed to be 1 and l2 takes the values of 2, 6, and
12 for (a1)–(c1), respectively. The initial states are chosen as |ψ (0)〉 = η+

1 |Vac〉, η+
1 η+

3 η+
5 |Vac〉, and η+

1 η+
3 η+

5 η+
7 η+

9 η+
11|Vac〉. The red lines of

(a)–(c) obtained by Eq. (15) serve as the benchmark to show whether the system is in the nonequilibrium superconductivity phase. It is shown
that the correlator first quickly approaches the value of Eq. (15) and then it oscillates around the red line. Such dynamic behavior is independent
of l2, which indicates that the system reaches the superconducting phase featured by the emergence of the steady state with ODLRO. The unit
of time t is the inverse effective hopping rate 1/κ ′ and the duration time τ of (a2)–(c2) is assumed as 240/κ ′.

with

F (t ) =
{

U, 0 < t � T/2,

0, otherwise.
(26)

When U = 0, Eq. (24) reduces to a celebrated Su-Schrieffer-
Heeger model that is a paradigm for characterizing the
topology. Here κ1/κ2 ratio controls the type of dimerization.
In the OBC we concentrate on the GS property of Hd

o and do
not concern the edge state behavior. Considering Hd

o at half-
filling, the GS |ψg

d 〉 of Hd
o possesses the dimerized behavior if

κ1 > κ2, which can be shown in Fig. 1. However, two end sites
are not paired if κ1 < κ2. In the extreme case of κ1/κ2 � 1,
the GS is fully dimerized and becomes a valence bond solid.
When the tilted field is applied, each dimerized sector re-
spects the dynamical mechanism developed in Sec. II A. As
a consequence, the valence bond solid state |�(0)〉 = |ψg

d 〉
will evolve to a CDW state, that is |�(T/2)〉 = |ψCDW〉. For
clarity, this dynamical behavior is illustrated in Fig. 1. This
is the law that the evolved state should follow in an ideal
case. In practice, one can neither cut off the intercell coupling
nor increase the on-site interaction to infinity. It can be envi-
sioned that the presence of the intercell coupling suppresses
the dimerization and hence leads to the reduction of the com-
ponent of |ψCDW〉 in the evolved state. To check this point, we
plot the overlap Oc(t ) = |〈�(t )|e−iHdt |ψCDW〉| for different
values of κ2/κ1 in Fig. 6. It is shown that D(T/2) and Oc(T/2)

decrease as intercell-coupling increases. This indicates that
the GS is not excited to the high-energy sector even though
the resonant tilted field F is applied. To ensure the success
of the proposed scheme, one needs to choose a small intercell
coupling such that the quantity Oc(t ) approaches 1. However,
a small enough κ2 also brings other drawbacks, which will be
seen later.

When t > T/2, the dynamics of |�(t > T/2)〉 is only gov-
erned by Hd

o . According to the mechanism shown in Sec. II B,
one can expect that the system will drive the CDW state
into a ODLRO state. The only difference lies in the effective
Hamiltonian regarding the doublon dynamics. It is a dimer-
ized instead of a uniform η-spin model that can be given as

Hd
eff = −κ ′

1

N−1∑
j=1

(
η2 j−1 · η2 j − 1

4

)

− κ ′
2

N−1∑
j=1

(
η2 j · η2 j+1 − 1

4

)
, (27)

where κ ′
j = 4κ2

j /U . However, such staggered coupling co-
efficients do not alter the magnetic property of the system
and hence the corresponding ground state is still a η-spin
ferromagnetic state. This minor difference does not change
the final steady state but only affects the relaxation time due
to the inhomogeneous effective hopping κ ′

j which prohibits
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FIG. 6. Plots of D(T/2), Oc(T/2), and τr as a function of κ2/κ1 for the system Hd with 12 sites. The system is initialized in the GS
of a half-filled dimerized Hubbard model. The system parameters are U = 5κ1 and F = U . It is shown that the increase of κ2/κ1 decreases
D(T/2) and Oc(T/2), respectively. It indicates that the initial state cannot be excited to the high-energy sector of Hd

o such that the effective
Hamiltonian Hd

eff does not hold for the evolved state when t > T/2. The degree of dimerization affects the relaxation time τr . The stronger
the dimerization the longer the relaxation time. Hence, one needs to choose a suitable intercell coupling to generate a steady superconducting
state.

the diffusion of the doublon in the entire lattice. For clarity, we
plot the relaxation time τr as a function of κ2/κ1 in Fig. 6. Here
the relaxation time refers to the duration of time that the sys-
tem experiences when physical observables Cl1,l2 , and Dl do
not vary with time. This time is in proportion to U/κ2

2 , which
can be understood by the effective Hamiltonian Hd

eff . Although
the strong dimerization can ensure the main component of
the final state is |ψCDW〉, the relaxation time is much longer
than the condition of weak dimerization due to the effective
intercell hopping U/κ2

2 . Evidently the relaxation time is in-
finite when the system is fully dimerized (κ2 = 0). Given all
of that, the formation of the nonequilibrium superconducting
state is a tradeoff. On the one hand, the strong dimerization
(κ1/κ2 � 1) ensures that the GS of Hd

o mainly consists of the
valence bond solid. Therefore, the combination of pulsed field
and dimerized Hubbard model can evolve the initial ground
state to a CDW state which paves the way to preparing the
nonequilibrium ODLRO state. However, the cost is to signif-
icantly suppress the effective hopping between the different
dimerized unit cells leading to a very long relaxation time.
On the other hand, if one decreases the degree of dimerization
to κ1 ≈ κ2, the main constituent of the GS is the Néel state
although the system is still in the Mott insulating phase. Such
an initial GS cannot be driven to the CDW state even though a
resonant pulsed field is applied. Therefore, the nonequilibrium
superconducting phase fails to achieve. In this point of view,
the selection of hopping coefficient is a tradeoff between the
efficiency of the proposed scheme and the duration time.

In Fig. 7 we demonstrate this dynamical scheme by setting
κ1/κ2 = 2. In this setting, the portion of the valence-bond-
solid state in the GS is about 0.9. Hence, after a resonant
pulsed field, the expectation value

∑
l Dl (t ) of the target state

is approximately 3.6. Figure 7(a) clearly shows that the total
double occupancy quickly approaches 3.6 and is stabilized
around that value protected by the energy conservation. Such
long-lived excitation guarantees the validity of the effective η-
spin ferromagnetic model in the subsequent doublon-diffusion
dynamics. Consequently, the long-range correlation of η spin
is established as shown in Fig. 7(b). To give a panoramic
view of the dynamical scheme, we also perform the numerical

simulation in Fig. 8 to show the time evolutions of Dl and
C1,l2 . It can be shown that the final steady state distributes
evenly in the entire lattice with Dl = M/(N + 1). This indi-
cates the uniform diffusion of the doublons over the lattice.
Furthermore, the averaged correlator C1,l oscillates around
0.28 suggesting that the system enters into the nonequilibrium
superconducting phase, which verifies the previous analysis.
In experiment, the proposed scheme could be implemented
in the ultracold atoms loaded in optical lattices [52,53]. The
tunability and long coherence times of this system, along with
the ability to prepare highly nonequilibrium states, enable one
to probe such quantum dynamics.

B. Dynamical detection of the nonequilibrium
superconducting phase

To further capture the superconductivity of the nonequi-
librium system, we introduce the LE, which is a measure of
reversibility and sensitivity to the perturbation of quantum
evolution. The perturbation considered in our scheme is the
magnetic flux threading the ring. To this end, an additional
quench process should be implemented. The corresponding
post-quench Hamiltonian can be given as

Hb
p = −

N∑
j=1

∑
σ=↑,↓

(κ1eiφc†
2 j−1,σ c2 j,σ

+ κ2eiφc†
2 j,σ c2 j+1,σ + H.c.) + U

N∑
j=1

n j,↑n j,↓, (28)

where c2N+ j,σ = c j,σ and φ = 2Nφ denotes the total magnetic
flux piercing the ring. Taking the steady state |�(t f )〉 as an
initial state, the LE is defined as

L(t ) = |〈�(t f )|e−iHb
p t eiHb

o t |�(t f )〉|2, (29)

where t f is relaxation time of the first quench dynamics. Equa-
tion (29) represents the overlap at time t of two states evolved
from |�(t f )〉 under the action of the Hamiltonian operators
Hb

o and Hb
p . Consider a typical case κ1 ∼ κ2, the GS of Hd

o at
half-filling is an antiferromagnetic state. The resonant pulsed
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FIG. 7. (a1)–(c1) Upper panel: Time evolutions of total double
occupancy D(t ). Lower panel: Time evolutions of η correlators
C1,2(t ), C1,5(t ), and C1,8(t ). The red line denotes the correlation of
η-pairing state |ψg

eff (M )〉 with M = 4, which is served as a bench-
mark. The system is initialized in the ground state of HSSH

o that is
an eight-site 1D SSH Hubbard model at half-filling with U = 10κ1

and κ2 = 0.5κ1. Under the action of the resonant pulsed field, D(t )
first increases rapidly to the peak, and then decays to 3.6 followed by
an almost constant trend. The tiny fluctuations around the constant
“final” value are simply reflecting the fact that the total double occu-
pancy does not commute with the Hamiltonian. Such constant value
is determined by the degree of the dimerization and guarantees the
validity of our analytical analysis in the main text. After the quench,
the evolved state acquires the long-range correlation in the sense that
the correlator C1,8(t ) oscillates around 0.3. Note that the time t is
measured in units of the inverse hopping 1/κ1 .

field Hd
e does not induce the particle pairing and hence cannot

place the evolved state |�(t f )〉 in the high-energy sector of
Hd

o . It is still an insulating state residing in the low-energy sec-
tor and its dynamics is described by the effective Heisenberg
Hamiltonian

H s
eff = −κ ′

1

N∑
j=1

(
s2 j−1 · s2 j − 1

4

)

− κ ′
2

N∑
j=1

(
s2 j · s2 j+1 − 1

4

)
. (30)

Because of the virtual exchange of particles, this Hamiltonian
does hold regardless of the presence or absence of the mag-

2 4 6 8
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0.43

2 4 6 8

0.2
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0.4
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(b)

FIG. 8. Numerical results for the averaged C1,l and Dl . The cor-
responding duration time τ is chosen as 2000/κ1. The other system
parameters are the same as those in Fig. 7. Dl is evenly distributed on
each lattice site leading to l-independent η-spin correlation. Note that
the red line denotes the correlation of the η-pairing state |ψg

eff (M )〉
with M = 4. Evidently the steady superconducting state is prepared
via nonequilibrium dynamics.

netic field. As a consequence, the post- and before-quench
Hamiltonians share the same effective Hamiltonian H s

eff such
that L(t ) stay at 1. Now we switch gears to another typical
case κ1/κ2 � 1 in which the steady state |�(t f )〉 resides in
the high-energy sector due to the resonant pulsed field. It
is a superconducting state featured by the constant η-spin
correlator. With the same spirit, one can obtain the effective
post-quench Hamiltonian in such a sector when the mag-
netic field is applied. According to Appendix A, it can be
given as

Hp
eff = −κ ′

1

2

N∑
j=1

(
ei2φη+

2 j−1η
−
2 j + H.c. + 2ηz

2 j−1η
z
2 j − 1

2

)

−κ ′
2

2

N∑
j=1

(
ei2φη+

2 jη
−
2 j+1 + H.c. + 2ηz

2 jη
z
2 j+1 − 1

2

)
,

(31)

where the phase factor ei2φ stems from the doublon hopping.
This ensures that the system can respond to the external
magnetic field, and hence L(t ) changes. Note that when
φ = nπ , the effective post- and before-quench Hamiltonians
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FIG. 9. The average LE (L) for different intercell couplings with
resonant pulsed field F . The simulation is performed in a 12-site
Hubbard model at half-filling with sz = 0, and the total magnetic flux
penetrating the 1D ring is taken as 12φ. The red and blue lines denote
κ2/κ1 = 0.3 and 1, respectively. The other system parameters are
U = 10κ1 and t f = 1200/κ1. For the uniform chain, the final evolved
state lies in the low-energy sector of Hb

p and H d
o . Correspondingly,

the effective Heisenberg Hamiltonians of both systems share the
same form as shown in Eq. (30). Hence, the average LE (L) does
not respond to the magnetic flux. For the strong dimerization, the
resonant pulse field can fully drive the valence-bond-solid state into
a CDW state. Its dynamics can be captured by an η-spin Hamiltonian
(31) rather than a Heisenberg Hamiltonian (30). When a doublon
moves, it acquires a 2φ phase factor that can be witnessed by the
decrease of L(t ). However, when φ = π , the two effective Hamil-
tonians H p

eff and H d
eff are the same so that L(t ) returns to 1. In this

sense, the periodical oscillation behavior of L(φ) may serve as a
dynamical signature to probe whether the systems enters into the
nonequilibrium superconducting phase.

are the same as each other resulting in L(t ) = 1. If we fix the
reversal time t = τ , the value of L(τ ) will show a periodical
behavior as φ varies. In this sense, whether the LE exhibits
periodic behavior is an important feature to mark whether
the particles move in pairs. To confirm this conclusion, a
numerical simulation of average L defined as

L = 1

τ

∫ τ

0

∣∣〈�(t f )|e−iHb
p t eiHb

o t |�(t f )〉∣∣2
dt (32)

is performed in Fig. 9. It is shown that when κ2/κ1 = 0.3,
L(φ) exhibits an oscillation with period φ = π , which agrees
with our prediction. On the contrary, L(φ) stays at 1 if
κ2/κ1 = 1 indicating that the system is still in the Mott
insulating phase. This scheme suggests an alternative dy-
namical approach to detecting the nonequilibrium phase of
matter.

IV. SUMMARY

In summary, we have proposed a nonequilibrium method
to realize the long-living superconductivity in the dimer-
ized Hubbard model. The underlying mechanism can be
dissected into two main dynamical processes, dynamical pair-

ing, and doublon dynamics in the highly excited subspace.
Specifically, the dimerization in the Hubbard model makes
the main component of the antiferromagnetic ground state
change from Néel state to a valence bond solid. There-
fore, the dynamical pairing is confined to each unit cell
such that the corresponding valence bond state is excited
to the doublon state forming the so-called CDW state.
When the external field is switched off, the energy con-
servation prevents the decay of the doublon and hence
protects such long-lived excitation. The dynamics of the
CDW state is determined by the highly excited state of the
dimerized Hubbard model, which can be described by a
Heisenberg-like η-spin ferromagnetic model. After a long-
time evolution, the doublons tend to distribute evenly in
the entire lattice and form a steady state with ODLRO.
Furthermore, we propose a dynamical detection method to
identify this nonequilibrium superconducting phase via intro-
ducing the magnetic flux to trigger a quench and measuring
the LE. Our results open a new avenue toward enhanc-
ing and detecting superconductivity through nonequilibrium
dynamics.
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APPENDIX A: SIMPLE EXAMPLE OF TWO-SITE CASE
FOR THE EFFECTIVE HAMILTONIAN Heff

In this Appendix our goal is to obtain the effective Hamil-
tonian (14). To this end, we first divide the Hamiltonian Ho

into two parts Ho = H0 + Ht , where

H0 = U
∑
j=1

n j,↑n j,↓, (A1)

Ht = −κ
∑
σ, j

(c†
j,σ c j+1,σ + H.c.). (A2)

To second order in perturbation theory, the effective Hamilto-
nian is given by

Heff = P0H0P0 + P0Ht P1
1

E0 − H0
P1Ht P0 + O

(
κ3

U 2

)
,

(A3)

where P0 is a projector onto the Hilbert subspace in which
there are m lattice sites occupied by two particles with oppo-
site spin orientation, and P1 = 1 − P0 is the complementary
projection. Here the energy E0 of the unperturbed state is set
to E0 = mU where m denotes the number of doublons. Since
Ht acting on states in P0 annihilates only one double occupied
site, all states in P1Ht P0 have exactly m − 1 doubly occupied
sites. Now we provide a detailed calculation of the two-site
case for the effective Hamiltonian Heff which may shed light
to obtain the effective Hamiltonian (14). In the simplest two-
site case, P0 = ∑

α∈d.o. |α〉〈α| is the projection operator to the
doublon subspace spanned by the configuration {|x0〉, |0x〉},
and P1 = 1 − P0 = ∑

a/∈d.o. |a〉〈a| is the complementary
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projection. Here the abbreviation d.o. means the doubly occu-
pied subspace and |x0〉 = c†

1,↑c†
1,↓|Vac〉, |0x〉 = c†

2,↑c†
2,↓|Vac〉.

The first term of Eq. (A3) clearly gives P0H0P0 = U . The
second term can be simplified by noting: (i) the unperturbed
energy E0 is U and (ii) P1Ht P0 annihilates the doubly occu-
pied site. Then H2

eff for a two-site Hubbard system can be
written as

H2
eff = U +

∑
α,β∈d.o.

∑
a,b/∈d.o.

|α〉〈α|H ′|a〉〈a|

× 1

U − H0
|b〉〈b|H ′|β〉〈β|

= U + 1

U

∑
α,β∈d.o.

〈α|(H ′)2|β〉|α〉〈β|. (A4)

The second term describes the virtual exchange of the
fermions yielding that

H2
eff = U + 2κ2

U
(|x0〉〈0x| + |0x〉〈x0| + |x0〉〈x0| + |0x〉〈0x|).

(A5)

Combining the cases in the subspaces of |xx〉 and |Vac〉, the
pseudospin Hamiltonian can be given by the Heisenberg-like
model

Heff = U − 4t2

U

(
η1 · η2 − 1

4

)
, (A6)

where η j = (ηx
j , η

y
j, ηz

j ) and m can be 0, 1, and 2 denoting
the number of pairs of the doublon subspace. Evidently the
GS of Heff is the η-spin ferromagnetic state with the form of
(η+)2|Vac〉. One can extend the result to the system with N
sites, the corresponding effective Hamiltonian is given as

Heff = mU − 4t2

U

∑
j

(
η j · η j+1 − 1

4

)
. (A7)

Hence, the ferromagnetic state of η spins aligned on the x-y
plane is the η-pairing superconducting state.

APPENDIX B: THE DYNAMICS OF A SINGLE
DOUBLON IN A FINITE CHAIN

The diffusion of the doublon on the entire lattice is the key
to achieving the nonequilibrium superconducting phase of the
proposed scheme. Here we give a single doublon dynamics
analytically, which may shed light on dilute doublon gas.
Starting from an effective Hamiltonian (16), it is a free tight-
binding Hamiltonian with open boundary condition, which
can be diagonalized by the following transformation:

η+
k =

√
2

N + 1

∑
j

sin (k j)η+
j |Vac〉, (B1)

η−
k =

√
2

N + 1

∑
j

sin (k j)η−
j |Vac〉, (B2)

where k = nπ/(N + 1). Correspondingly, the effective
Hamiltonian in this representation can be given as

Heff =
∑

k

εkη
+
k η−

k , (B3)

with eigenenergy εk = −κ ′ cos k. Consider a double-occupied
initial state with form

|ψ (t )〉 = η+
j0
|Vac〉, (B4)

one can readily obtain the evolved state in terms of operator
η+

k as

|ψ (t )〉 =
√

2

N + 1

∑
k

e−iεkt sin k j0η
+
k |Vac〉. (B5)

Taking the inverse transformation, the evolved state in the
coordinate space is

|ψ (t )〉 =
∑

j

g( j0, j, t )η+
j |Vac〉, (B6)

where

g( j0, j, t ) = 2

N + 1

∑
k

e−iεkt sin k j sin k j0 (B7)

can be deemed as the propagator describing how much the
probability of the doublon flows from the initial j0th to jth
site. In the limit N → ∞, the summation

∑
k /N in Eq. (B7)

can be replaced by the integral
∫

dk such that

g( j0, j, t ) = i j− j0J j− j0 (2κ ′t ) − i j+ j0J j+ j0 (2κ ′t ), (B8)

where Jl denotes the lth Bessel function of the first kind.
However, such substitution is not true as N is a finite number.
As an alternative, the summation in Eq. (B7) can be expanded
by the Bessel function as

g( j0, j, t ) =
∞∑

l=−∞
iC

1
l. j0 , jJC1

l. j0 , j
(2κ ′t ) − iC

2
l. j0 , jJC2

l. j0 , j
(2κ ′t ),

(B9)

with

C1
l. j0, j = j − j0 + lN + 1, (B10)

C2
l. j0, j = j − 1 + j0 + (l − 1)N. (B11)

From another point of view, the dynamics in a finite chain
can be obtained by projecting the dynamics of an infinite
system to such a finite system. In this scenario one can utilize
safely the Bessel function to capture the interference behavior
when the evolved state touches the boundary. The cost is
to project the Bessel function entirely into the subsystem.
The infinite summation of Eq. (B9) denotes such a physical
process.
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