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Non-Hermitian invisibility in tight-binding lattices
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A flexible control of wave scattering in complex media is of relevance in different areas of classical and
quantum physics. Recently, great interest has been devoted to scattering engineering in non-Hermitian systems,
with the prediction and demonstration of new classes of non-Hermitian potentials with unique scattering
properties, such as transparent and invisible potentials or one-way reflectionless potentials. Such potentials
have been found for both continuous and discrete (lattice) systems. However, wave scattering in lattice systems
displays some distinct features arising from the discrete (rather than continuous) translational invariance of the
system, characterized by a finite band of allowed energies and a finite speed of wave propagation on the lattice.
Such distinct features can be exploited to realize invisibility on a lattice with methods that fail when applied to
continuous systems. Here we show that a wide class of time-dependent non-Hermitian scattering potentials or
defects with arbitrary spatial shape can be synthesized in an Hermitian single-band tight-binding lattice, which
are fully invisible owing to the limited energy bandwidth of the lattice.
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I. INTRODUCTION

In recent years there has been a surge of interest in both
classical and quantum systems that are described by effective
non-Hermitian (NH) Hamiltonians [1–3]. In such systems,
wave transport, localization, and scattering can be deeply
modified as compared to Hermitian systems. In particular,
a local NH scattering potential displaying spatial regions
with gain and loss, which serve as sources and sinks for
waves, can be suitably engineered to control fundamental
wave effects, such as interference and diffraction, in ways
that are impossible to realize with conventional Hermitian
systems. Suppressing wave scattering, thus realizing trans-
parency effects in inhomogeneous media, has been known for
a long time for Hermitian potentials [4–7]. However, the most
amazing effects, such as invisibility, could be realized only
when considering NH potentials. Recently, wave reflection
and scattering from complex potentials has sparked a great
interest with the prediction of intriguing phenomena, such
as unidirectional or bidirectional invisibility of the poten-
tial [8–21], asymmetric scattering [22–24], constant-intensity
wave transmission across suitably engineered NH scatter-
ing landscapes [25–30], reflectionless transmission based on
the spatial Kramers-Kronig relations [31–44,46,47], and NH
transparency [48].

In continuous media, wave reflection is usually described
in terms of continuous wave equations both in space and time,
such as the Helmholtz equation or the stationary Schrödinger
equation. However, in several physical systems, such as in
quantum or classical transport on a lattice [49–53] or in
so-called discrete quantum mechanics [54–56], space is dis-
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cretized and wave transport is better described by the discrete
version of the Schrödinger equation, where the the kinetic
energy operator p2

x is replaced by a periodic function E (px )
of the momentum operator px that describes the dispersion
band of the lattice. Owing to the importance of such a broad
class of discretized systems in different areas of physics, rang-
ing from photonics to condensed-matter physics and beyond,
scattering engineering in discrete models is becoming highly
demanding and could provide a fertile ground in many areas of
science and engineering in which discrete wave propagation is
a key element. Like for the continuous Schrödinger equation,
reflectionless potentials can be constructed for the discrete
Schrödinger equation as well [8,57–60], for example, using
the methods of supersymmetry for discrete systems [8,58–
60]. Likewise, constant-intensity waves can be realized in
suitably engineered complex lattices [28–30], as demonstrated
in a recent experiment [30]. However, wave scattering in lat-
tice systems displays some distinct features, such as Bragg
scattering, arising from the discrete (rather than continuous)
translational invariance in space of the system, and char-
acterized by a finite band of allowed energies and a finite
speed of wave propagation on the lattice. Such distinct fea-
tures can prevent the extension to discrete systems of wave
scattering engineering methods valid for continuous systems.
For example, it has been shown that the wide class of sta-
tionary Kramer-Kronig potentials, which are unidirectionally
or bidirectionally reflectionless in continuous media, become
reflective in discrete media owing to Bragg scattering [43].
On the other hand, the features of transport on a lattice
arising from the discrete spatial invariance can be fruitfully
exploited to realize forms of transparency that would be pre-
vented in continuous systems. For example, since the speed of
propagation on a lattice has an upper bound vm (according to
the Lieb-Robinson bound [61]), any potential that drifts on the
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lattice at a speed v faster than vm is necessarily reflectionless
[44,45].

In this work we suggest a simple method to synthesize
space-time invisible potentials and defects of arbitrary spatial
shape in tight-binding lattices that exploits the limited energy
(frequency) bandwidth of the lattice, and propose a feasible
photonic setup for the realization of such a broad class of
invisible potentials. The method strictly works for a system
with a bounded energy spectrum and thus it fails when applied
to a continuous system, where energy is unbounded.

II. WAVE SCATTERING ON A LATTICE

A. Model

Let us consider wave scattering from a time-dependent NH
potential or defect on a one-dimensional single-band tight-
binding lattice, which in physical space is described by the
coupled equations for the wave amplitudes ψn(t ) at various
lattice sites n,

i
dψn

dt
= −

∑
l

κn−lψl +
∑

l

Vn,l (t )ψl , (1)

where κl = κ∗
−l is the hopping amplitude between lattice

sites distant |l| on the lattice and the perturbation matrix
Vn.l (t ) describes the time-dependent scattering potential or
lattice defects, which is assumed to vanish fast enough as
|n, l| → ∞. For example, for a local on-site scattering po-
tential the matrix Vn,l (t ) is diagonal, while for defects of the
hopping amplitudes the matrix Vn,l (t ) contains off-diagonal
nonvanishing elements. As for the time dependence of the
perturbation matrix, special cases are those of a stationary
(i.e., time-independent) or time-periodic potentials. However,
we assume here a rather general dependence of time with the
only constraint that |Vn,l (t )| is a bounded function of time, i.e.,
it does not secularly grow in time, and can be expanded as a
Fourier integral or generalized Fourier integral (i.e., contain-
ing undamped harmonic terms).

In the absence of the scattering potential Vn,l (t ) = 0, the
eigenstates of Eq. (1) are extended Bloch waves, ψn(t ) =
exp[iqn − iE (q)t], with energy E = E (q) defined by the dis-
persion relation

E (q) = −
∑

l

κl exp(−iql ). (2)

A wave packet with carrier Bloch wave number q propagates
on the lattice with a group velocity vg = (dE/dq). For a lat-
tice with short-range hopping, i.e., when |κl | → 0 fast enough
as |l| → ∞, the group velocity displays an upper bound, ac-
cording to Lieb and Robinson [61]. Likewise, the energy band
displays a finite width �. For example, for a tight-binding
lattice with nearest-neighbor hopping amplitude, κl = 0 for
l �= ±1 and κl = κ for l = ±1, the tight-binding dispersion
curve reads E (q) = −2κ cos q, the energy band has a finite
width given by � = 4κ , and the group velocity vg = 2κ sin q
displays the upper bound vm = 2κ = �/2.

B. Scattering analysis

Let us now consider a spatially localized time-dependent
scattering potential and/or lattice defects, described by the

time-dependent perturbation matrix Vn,m(t ) with Vn,m(t ) → 0
fast enough as |n, m| → ∞. In particular, for a local on-site
scattering potential Vn(t ) the perturbation matrix Vn,m(t ) is
diagonal and given by Vn,m(t ) = Vn(t )δn,m. We assume that a
Bloch (plane) wave with wave number q, energy E = E (q),
and positive group velocity vg > 0, coming from n = −∞, is
incident from the left side toward the scattering region. We
can write the solution to Eq. (1) in the form

ψn(t ) = exp(iqn − iEt ) + φn(t ) exp(−iEt ), (3)

where the former term on the right-hand side of Eq. (3) is the
incoming plane wave while φn(t ) are the amplitudes of scat-
tered wave on the lattice, which satisfy the coupled equations

i
dφn

dt
= −Eφn +

∑
l

{Vn,l (t ) − κn−l}φl

+
∑

l

Vn,l (t ) exp(iql ). (4)

Equation (4) is a linear nonautonomous system with a forcing
term in the variables φn(t ) and should be solved with the
appropriate boundary conditions, which depend rather gen-
erally on the time dependence of the scattering perturbation
matrix Vn,m(t ). For a static (time-independent) potential, the
system is autonomous, φn(t ) is independent of t , and outgoing
boundary conditions should be imposed. The same holds for
a time-periodic potential, where Floquet analysis can be used
[18]. On the other hand, for arbitrary time dependence of the
potential, Eq. (4) should be solved by considering the initial-
value condition φn(−t0) = 0 at some remote time t0 → ∞.
Here we will consider this rather general case. In this case
the NH scattering matrix Vn,m(t ) turns out to be invisible pro-
vided that, for any arbitrary incident wave, one has φn(t ) → 0
for the scattered wave amplitudes as |n| → ∞ for any time
instant t .

C. The continuous (long-wavelength) limit of wave scattering

In the limit of a tight-binding lattice with nearest-neighbor
hopping of amplitude κ and for an on-site scattering potential
Vn(t ), i.e., Vn,m(t ) = Vn(t )δn,m, we can solve Eq. (1) by letting
ψn(n) = ψ (x = n, t ), where the wave function ψ (x, t ) of con-
tinuous space and time variables x and t satisfies the discrete
Schrödinger equation (see for instance [43,62])

i
∂ψ

∂t
= −2κ cos(px )ψ (x, t ) + V (x, t )ψ (x, t ), (5)

where px = −i∂x and Vn(t ) = V (x = n, t ).
The kinetic energy term in Eq. (5) is periodic in the mo-

mentum px, which implies that a limited interval of energies
are allowed in a lattice system, corresponding to propagative
(Bloch) waves. The invisibility method that will be presented
in the next section works, provided that the kinetic energy op-
erator is bounded, like in a system with discrete translational
invariance, but breaks down when the kinetic energy term
is unbounded from above, like in a system with continuous
translational symmetry. This case is found in the so-called
long-wavelength limit of the discrete Schrödinger equation,
which corresponds to low-energy excitation of the system.
Specifically, for a potential V (x, t ) that varies slowly with
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respect to x over the lattice period and for low-energy ex-
citation of the system, we may expand the kinetic energy
operator cos(px ) in the neighbor of px = 0, i.e., we may let
cos(px ) � 1 − p2

x/2 (long-wavelength approximation). In this
case, omitting an inessential constant energy potential term,
Eq. (5) reads

i
∂ψ

∂t
= −κ

∂2ψ

∂x2
+ V (x, t )ψ (x, t ), (6)

which is the continuous Schrödinger equation describing the
scattering of a quantum particle in the NH time-dependent
potential V (x, t ). In this limit we lose the discrete translational
invariance of the lattice and the energy of the system becomes
unbounded from above.

III. NON-HERMITIAN INVISIBILITY

A. The general result

NH invisibility in lattice systems has been predicted
in some previous works, including nearest-neighbor tight-
binding lattices under special stationary potentials synthesized
by the methods of supersymmetry [8] or for harmoni-
cally oscillating on-site potentials [18], and for the class of
Kramers-Kronig potentials drifting on the lattice at a speed
faster than vg [44]. The last method exploits the finite speed
of wave propagation in the lattice, so that any potential that
drifts on the lattice at a speed faster than vm cannot reflect
waves and thus is transparent.

Here we widen the class of NH invisible potentials on a
lattice, beyond the nearest-neighbor approximation and in-
cluding also scattering from off-diagonal (hopping) defects in
addition to on-site (diagonal) potential, exploiting the finite-
ness of the energy bandwidth of the lattice. The main physical
idea is as follows. Let us assume that the Fourier spectrum
V̂n,m(ω) of the perturbation scattering matrix Vn,m(t ), defined
by

V̂n,m(ω) =
∫ ∞

−∞
dtVn,m(t ) exp(iωt ), (7)

vanishes for all frequencies ω < ω0 (or, likewise, for any
frequency ω > −ω0), where ω0 is larger than the bandwidth
� of the tight-binding lattice. The interaction of the inci-
dent wave with the time-varying potential is inelastic and
involves the absorption or emission of energy quanta from
the oscillating potential [63,64]. However, since the Fourier
spectrum of the oscillating potential is composed by ω > ω0

frequency components solely, the energies E ′ of the scattered
wave are constrained by the inequality [18,65] E ′ = E + ω >

E + ω0 > E + �, i.e., they fall outside the allowed energy
band of the lattice. Therefore, far from the scattering region
where the lattice is uniform, the scattered waves are Bloch
waves but with an imaginary Bloch wave number, i.e., they
are evanescent waves decaying toward zero as |n| → ∞. This
means that the scattered waves cannot be propagative in the
homogeneous lattice regions, far from the scattering potential,
which clearly implies invisibility.

We emphasize that this result holds regardless of the spe-
cific spatial shape of the potential and specific shape of
incoming waves, so that the kind of invisibility induced by the
temporal modulation does not require any special tailoring in

space of the scattering potential nor special initial excitation
of the system with prescribed input state (such as, e.g., in
Ref. [30]). From this simple physical picture, we can conclude
that the following general property holds:

Any scattering NH matrix perturbation Vn,m(t ), such that its
Fourier spectrum vanishes for frequencies ω < ω0 (or likewise
for frequencies with ω > −ω0), with ω0 larger than the width
� of the tight-binding lattice band, is invisible.

To prove the above general property, let us integrate the
coupled equations (4) for the scattered wave amplitudes φn(t )
at various lattice sites with the initial condition φn(−t0) = 0 at
a far remote time t0 → ∞ using a modified Laplace-Fourier
method. To this aim, let f (t ) be a regular function of time t ,
defined for t � −t0 and bounded (or growing in time lower
than any exponential) as t → ∞. For a given time t1 > 0,
arbitrarily large, let us introduce the modified Fourier-Laplace
spectrum

f̂ (ε)(ω) =
∫ t1

−t0

dt f (t ) exp(iωt − εt ), (8)

where ε > 0 is a small positive number. Note that the previous
relation reduces to the usual Fourier spectrum in the limit ε =
0 and t1, t0 → ∞. The inverse relation to Eq. (8) reads (see
Appendix)

f (t ) = 1

2π
exp(εt )

∫ ∞

−∞
dω f̂ (ε)(ω) exp(−iωt ), (9)

which is valid for −t0 < t < −t1.
Here we are interested in considering the triple limit

t0, t1 → ∞, ε → 0+ with εt0 → 0 and εt1 → ∞. Multiply-
ing both sides of Eq. (4) by exp(iωt − εt ) and integrating
over time t from −t0 to t1, taking into account that
φn(−t0) exp(εt0) � φn(−t0) = 0 and φn(t1) exp(−εt1) � 0 in
the above mentioned limit, one obtains

(E + ω + iε)φ̂(ε)
n (ω) +

∑
l

κn−l φ̂
(ε)
l (ω)

− 1

2π

∑
l

∫ ∞

−∞
d�V̂n,l (�)φ̂(ε)

l (ω − �)

=
∑

l

V̂ (ε)
n,l (ω) exp(iql ). (10)

In deriving Eq. (10), we used the relation
∫ t1

−t0

dtVn,l (t )φl (t ) exp(iωt − εt )

� 1

2π

∫ ∞

−∞
d�V̂n,l (�)φ̂(ε)

l (ω − �), (11)

which is valid in the large t0, t1 limit, as shown in the Ap-
pendix. Since V̂n,l (�) = 0 for � < ω0, from Eq. (10) it readily
follows that the spectral amplitude φ̂(ε)

n (ω) depends on all
other spectral amplitudes φ̂

(ε)
l (ω′) at frequencies ω′ < ω −

ω0. Moreover, in the large t0, t1 and small ε limits, V̂ (ε)
n,l (ω) �

V̂n,l (ω) = 0 for ω > ω0 (see Appendix), so that the forcing
term of the spectral amplitude φ̂(ε)

n (ω) [the term on the right-
hand side of Eq. (10)] vanishes for ω < ω0. This implies that

094205-3



STEFANO LONGHI AND ERMANNO PINOTTI PHYSICAL REVIEW B 106, 094205 (2022)

φ̂(ε)
n (ω) = 0 (12)

for any frequency ω � ω0, in agreement with the physical
picture that the scattered waves cannot transport energies (fre-
quencies) smaller than E + ω0. Therefore, we can write

φn(t ) = 1

2π
exp(εt )

∫ ∞

ω0

dωφ̂(ε)
n (ω) exp(−iωt ). (13)

Let us now consider the behavior of φn(t ) as n → ±∞,
i.e., far from the scattering region. In this limit, the spectral
amplitudes φ̂(ε)

n (ω) with ω > ω0 satisfy the linear dispersion
equation

(E + ω + iε)φ̂(ε)
n (ω) +

∑
l

κn−l φ̂
(ε)
l (ω) = 0, (14)

which is obtained from Eq. (10) by neglecting the vanish-
ing scattering matrix elements as n → ±∞. The solution to
Eq. (14) is given in terms of superposition of Bloch waves,
namely φ̂(ε)

n (ω) ∼ Y±(ω) exp(iQ±n) as n → ±∞ with some
complex amplitudes Y±(ω) and complex Bloch wave numbers
Q± = Q±(ω). The complex Bloch wave numbers are obtained
as a solution of the dispersion equation

E + ω = E (Q±) = −
∑

n

κn exp(−iQ±n), (15)

with Im(Q+) < 0 and Im(Q−) > 0 Since the energy E + ω >

E + � falls outside the band, the imaginary parts of Q±
are strictly nonvanishing and thus the Bloch waves φ̂(ε)

n (ω)
are evanescent, exponentially decaying as n → ±∞ for any
frequency ω > ω0. Indicating by Q+,m > 0 the minimum of
|Im(Q+)| over the range of frequencies ω � ω0, from Eq. (13)
for n → ∞ one has

|φn(t )| ∼ 1

2π
exp(εt )

∣∣∣∣
∫

dωY+(ω) exp(iωt − iQ+n)|
∣∣∣∣

<
1

2π
exp(εt )

∣∣∣∣
∫

dωY+(ω) exp(iωt )

∣∣∣∣ exp(−Q+,mn) (16)

and thus |φn(t )| → 0 as n → ∞ for any time instant t . Like-
wise, one has |φn(t )| → 0 as n → −∞ for any time instant
t , indicating that the NH scattering perturbation matrix is
invisible.

Clearly the invisibility property strictly requires a finite
bandwidth of allowed energies in the system, and thus it
breaks down in the continuous (long-wavelength) limit of
lattice dynamics. In fact, in this limit the dynamics can be de-
scribed by a usual continuous Schrödinger equation [Eq. (6)]
with an unbounded range of allowed energies. Since the en-
ergies E ′ of scattered waves can now fall into allowed energy
intervals, they are now propagative (rather than evanescent)
waves, and the invisibility property is thus lost: Only for
some special tailored space-time potentials scattering can be
prevented (see for instance [40]).

B. Illustrative examples

To exemplify the main result presented in the previous sub-
section and to check the correctness of the theoretical analysis,

let us consider a scattering matrix which can be factorized as

Vn,m(t ) = R(t )Tn,m, (17)

with a time-independent matrix Tn,m and a function of time
R(t ). An invisible potential is obtained, for example, by
assuming for R(t ) a superposition of positive-frequency har-
monics, i.e., R(t ) = ∑

α Aα exp(iωαt ), with frequencies ωα >

�. The frequencies ωα could be rather generally incommen-
surate, so as a standard Floquet analysis of inelastic scattering
[18,63] cannot be applied. Yet our general analysis discussed
in a previous subsection predicts invisibility of the scattering
potential. As for the form of the matrix Tn,m, we consider
two typical cases. The first one corresponds to a local on-
site scattering potential, i.e., Tn,m = Vnδn,m, while the second
case corresponds to a defect in the hopping amplitudes of the
lattice, for example we can assume Tn,m = δn,0δm,1 + δn,1δm,0,
which corresponds to modify the hopping amplitude between
sites n = 0 and n = 1 of the lattice from κ1 to κ1 + R(t ).

Figures 1 and 2 demonstrate the invisibility of the oscillat-
ing scattering perturbation in the two cases. The figures depict
the evolution of a forward-propagating Gaussian wave packet,
which is scattered off by the time-varying potential. At initial
time t = 0 the wave packet is localized at the left side far
from the scattering region, and propagates forward toward
the scattering region. Coupled equations (1) have been nu-
merically solved using an accurate variable-step fourth-order
Runge-Kutta method. We assumed a tight-binding lattice with
nearest- and next-to-nearest-neighbor hopping amplitudes
κ1 = κ−1 = 1, κ2 = κ−2 = 0.2, and κl = 0 for l �= ±1,±2.
The bandwidth of the lattice is � = 4. In Fig. 1 we have a
local scattering potential Vn = V0 exp(−n2/w2) of amplitude
V0 = 5 and size w = 2, while in Fig. 2 we have a defect of
the hopping amplitude between sites n = 0 and n = 1, de-
scribed by the perturbation matrix Tn,m = δn,0δm,1 + δn,1δm,0.
Two different modulation functions R(t ) have been used,
namely R(t ) = A1 exp(iω1t ) + A2 exp(iω2t ) [Figs. 1(a) and
2(a)], and R(t ) = A1 cos(ω1t ) + A2 cos(ω2t ) [Figs. 1(b) and
2(b)]. Parameter values are A1 = A2 = 1, ω1 = 5, and ω2 =√

18. Note that in the former case the modulation function has
a positive-frequency spectrum and, since ω1,2 > �, invisibil-
ity is clearly observed according to the theoretical analysis.
Conversely, in the latter case the Fourier spectrum of R(t )
is bilateral, corresponding to an Hermitian perturbation, and
invisibility is no longer observed.

C. Physical implementation

Synthetic lattices based on photonic, mechanical, acoustic,
electrical, or ultracold atomic systems could provide possible
physical platforms for the observation of the invisibility effect
predicted in this work. Here we discuss in detail a possible
experimental setup based on photonic quantum walks of light
pulses in coupled fiber loops [66]. Photonic quantum walks
realize a synthetic lattice in time domain, enabling a flexible
control of non-Hermitian terms in the Hamiltonian. They have
provided recently a fascinating platform to experimentally
access a wealth of novel non-Hermitian phenomena, including
parity-time symmetry breaking [67,68], non-Hermitian topo-
logical physics [69–73], non-Hermitian Anderson localization
[74], constant-intensity waves and induced transparency in
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FIG. 1. Numerically computed propagation of a Gaussian
wave packet in a tight-binding lattice with nearest and next-to-
nearest-neighbor hopping across a time-varying local scattering
potential Vn,m(t ) = VnR(t )δn,m. The scattering potential is Vn =
V0 exp(−x2/w2 ); the modulation function is R(t ) = A1 exp(iω1t ) +
A2 exp(iω2t ) in (a), and R(t ) = A1 cos(ω1t ) + A2 cos(ω2t ) in (b),
with incommensurate frequencies ω1 and ω2. Parameter values are
given in the text. The lattice is excited at initial time t = 0 with the
Gaussian wave distribution ψn(0) = exp{−[(n + 90)/10]2 + iqn}
with carrier Bloch wave number q = π/2. The left panels show
on a pseudocolor map the time evolution of the amplitudes |ψn(t )|,
whereas the right panels show the behavior of the amplitudes |ψn(t0)|
at final time t0 = 100 (small blue dots), after the wave packet has
fully crossed the scattering region. The open red circles in (b) depict
the behavior of |ψn(t0 )| that one would observe in the absence of
the scattering potential, i.e., for the freely moving wave packet. Note
that in (a) the two curves are overlapped, indicating that the scattering
potential is invisible.

complex scattering potential [30], and multiple non-Hermitian
phase transitions [75]. The system consists of two fiber loops
of slightly different lengths L ± �L (short and long paths)
that are connected by a fiber coupler with a coupling angle β.
Two synchronized amplitude and phase modulators are placed
in one of the two loops to control on demand the amplitude
and phase of the traveling pulses at each transit. The traveling
times of light in the two loops are T ± �T , where T = L/c,
c is the group velocity of light in the fiber at the probing
wavelength, and �T = �L/c 
 T is the time mismatch aris-
ing from fiber length unbalance. The light dynamics of the
optical pulses at successive transits in the two loops is con-
sidered at discretized times t = tm

n = n�T + mT , where n =
0,±1,±2, . . . defines the site number of the synthetic lattice
at various time slots and m is the round-trip number, assumed

FIG. 2. Same as Fig. 1, but for a perturbation scattering ma-
trix describing a time-varying hopping defect Vn,m = R(t )(δn,0δm,1 +
δn,1δm,0) between sites n = 0 and n = 1. Parameter values are given
in the text.

to match the traveling time T along the mean path length L. In-
dicating by u(m)

n and v(m)
n the field amplitudes at the discretized

times tm
n of the pulses in the two loops, light dynamics in the

coupled fiber loops is governed by the discrete-time coupled
equations (see, e.g., [30,45,68,71,73,75,76])

u(m+1)
n = [

cos βu(m)
n+1 + i sin βv

(m)
n+1

]
exp

[ − 2iV (m)
n

]
, (18)

v(m+1)
n = [

cos βv
(m)
n−1 + i sin βu(m)

n−1

]
, (19)

where V (m)
n is the complex NH scattering potential that

is realized by suitable control of synchronized phase and
amplitude modulators. In the absence of the scattering po-
tential, i.e., for V (m)

n = 0, the synthetic lattice shows discrete
spatial invariance and the corresponding Bloch eigenfunc-
tions to Eqs. (18) and (19) are given by (u(m)

n , v(m)
n )T =

(ū, v̄) exp[iqn − iE (q)m], where q is the spatial Bloch wave
number and E (q) is the quasienergy. Owing to the binary
nature of the lattice, two quasienergy bands are found with
dispersion relations E±(q) given by

E±(q) = ±acos(cos β cos q). (20)

Note that for a coupling angle β close to π/2, i.e., for
β = π/2 − ρ with |ρ| 
 1, the dispersion relations of the two
quasienergies read

E±(q) = ±π

2
∓ ρ cos(q), (21)

i.e., they correspond to the shifted dispersion curves of
two tight-binding lattices with nearest-neighbor hopping
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amplitude κ = ±ρ/2. In order to observe the NH invisibility
predicted in this work, we consider the continuous-time limit
of the discrete-time quantum walk [73], which is obtained by
assuming a coupling angle β close to π/2, i.e., β = π/2 − ρ

with |ρ| 
 1, and a small and slowly varying amplitude of the
scattering potential amplitude, i.e., |V (m)

n | ∼ O(ρ) 
 1 and
V (m+1)

n � V (m)
n . At first order in ρ, Eqs. (18) and (19) take the

form

u(m+1)
n = [

ρu(m)
n+1 + iv(m)

n+1

]
exp

( − 2iV (m)
n

)
, (22)

v(m+1)
n = [

ρv
(m)
n−1 + iu(m)

n−1

]
. (23)

From the above equations, one can eliminate from the dy-
namics the variables v(m)

n , yielding a second-order difference
equation for u(m)

n , which is solved by letting [73]

u(m)
n = (i)m

{
ψ (+)

n (m) + (−1)mψ (−)
n (m)

}
. (24)

In Eq. (24), ψ (±)
n (m) are slowly varying functions of the

discrete time m which satisfy the decoupled continuous-time
Schrödinger equations

i
dψ (±)

n

dt
= ±κ

(
ψ

(±)
n+1 + κψ

(±)
n−1

) + Vn(t )ψ (±)
n , (25)

where we have set κ ≡ (ρ/2), t = m (considered as a
continuous variable), and Vn(t ) = V (m)

n . Therefore, in the
continuous-time limit the light pulse dynamics in the photonic
quantum walk setup emulates the scattering dynamics from a
NH time-dependent potential Vn(t ) on two independent tight-
binding lattices with nearest-neighbor hooping amplitudes
±κ . Provided that the Fourier spectrum of the potential Vn(t )
vanishes for all frequencies ω smaller than the bandwidth 4κ

of the tight-binding lattices, the scattering potential turns out
to be invisible. An illustrative example, showing an invisible
potential in the quantum walk system, is shown in Fig. 3. The
figure depicts the numerically computed light pulse dynamics
in the coupled fiber loops, as obtained by solving the discrete-
time coupled equations (18) and (19), i.e., without any
approximation, for a coupling angle β = 0.97 × π/2 and for a
scattering potential V (m)

n = Rm exp[−(n/3)2] with modulation
function Rm = A1 exp(iω1m) + A2 exp(iω2m) in Fig. 3(a),
and Rm = A1 cos(ω1m) + A2 cos(ω2m) in Fig. 3(b) (A1 = 0.1,
A2 = 0.06, ω1 = 0.1, ω2 = √

2/15 � 0.0943). The system is
initially excited, at time m = 0, with a single pulse injected
into one of the two loops at the site n = −15, far from the
scattering potential, i.e., we assumed as an initial condition
u(0)

n = δn,−15 and v(0)
n = 0. The initial excitation spreads along

the lattice and is scattered off by the oscillating potential
near the n = 0 region. In the former case, where the complex
modulation function Rm is composed by positive-frequency
components solely, with frequencies larger than the width
of the lattice band, the potential turns out to be invisible
[Fig. 3(a)], while in the latter case, corresponding to a real
modulation function with positive and negative frequency
components, the potential in not invisible and scattered prop-
agative waves are clearly visible [Fig. 3(b)].

D. Invisibility in two-dimensional lattices

The previous analysis has been focused on invisibility in
one-dimensional lattice systems, however, the results can be

FIG. 3. Invisible NH oscillating potentials in a photonic quan-
tum walk. The scattering potential is V (m)

n = Rm exp[−(n/3)2] with
modulation function Rm = A1 exp(iω1m) + A2 exp(iω2m) in (a), and
Rm = A1 cos(ω1m) + A2 cos(ω2m) in (b). Parameter values are β =
0.97 × π/2 (coupling angle), A1 = 0.1, A2 = 0.06, ω1 = 0.1, and
ω2 = √

2/15 � 0.0943. Initial excitation condition of the system is
u(0)

n = δn,−15 and v(0)
n = 0, corresponding to a single optical pulse

injected into one of the two fiber loops at time slot (lattice site)
n = −15. The left panels show the discrete-time evolution of the
light intensity (|u(m)

n |2 + |v(m)
n |2) at various lattice sites n on a pseu-

docolor map, whereas the right panels show the evolution of I (m)
n ≡

(|u(m)
n − ũ(m)

n |2 + |v(m)
n − ṽ(m)

n |2), where ũ(m)
n and ṽ(m)

n are the pulse
amplitudes in the fiber loops that one would observe in the absence
of the scattering potential. In (a) one clearly sees that far from
the scattering region one has I (m)

n � 0, indicating that the scattering
potential in invisible. Conversely, in (b) the potential is not invisible.

readily extended to scattering by local space-time perturba-
tions in two-dimensional (2D) single-band lattices, namely
any scattering NH perturbation such that its Fourier spectrum
vanishes for frequencies ω < ω0 (or likewise for frequen-
cies with ω > −ω0), with ω0 larger than the width � of
the tight-binding lattice band, is invisible. In fact, the main
physics underlying the invisibility property of such scatter-
ing potentials is that the energies of the scattered waves fall
outside the allowed energy band of the lattice. Therefore,
far from the scattering region where the lattice is uniform,
the scattered waves are Bloch waves but with an imaginary
Bloch wave number, i.e., they are evanescent waves decaying
toward zero at infinity. This result holds regardless of the

094205-6



NON-HERMITIAN INVISIBILITY IN TIGHT-BINDING … PHYSICAL REVIEW B 106, 094205 (2022)

FIG. 4. Scattering dynamics of a wave packet in a 2D square lattice from a space-time Gaussian-shaped on-site scattering potential.
Parameter values are given in the text. The five panels in (a), (b), and (c) show on a pseudocolor map the numerically computed evolution
of the wave packet amplitudes |ψn,m(t )| at a few increasing times t (t = 0, t = 5, t = 7.5, t = 10, and t = 15 from left to right). In (a) there
is no scattering potential, in (b) there is the NH (invisible) space-time scattering potential, in (c) there is the Hermitian space-time scattering
potential. (d) Temporal behavior of the error function I (t ), on a log scale, measuring the wave packet reconstruction of the wave packet after
the scattering event. Curves 1 and 2 refer to the scattering by the non-Hermitian and by the Hermitian potentials, respectively.

spatial dimensionality of the lattice, indicating that invisibility
is observed also for 2D lattice systems. As an illustrative
example, let us consider the scattering in a 2D square lattice
with nearest-neighbor hopping amplitude κ from a local NH
on-site potential Vn,m(t ), which is described by the discrete
Schrödinger equation

i
dψn,m

dt
= −κ (ψn+1,m + ψn−1,m + ψn,m+1 + ψn,m−1)

+Vn,m(t )ψn,m, (26)

where ψn,m(t ) is the wave amplitude at site (n, m) of the
square lattice. As in Sec. III B we consider a scattering po-
tential of the form Vn,m(t ) = R(t )Vn,m with a time-independent
matrix Vn,m, defining the spatial shape of the local 2D scatter-
ing potential, and a modulation function R(t ) given by either
R(t ) = A1 exp(iω1t ) + A2 exp(iω2t ) or R(t ) = A1 cos(ω1t ) +
A2 cos(ω2t ) with incommensurate frequencies ω1 and ω2.
Figure 4 illustrates the invisibility of the oscillating scat-
tering potential when the modulation amplitude R(t ) is of
the first type. The figure depicts the evolution of an ini-
tial Gaussian wave packet, propagating at an angle of 45◦
with respect to the primitive vectors of the Bravais lattice,
which is scattered off by the Gaussian-shaped 2D potential
Vn,m = V0 exp(−n2/w2 − m2/w2). At initial time t = 0 the
wave packet is localized at the bottom left side of the lat-
tice, far from the scattering region, and propagates along
the main lattice diagonal toward the scattering region. Cou-
pled equations (26) have been numerically solved using an
accurate variable-step fourth-order Runge-Kutta method on
a square lattice comprising 42 × 42 sites; parameter values
used in the simulations are κ = 1, V0 = 25, w = 2, ω1 =
10, ω2 = 2

√
18, and A1 = A2 = 1. The bandwidth of the

lattice is � = 8κ = 8. The initial condition is ψn,m(0) =

N exp[−(n + 7)2/9 − (m + 7)2/9 + iπ (n + m)/2], where N
is the normalization constant. Figures 4(a)–4(c) show the
temporal evolution of the wave packet in the absence of
the scattering potential [Fig. 4(a)], for a modulated NH
scattering potential with R(t ) = A1 exp(iω1t ) + A2 exp(iω2t )
[Fig. 4(b)], and for a modulated Hermitian scattering poten-
tial with R(t ) = A1 cos(ω1t ) + A2 cos(ω2t ) [Fig. 4(c)]. The
full dynamical evolution is shown in movies 1, 2, and 3 of
the Supplemental Material [77]. Clearly, in the latter case
[Fig. 4(c)], the potential is not invisible, and a large fraction
of the incoming wave packet is scattered off by the oscillating
Hermitian Gaussian-shaped potential. On the other hand, after
the scattering event, the wave packet in Fig. 4(b) propagates
as if the scattering potential were not present. This is clearly
shown in Fig. 4(d), which depicts the numerically computed
evolution of the error function I (t ) = maxn,m|ψn,m(t ) − ψ̃n,m|
on a log scale, where ψn,m(t ) and ψ̃n,m(t ) are the amplitudes at
lattice site (n, m) and at time t with or without the scattering
potential, respectively. Clearly, I (t ) → 0 as t → ∞ is the
signature of potential invisibility.

IV. CONCLUSIONS AND DISCUSSION

Wave scattering from complex potentials in non-Hermitian
systems has received a great and increasing interest in the
past recent years, with the ability of tailoring the scattering
properties of complex media in unprecedented ways and with
the discovery of new classes of scatteringless and invisible
potentials. Wave scattering is deeply influenced not only by
the presence of NH potentials with gain and loss regions,
which serves as source and sinks of waves, but also by the
continuous or discrete spatial translational invariance of the
system.
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Most of the methods, so far suggested to realize invisi-
ble or transparent potentials, both in continuous and discrete
NH systems, rely on special tailoring of the potential shape,
using for example the methods of supersymmetry, the spa-
tial Kramers-Kronig relations, or other related techniques.
In this work we suggested a route toward the realization
of invisible potentials in NH systems with discrete spatial
translational invariance, which does not require any special
tailoring of the potential shape. The key characteristic of our
method is modulating in time any arbitrary potential shape
by a complex modulation amplitude satisfying a minimal
requirement that makes any potential shape invisible. The
main physical idea is that any scattering potential or defec-
tive region on a lattice, rapidly oscillating in time with only
positive (or negative) frequency components, cannot scatter

any propagative incoming wave into another propagative (re-
flected or transmitted) wave in the lattice: owing to the finite
band of allowed energies in the lattice, any scattered wave
is evanescent, regardless of the potential shape. As a result,
any potential shape can be made invisible by making it os-
cillating in time under a minimal constraint. Our approach
to realize invisible potentials in discrete systems could open
up a whole new avenue for the design of synthetic media
with novel scattering properties that do not rely on special
engineering of material parameters. As a possible physical
platform to experimentally demonstrate the strategic method
of invisibility, we suggested wave scattering in synthetic
lattices based on photonic quantum walks in coupled-fiber
loops, which can nowadays be routinely realized in a photonic
laboratory

APPENDIX: SOME PROPERTIES OF MODIFIED LAPLACE-FOURIER INTEGRAL

1. Definition and inverse relation. Let f (t ) be a complex and regular function of time t , defined for t � −t0 and bounded (or
increasing but less than exponential) as t → ∞. Indicating by ε > 0 a small positive number and t1 a large positive time instant,
we define the modified Fourier-Laplace spectrum of f (t ), denoted by f̂ (ε)(ω), as

f̂ (ε)(ω) =
∫ t1

−t0

dt f (t ) exp(iωt − εt ), (A1)

where −∞ < ω < ∞ is the frequency. The use of the modified Fourier-Laplace transform avoids the singularities that might
arise in usual Fourier analysis when f (t ) is bounded but nonvanishing or even weakly (nonexponentially) growing for t → ∞.
In this work we are mainly interested in the triple limits t0, t1 → ∞, and ε → 0+, with

t0ε → 0, t1ε → ∞.

This limit is justified by the need to make vanishing the boundary value terms, at t = −t0 and t = t1, of the functions φl (t ) exp(εt )
when deriving the dynamical equations (10) in Fourier space, given in the main text.

After integration Eq. (A1) by parts, it readily follows that f̂ (ε,)(ω) decays at least as exp(±iωt1,0)/ω for ω → ±∞, and it is
thus integrable. Equation (A1) can be reversed as follows. Let us multiply both sides of Eq. (A1) by exp(−iωτ ) and integrate
with respect to ω from −∞ to ∞. One obtains∫ ∞

−∞
dω f̂ (ε)(ω) exp(−iωτ ) =

∫ ∞

−∞
dω

∫ t1

−t0

dt f (t ) exp(iωt − εt + iωτ ). (A2)

Interchanging the integration order on the right-hand side of Eq. (A4) and taking into account that∫ −∞

−∞
dω exp[iω(τ − t )] = 2πδ(τ − t ),

one obtains ∫ ∞

−∞
dω f̂ (ε)(ω) exp(−iωτ ) = 2π

∫ t1

−t0

dt f (t ) exp(−εt )δ(t − τ ). (A3)

Therefore, for −t0 < τ < t1, one has

f (τ ) = 1

2π
exp(ετ )

∫ ∞

−∞
dω f̂ (ε)(ω) exp(−iωτ ), (A4)

which provides the inverse spectral relation.
2. Relation to the ordinary Fourier spectrum. When f (t ) admits a Fourier spectrum f̂ (ω), defined in the usual way as

f̂ (ω) =
∫ ∞

−∞
dt f (t ) exp(iωt ), (A5)

the modified Fourier-Laplace spectrum f̂ (ε)(ω) converges to f̂ (ω) in the triple limit mentioned above. In fact, we can write
f̂ (ε)(ω) as the ordinary Fourier spectrum of the product between f (t ) and the function h(t ) defined by

h(t ) =
{

0 t < −t0, t > t1,
exp(−εt ) −t0 < t < t1,

(A6)
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i.e.,

f̂ (ε)(ω) =
∫ ∞

−∞
dt f (t )h(t ) exp(iωt ). (A7)

Using the convolution theorem of Fourier integral, one has

f̂ (ε)(ω) =
∫ ∞

−∞
d� f̂ (ω − �)G(�), (A8)

where

G(ω) = 1

2π
ĥ(ω) = 1

2π

∫ ∞

−∞
dth(t ) exp(iωt ) = exp[i(ω + iε)t1] − exp[−i(ω + iε)t0]

2π i(ω + iε)
. (A9)

In the triple limit t0, t1 → ∞, ε → 0+ with εt0 → 0 and εt1 → ∞, one has

G(ω) � − exp(−iωt0)

2π i(ω + iε)
. (A10)

Note that |G(ω)| = 1/[2π
√

ω2 + ε2] is a narrow and peaked function at around ω = 0, with G(0) = 1/(2πε) diverging as
ε → 0 and with a full-width ∼2ε vanishing as ε → 0. Moreover, G(ω) is a rapidly oscillating function of ω with local zero
mean for |ω| � 1/t0, so that the main contribution to the integral in Eq. (A8) is obtained for � � 0. In the ε → 0+ limit, we can
thus set G(ω) = Aδ(ω), where A is the area subtended by the function G(ω), i.e.,

A =
∫ ∞

−∞
dωG(ω) = −

∫ ∞

−∞
dω

exp(−iωt0)

2π i(ω + iε)
. (A11)

The integral on the right-hand side of Eq. (A11) can be computed in complex ω plane using the residue theorem, after closing
the integration path by a semicircumference of large radius in the lower Im(ω) < 0 half-plane. This yields

A = exp(−εt0) = 1, (A12)

where we used the limit εt0 → 0. Therefore, in the triple limit t0, t1 → ∞ with εt0 → 0, εt1 → ∞, one has G(ω) � δ(ω) and
thus, from Eq. (A8), f̂ (ε)(ω) � f̂ (ω).

3. Convolution relation. Finally, let us calculate the modified Fourier-Laplace transform of the product f (t )g(t ), i.e., the
integral

I (ω) =
∫ t1

−t0

dt f (t )g(t ) exp(iωt − εt ), (A13)

assuming that g(t ) can be Fourier transformed in the usual way. To this aim, let us write f (t ) and g(t ) in terms of their modified
Fourier-Laplace and Fourier spectra, respectively, i.e., let us insert the inverse relations

f (t ) = 1

2π
exp(εt )

∫ ∞

−∞
dω1 f̂ (ε)(ω1) exp(−iω1t ), g(t ) = 1

2π

∫ ∞

−∞
dω2ĝ(ω2) exp(−iω2t ) (A14)

into Eq. (A13). One obtains

I (ω) = 1

(2π )2

∫ t1

−t0

dt
∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 f̂ (ε)(ω1)ĝ(ω2) exp[i(ω − ω1 − ω2)t]. (A15)

After introduction of the function

�(�) ≡
∫ t1

−t0

dt exp(i�t ) = exp(i�t1) − exp(−i�t0)

i�
(A16)

one obtains

I (ω) = 1

4π2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 f̂ (ε)(ω1)ĝ(ω2)�(ω − ω1 − ω2). (A17)

Note that in the limits t0, t1 → ∞, �(� = 0) = (t1 + t0) diverges, whereas for � �= 0 the ratio �(�)/�(0) vanishes. Moreover,
�(�) is a rapidly oscillating function of � with local zero mean for |�| � 1/t0. Therefore, in the limits t0, t1 → ∞ one can
assume �(�) � Aδ(�) in the integral on the right-hand side of Eq. (A17), where A is the area subtended by �(�) and given
by

A =
∫ ∞

−∞
d��(�) = .

∫ ∞

−∞
d�

exp(i�t1) − exp(−i�t0)

i�
. (A18)
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The integral on the right-hand side in Eq. (A18) can be readily computed in complex � plane using the residue theorem, yielding
A = 2π independent of t0 and t1. After letting �(�) � 2πδ(�) in Eq. (A17), one finally obtains

I (ω) � 1

2π

∫ ∞

−∞
dω2 f̂ (ε)(ω − ω2)ĝ(ω2), (A19)

which is analogous to the convolution relation of ordinary Fourier integral.
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