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Non-Hermitian Rosenzweig-Porter random-matrix ensemble: Obstruction to the fractal phase
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We study the stability of nonergodic but extended (NEE) phases in non-Hermitian systems. For this purpose,
we generalize the so-called Rosenzweig-Porter random-matrix ensemble, known to carry a NEE phase along
with the Anderson localized and ergodic ones, to the non-Hermitian case. We analyze, both analytically and
numerically, the spectral and multifractal properties of the non-Hermitian case. We show that the ergodic and
localized phases are stable against the non-Hermitian nature of matrix entries. However, the stability of the
fractal phase depends on the choice of the diagonal elements. For purely real or imaginary diagonal potential,
the fractal phase is intact, while for a generic complex diagonal potential the fractal phase disappears, giving
way to a localized one.
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I. INTRODUCTION

The study of non-Hermitian many-body systems has
emerged as a paradigm to describe open or dissipative sys-
tems with gain and loss. Non-Hermitian systems uncover
a rich phenomenology, describing unique effects, e.g., non-
Hermitian skin effect, generalized topological phases, and
measurement-induced phase transitions [1–17] which are not
possible in Hermitian systems. This growing interest in non-
Hermitian systems is also motivated by advancement in
controlled experimental techniques, which allow probing non-
Hermitian systems in several contexts, ranging from photonic
[18–22] to topological phases of matter [9,23–29].

Anderson localization (AL) is a milestone of condensed
matter physics and describes the localization of noninteract-
ing particles subject to strong quench disorder [30,31]. AL
has been extended and extensively studied in non-Hermitian
systems, both in terms of eigenstates [32] and eigenvalue
statistics (see, e.g., Refs. [33–35]). These studies pointed out
that non-Hermitian terms favor delocalization in the systems,
as they suppress interference effects, which are crucial for AL.
For instance, Hatano and Nelson in their seminar work [32]
showed that even in one dimension, where all the eigenstates
exponentially localize for any amount of disorder, under-
goes a metal-insulator transition if the system is subject to
an imaginary vector potential. Furthermore, the stability of
disorder-induced localization in interacting quantum systems
[36–39] has been recently investigated with respect to non-
Hermiticity [40] and shown to be stable. The generalization
of AL to the interacting case, dubbed many-body localization
(MBL) [41–43], has emerged as the paradigm of ergodicity
breaking in quantum many-body systems. At strong disorder,
the system is in the MBL phase and described by an extensive
number of conserved quantities, revealing a robust form of
emergent integrability [44–46]. Instead, in an ergodic phase,

the system is delocalized and thermal, meaning that at a long
time, the evolution of a local observable is well described by
thermodynamic ensembles [47,48].

The characterization of disorder quantum systems and their
delocalization-localization transition is a challenging task.
Random-matrix models have often been used to overcome
some of these difficulties. For example, a so-called power-law
random banded matrix ensemble [31,49] shares many aspects
with the single-particle AL problem on a 3D lattice. Both
models have a delocalization-localization transition at finite
disorder strength and an emergent multifractality at the critical
point.

With the advent of MBL, the study of nonergodic extended
(NEE) phases, e.g., phases composed of multifractal states,
has become relevant. Indeed, MBL being localized in the
coordinate space of an interacting system corresponds to the
ergodicity-breaking transition in the Fock/Hilbert space with
multifractal states for the entire MBL phase [50–53]. This
brings the necessity to understand NEE phases and to find
analytically tractable random matrix models which host NEE
phases. Furthermore, a better characterization of NEE phases
of matter could shed light on optimization algorithms, such as
quantum annealing [54,55] or on a nonergodic phase of matter
in the perturbed Sachdev-Ye-Kitaev (SYK) model [56,57].

In the spirit of introducing random-matrix ensembles to
capture the salient aspects of disorder interacting many-body
models, the so-called Rosenzweig-Porter (RP) random-matrix
ensemble [58] has been introduced as an analytically tractable
model having two transitions [59]: the Anderson transi-
tion between localized and extended phases, and the other
one- between ergodic and NEE (fractal) ones; see Fig. 1(a).
This model is a simple generalization of Gaussian random
ensembles, where the off-diagonal matrix elements are scaled
down with system size.
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FIG. 1. Phase diagram of the Rosenzweig-Porter model γ is
the parameter of the RP model, tuning the disorder strength. D is
the fractal dimension of the wave function, the phase is ergodic
for D = 1, localized for D = 0, while for 0 < D < 1 it is fractal.
(a) Phase diagram of the Hermitian and non-Hermitian with purely
real/complex potential RP model. (b) Phase diagram for the general
non-Hermitian RP case.

Further developments of RP-like models toward more re-
alistic systems found genuine multifractal phases [60–62] and
anomalously slow dynamics [63,64] realized in a RP model
with fat-tail distributed off-diagonals, as well as the effective
RP description of nonergodic phases of matter in disordered
many-body systems [65,66], Floquet models [67,68], SYK
model [57], and graph structures [60,64,69,70].

This paper is aimed to inspect the stability of NEE phases
in non-Hermitian systems. We focus on the RP model by
introducing a non-Hermitian generalization of it. We compute,
both analytically and numerically, the phase diagram of our
model and show that the ergodic and localized phases are
stable with respect to non-Hermiticity. However, the presence
of the intermediate fractal phase depends on the choice of
diagonal potential. Indeed, in the case of purely real or imag-
inary diagonal potentials, the fractal phase is intact to any
non-Hermiticity (like the complex vector-potential or other
non-Hermitian kinetic contributions), and therefore the phase
diagram is the same as the Hermitian RP model, see Fig. 1(a).
However, the fractal phase disappears for generic complex di-
agonal terms, becoming localized. Importantly, these generic
complex diagonal terms might mimic experimentally relevant
situations, such as random gain and loss contributions. Thus,
this gain-and-loss potential gives a possible way to localize
the system, unlike the Hatano-Nelson model [32], in which
non-Hermiticity favors delocalization. The further steps in
consideration of more realistic MBL models in this gain-loss
paradigm are under active investigation [71].

Figures 1(a) and 1(b) show the phase diagram for the two
aforementioned cases, respectively. In particular, in Fig. 1, γ

is the disorder parameter for the RP model, which controls
the level of ergodicity/localization in the system: Large γ

correspond to Anderson insulator, while small values lead
to ergodicity in the sense of Gaussian random matrices or
Ginibre ensemble (depending on the symmetry). D is the
fractal dimension of the wave function. For D = 1, the system
is ergodic, for D = 0—localized, while for 0 < D < 1 it has
fractal eigenstates. In the final part of our paper, we further
generalize our model, by interpolating between two cases,
from real/imaginary to full complex diagonal potential and
study its phase diagram.

The work is organized as follow. In Sec. II, we define the
model and the probes used to characterize the three phases.
In Sec. III, we show the results of the work. The numerical
investigation is presented in Sec. III B, and the analytical proof
in Sec. III A. Finally, Sec. IV contains concluding remarks and
outlooks.

II. MODEL AND METHODS

We consider a generic Ginibre random-matrix ensemble of
size N , with Gaussian independent and identically distributed
random elements [72]. The off-diagonal elements are rescaled
down by the N-dependent factor N−γ /2,

Hmn = ζnδmn + MmnN−γ /2, (1)

where

ζn = Mmn = 0, (2)

|ζn|2 = 1, |Mmn|2 = λ. (3)

The line over the symbols indicates the disorder average. The
parameter λ is relevant only at the Anderson and ergodic
transition as it does not affect the scaling of the inverse partic-
ipation ratio, see, e.g., Ref. [73].

We distinguish the cases of real (ζn = εn) and generically
complex diagonal matrix elements

ζn = εn + iνn (4)

as well as decomposing its elements in Hermitian hmn = h∗
nm

and anti-Hermitian amn = −a∗
nm parts:

Mmn = hmn + amn . (5)

In the case of Hermitian H , anm = 0 and ν = 0, the model in
Eq. (1) recovers the usual Hermitian RP model [58,59].

In the following two Secs. II A and II B, we introduce the
main probes to distinguish the two phases.

A. Level spacing analysis

A powerful probe to distinguish a delocalized phase from
a localized one is the statistic of eigenlevel spacing. Here,
we focus only on short-range correlations, meaning that we
consider only the gap statistics of nearby energy levels.

In the Hermitian systems, the short-range correlation are
captured by the so-called r-gap ratio

rR
n = min (�n+1,�n)

max (�n+1,�n)
, (6)

where �n = En+1 − En is the gap between two adjacent en-
ergy levels. In the case of an ergodic time-reversal symmetric
system rR

n � 0.5307 [38,74], which is the same value as that
for a Hermitian random-matrix. Instead, for localized systems
rR

n = 2 log 2 − 1 � 0.386, meaning that the gaps {�n} are
Poisson distributed.

In the general non-Hermitian case, the r-gap statistic in
Eq. (6) needs to be modified since the spectrum is complex.
In Ref. [75], the gap ratio has been generalized to the non-
Hermitian case by introducing

rC
n = ZNN

n − Zn

ZNNN
n − Zn

, (7)
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where {Zn} is the spectrum of the system and ZNN
n and ZNNN

n
are the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) of Zn with respect to the Euclidean distance in the
complex C plane, respectively. In general, rC

n = rneiθn ∈ C
and we can analyze {rn} and {θn} separately. For the Gini-
bre random-matrix, − cos θn ≈ 0.229 and r ≈ 0.738 [75].
Instead, for a localized system, meaning that {Zn} are uncor-
related, we have − cos θn = 0 and r = 2/3.

Notice that in the Hermitian problem, the r-gap statistics is
only able to detect the Anderson transition at γ = 2. This is
a special feature of the fractal phase of the RP model due to
the emergence of ergodic energy minibands which are ergodic
and host the fractal states [59].

B. Multifractal dimension Dq

The fractal dimensions Dq quantified the spread of a wave
function and is defined through the inverse participation ratio
(IPRq),

IPRq =
∑

m

|〈m|Rn〉〈Ln|m〉|q q > 1/2, (8)

where |Ln〉 and |Rn〉 are the left and right eigenvectors of
H with eigenvalue Zn.1 For the Hermitian case, |Ln〉 = |Rn〉,
IPRq, defined above, coincides with the standard definition
[31]. The multifractal dimensions are defined as the exponents
in the scaling of IPRq with the matrix size N :

IPRq ∼ N (1−q)Dq . (9)

The ergodic phase is characterized by Dq = 1, localized – by
Dq = 0, while the multifractal phase is given by fractional
0 < Dq < 1, being a nontrivial function of q.

In the Hermitian RP model, the ergodic (Dq = 1) and
localized (Dq = 0) phases appear at γ < 1 and γ > 2, respec-
tively, see Fig. 2(a). In the intermediate phase, 1 < γ < 2, the
fractal dimension smoothly and linearly interpolates between
the above values Dq = 2 − γ ; see Fig. 1(a). Furthermore, one
should mention that in the RP model, the Dq is independent
of q, meaning that the phase is fractal but not multifractal. In
other words, the fractal states emerging at 1 < γ < 2 might
be understood as an ergodic one living on a manifold of
∼N2−γ sites, which are close in their diagonal energies. Such
manifolds form fractals [59] in space and compact spectral
minibands [73] in the energy domain, both tiling the entire
corresponding spaces.

III. RESULTS

In this section, we present our results and first analytical
considerations, followed by numerical ones.

A. Analytical results

1. Hermitian RP model

We start our discussion by reviewing the Hermitian RP
model. In the Hermitian case, νn = 0 and amn = 0 in Eqs. (4)

1Here we do not consider other correlations of the left and right
eigenvectors known to be nontrivial already for Ginibre [76] and
Girko [77] ensembles.
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FIG. 2. Phase diagram of the Rosenzweig-Porter model in the
case of purely real/imaginary potential: zn = εn. (a), (b) Ra-
dial and angular components of the complex gap ratio, Eq. (7),
respectively. (c) Inverse participation ratio (IPR2). (d) Fractal di-
mension Dq extracted from IPRq with q = 2 for different system
sizes as D2(N ) = ln[IPR2(N )/IPR2(N ′)]/ ln[N ′/N] (inset: for q ∈
{1.5, 1.75, 2, 2.5, 3}). The dashed lines in (a), (b) are the ergodic
(Erg.) and Poisson values. The black dashed line in (d) is the theory
prediction (N → ∞). Here and further in the next figures, all the
measures are averaged over the entire spectrum. The fractal dimen-
sions in (d) show some overshooting close to the transition points
γ = 1 and 2 due to the finite-size effects, given by the extraction
from two relatively modest system sizes.

and (5) and, as we discussed in Sec. II, the model is known
to have an ergodic/Gaussian Orthogonal Ensamble phase
(γ < 1), a NEE or fractal phase (1 < γ < 2), with the frac-
tal dimension D = 2 − γ , and the Anderson localized phase
(γ > 2), with the single-site localization [59,73].

This phase diagram can be found by using the so-called
cavity method [63,78,79], which connects the Green’s
function of the system with the Green’s function of the
same system, where one site is removed, and solved
self-consistently.2 The Green’s function is defined as

G(E + iδ) = (E + iδ − H )−1 =
∑

n

|Rn〉 〈Ln|
E + iδ − Zn

, (10)

2Note that the phase diagram of the Hermitian Gaussian
Rosenzweig-Porter ensemble has also been studied using many other
methods. Besides the cavity method, the most significant progress in
the analytical studies was achieved by the Dyson Brownian motion
technique, which show both the Anderson transition [80] and the
ergodic one [78], contour integrals [81], and Itzyskon-Zuber formula
for the spectral form factor [59,82].
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written using the spectral decomposition of H =∑
n Zn|Rn〉〈Ln|, with Zn = En + iηn and 〈Ln|Rm〉 = δmn.
For the Hermitian case, we have |Ln〉 = |Rn〉 and ηn = 0.

In the definition of G(E ) in Eq. (10) has been introduced
an infinitesimal regulator δ → 0+ to avoid the poles of the
Green’s function in the real axis.

The cavity equation takes the form

Gii(E + iδ) =
⎡
⎣E + iδ − εi −

∑
j,k �=i

hi jG
(i)
jk (E + iδ)hki

Nγ

⎤
⎦

−1

,

(11)

where G(i)(E + iδ) is the Green’s function of the problem with
a removed ith row and ith column.

We can distinguish two main contributions in

S =
∑
j,k �=i

hi jG
(i)
jk (E + iδ)hki, (12)

the diagonal and the off-diagonal,

S = Sdiag + Soff, (13)

where

Sdiag =
∑

j

|hi j |2G(i)
j j (E + iδ) . (14)

Sdiag is self-averaging and its mean

Sdiag = Tr[G(i)(E + iδ)] = N[ζ (E ) + iπρ(E )], (15)

and ρ(E ) is the density of states. The variance of real and
imaginary parts of Sdiag:

δ( Re / Im Sdiag)2 = 2
∑

j

[ Re / Im G(i)(E + iδ)]2 � O(N ) .

(16)

As a result, we obtain the self-averaging property,
δ( Re / Im Sdiag)2/Sdiag

2 → 0 and Sdiag � Sdiag.
Instead, the second contribution

Soff =
∑
j,k �=i
j �=k

hi jG
(i)
jk (E + iδ)hki (17)

has zero mean because hi< j = 0, and the variance of real and
imaginary parts

( Re / Im Soff )2 = 2
∑
j,k �=i
j �=k

h2
i j

(
Re / Im G(i)

jk (E + iδ)
)2

h2
ki

= 2λ2
∑
j,k �=i
j �=k

(
Re / Im G(i)

jk (E + iδ)
)2 ∼ O(N2) .

(18)

Notice that for simplicity we considered real symmetric hi j =
h ji = h∗

i j , leading to symmetric Gjk = Gk j .
Usually, the Green’s function is dominated by the diagonal

elements, therefore the standard deviation of the second con-
tribution is much smaller (but not parametrically smaller) than
the mean of the first contribution.

All this leads to the standard formula (self-)averaged over
the off-diagonal elements:

Gii(E + iδ)h = [E + iδ − εi − N1−γ (σ (E ) + iπρ(E ))]−1 .

(19)

The level broadening defined as

�i = πρ(E )
∑

j

|Hi j |2 ∼ ρ(E )N1−γ (20)

is in agreement with the Fermi’s Golden rule result, while
the real part of the self-energy N1−γ σ (E ) is an unimportant
(nearly constant) term, which is small for γ > 1 and can be
absorbed by the energy shift of the diagonal matrix elements.
For γ < 1, both the shift and the level broadening are large
compared to the diagonal energies εi, therefore neither of
them can be absorbed by the energy shift. These large am-
plitudes of the self-energy values diminish any dependence of
〈Gii(E + iδ)〉h on the coordinate i via εi. As a result, γ < 1
corresponds to ergodicity.

On the other hand, in a fractal phase, 1 < γ < 2, the
broadening � 
 � = N1−γ πρ(E ) 
 O(1) is simultaneously
large compared to the mean-level spacing � ∼ 1/N and small
compared to an entire spectral bandwidth ∼O(1). Thus, from
Eq. (19) one can immediately see that the number of sites
i, where the wave function is of the same order as at the
maximum, is given by

|εi − E | � �. (21)

This confirms the fact that the wave-function structure is frac-
tal (but not multifractal) and the fractal dimension Dq>1 = D
is given by the support set ND ∼ �/�. The scaling of � leads
to a finite fractal dimension D = 2 − γ .

Formally, one can see that the above results seem to be
applicable to non-Hermitian cases. However, strictly speak-
ing, as mentioned in Sec. 2.3 of Ref. [83], the framework of
a Green’s function (or a resolvent) may fail to describe the
continuous (bulk) part of the spectrum in the non-Hermitian
case. Therefore, in the next section we take another route.

2. Non-Hermitian RP Model

In this section, we consider a method similar to the one
considered in Sec. III A 1, applicable (unlike the previous
one) to the non-Hermitian case in Eq. (1). Indeed, in the non-
Hermitian case, both the diagonal Eq. (4) and off-diagonal
Eq. (5) elements of the matrix Eq. (1) can be complex and
non-Hermitian. This leads, in particular, to the fact that the
Green’s function framework cannot describe the continuous
part of the spectrum (10) [83].

To deal with the non-Hermitian matrices properly, one
should consider the Hermitization of the problem [83–86]
(see, e.g., Sec. 2.4 in Ref. [83] for review). Instead of the
N × N matrix of Hamiltonian H shifted by a complex energy
z = E + iη, with generic real E and imaginary η parts, we
consider the following 2N × 2N Hermitian matrix:

B(z) = B†(z) =
(

0 H − z
H† − z∗ 0

)
(22)
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and determine the analog of the Green’s function as the in-
verse of B(z) with an infinitesimal regularizer δ → 0+,

G(z, δ) = [B(z) + iδ]−1 =
( −iδ · X X (H − z)

(H† − z∗)X −iδ · X̃

)
,

(23)

where we used a standard block-matrix inversion and intro-
duced two matrices

X = X † = [δ2 + (H − z)(H† − z∗)]−1 ,

X̃ = X̃ † = [δ2 + (H† − z∗)(H − z)]−1 , (24)

which are similar to each other by the transformations

(H − z)X̃ = X (H − z),

X̃ (H† − z∗) = (H† − z∗)X. (25)

Importantly, the generalized Green’s function in Eq. (23)
has direct access to the eigenvectors |Ln〉, |Rn〉 and eigenvalues
Zn = En + iηn of the non-Hermitian problem. Indeed, one can
show that [83] at Z = Zn,

B(Zn) |b±
n 〉 = 0, with |b±

n 〉 =
(± |Ln〉

|Rn〉
)

, (26)

and therefore

iδ · G(Zn, δ) = 2

(|Ln〉 〈Ln| 0
0 |Rn〉 〈Rn|

)
+ O(δ) . (27)

Note that the Hermitization technique doubles the number of
eigenstates and therefore may affect the eigenvalue statistics.
Therefore, here we use this technique only for the description
of eigenstate (not eigenvalue) statistics, which is free from this
drawback [87].

Following Ref. [83], one can write the analog of the cavity
equation for the non-Hermitian case,

Gii(z, δ) =
⎡
⎣Z − iδ − Ei − N−γ

∑
j,k �=i

Hi jG (i)
jk (z, δ)Hki

⎤
⎦

−1

,

(28)

where

Gi j (z, δ) =
( −iδ · Xi j [X (H − z)]i j

[(H† − z∗)X ]i j −iδ · X̃i j

)
, (29)

Ei =
(

0 zi

z∗
i 0

)
, Z =

(
0 z
z∗ 0

)
, Hi j =

(
0 Mi j

M∗
ji 0

)
,

(30)

and all the matrices [B(z), G(z, δ), and others] are rewritten in
the basis which is reordered as

(1, . . . , N, N + 1, . . . , 2N )→ (1, N +1, 2, N +2. . ., N, 2N ).
(31)

The convenience of this relabeling is to allow one to have the
above 2 × 2 blocks like Ei.

Finally, similarly to the Hermitian case, we can distinguish
two contributions to the self-energy:

S (z, δ) =
∑
j,k �=i

Hi jG (i)
jk (z, δ)Hki = Sdiag + Soff . (32)

The diagonal contribution,

Sdiag(z, δ)

=
∑
j �=i

( −iδ · X̃ j j |Mi j |2 [(H† − z∗)X ] j jMi jMji

[X (H − z)] j jM
∗
jiM

∗
i j −iδ · Xj j |Mji|2

)
,

(33)

and its average over the matrix ensemble,

Sdiag(z, δ) = −iδTrX

(
1 0
0 1

)
≡ −iNδX̄ , (34)

where we have used the fact that X and X̃ are similar [Eq. (25)]
and Hermitian and therefore have the same real spectra. In
particular,

TrX (z, δ) = TrX̃ (z, δ) . (35)

Neglecting the off-diagonal part for the same reasons as in
the Hermitian case and using Eq. (23), one obtains for Gii the
following self-consistent equation:

Gii(z, δ) =
( −iδ · Xii [X (H − z)]ii

[(H† − z∗)X ]ii −iδ · X̃ii

)

=
(

iδ · (1 + N1−γ X̄ ) z − Zi

z∗ − Z∗
i iδ · (1 + N1−γ X̄ )

)−1

= R

(−iδ · (1 + N1−γ X̄ ) z − Zi

z∗ − Z∗
i −iδ · (1 + N1−γ X̄ )

)
,

(36)

where

R = 1

|z − Zi|2 + δ2(1 + N1−γ X̄ )2 (37)

and

X̄ = 1

N

∑
n

Xnn. (38)

Here we introduce the complex analog of the broadening
�n = δ · XnnN1−γ ≡ �ND and determine the fractal dimen-
sion using the mean-level spacing �. The self-consistency
equation for �̄ can be derived by the substitution of the
definition of the broadening �n and the diagonal part Xnn of
the generalized Green’s function Eq. (29) together with the
expressions Eqs. (36) and (37) to Eq. (38). Eventually, it takes
the form

�̄ = N−γ
∑

n

δ + �̄

|z − Zn|2 + (δ + �̄)2 . (39)

For γ < 1, it is obvious that �̄ � 1 and thus one can neglect
z − Zn in the expression for �nn in the sum Eq. (38). As a
result, for γ < 1,

�̄ � N1−γ

δ + �̄
⇔ �̄ ∼ N (1−γ )/2 � 1 , (40)

leading to an ergodic behavior, like to the Hermitian case.
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For 1 < γ < 2, one should consider two different cases:
(1) If Zn is real (or imaginary), then one can replace the

summation in Eq. (38) by 1D integration using �Zn � 1/N ,

�̄

N1−γ
�

∫ 1

−1

δ + �̄

|z − Zn|2 + (δ + �̄)2 dZn

= 2arccot(δ + �̄) � O(1) , (41)

giving the usual fractal dimension, see dashed line in Fig. 2(d),

Dq =
⎧⎨
⎩

1, γ < 1
2 − γ , 1 < γ < 2
0, γ > 2,

(42)

as in the Hermitian case [59].
(2) In the more general case, Zn is complex, Zn = εn + iνn,

one can replace the summation in Eq. (38) by a 2D integration.
As soon as the number of points Zn in the complex plane is still
given by N , for each of them the real εn and imaginary νn parts
of Zn have the average discrete steps given by �εn�νn � 1/N
and they are of the same order �εn = �νn � 1/N1/2. This
gives (for z = 0)

�̄

N1−γ
�

∫∫ 1

−1

δ + �̄

|εn + iνn − z|2 + (δ + �̄)2 dεndνn

=
∫ 1

−1
2arccot

[√
(δ + �̄)2 + ν2

n

] δ + �̄√
(δ + �̄)2 + ν2

n

dνn

� π (δ + �̄) ln
( C

δ + �̄

)
, (43)

with a certain unimportant constant C ∼ O(1). In the limit
δ → 0, one can cancel �̄ in both sides of the equation and
obtain

ln

(
�̄

C

)
= − 1

π
Nγ−1 � 1. (44)

As a result,

�̄ = Ce−Nγ−1/π 
 N−1 . (45)

In the opposite limit of N → ∞ before δ → 0, one obtains

�̄ � πN1−γ δ ln
(C

δ

)
. (46)

The smallness of �̄ leads to the localization Dq = 0 for all
γ > 1 [see dashed line in Fig. 3(d)]:

Dq =
{

1, γ < 1
0, γ > 1.

(47)

Summarizing, for γ < 1 or γ > 2, the system is ergodic
or localized, respectively. For 1 < γ < 2, the system hosts
a fractal phase with Dq = 2 − γ if {Zn} is purely real or
imaginary. Instead, in the general case Zn = εn + iνn; for 1 <

γ < 2, the system is localized: Dq = 0.
We can consider a more general case, which interpolates

the two cases, in which the diagonal elements of H in Eq. (1)
are given by

ζn = εn + iνn/Nc. (48)

For c > 1, we recover the first case, while with c = 0 the
second case. Using similar arguments as in Eq. (43), one finds
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−
co

s(
θ)
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(d)

Theory
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D

FIG. 3. Phase diagram of the RP model in the case of
complex potential: zn = εn + iνn. (a), (b) Complex gap ratio
defined in Eq. (7) and below it. (c) Inverse participation ra-
tio (IPR2). (d) Fractal dimension D2 for different system sizes
as D2(N ) = ln[IPR2(N )/IPR2(N ′)]/ ln[N ′/N]. Inset: Dq for q ∈
{1.5, 1.75, 2, 2.5, 3}). The dashed lines in (a), (b) represent the er-
godic (Erg.) and Poisson values. The black dashed line in (d) gives
the theoretical prediction Eq. (47).

[see dashed line in Fig. 4(d)]

Dq =
{

min(1, 2 − γ ), γ < 1 + c
0, γ > 1 + c.

(49)

3. Qualitative understanding of the results

All the above results can be straightforwardly understood
already at the level of a usual Green’s function Eq. (10) (even
though formally it is not applicable for the description of the
continuous spectral part, see Ref. [83] for details).

Indeed, in the Hermitian case with γ > 1, the real energy
shift N1−γ σ (E ) is not important as it can be absorbed by
the energy shift of the real diagonal matrix elements [see
Fig. 5(a)]. In the non-Hermitian case with purely real or imag-
inary diagonal elements, the situation is the same (with respect
to a rotation in a complex plane) as either the imaginary or real
part of the broadening cannot be absorbed by a simple energy
shift.

The situation changes drastically, however, as soon as the
diagonal term becomes genuinely complex. In this case, one
should compare the broadening ∼N1−γ with the dimensions
of the diagonal element distribution in a complex plane. In-
deed, as soon as N−c < �, i.e., γ < 1 + c, the diagonal terms
cannot absorb the broadening (along the imaginary axis) and
the phase diagram should repeat the Hermitian case. How-
ever, in the opposite limit of γ > 1 + c, when the diagonal
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FIG. 4. Phase diagram of the RP model in the case of com-
plex potential with rescaled imaginary part: zn = εn + iνn/N1/2. (a),
(b) Complex gap ratio defined in Eq. (7). (c) Inverse participation ra-
tio (IPR2) for several N . (d) Fractal dimension D2 extracted from the
different system sizes as D2(N ) = ln[IPR2(N )/IPR2(N ′)]/ ln[N ′/N].
Inset: Dq for q ∈ {1.5, 1.75, 2, 2.5, 3}). The horizontal dashed lines
in (a), (b) represent the ergodic (Erg.) and Poisson values, while
the vertical black dashed lines sign the value of the critical point
γ = 1 + c = 3/2 The black dashed line in (d) gives the theoretical
prediction in Eq. (49).

element distribution “buries” both real and imaginary parts of
the broadening, the latter becomes a simple energy shift and
the situation becomes equivalent to the single-site localized
phase, present in the Hermitian case at γ > 2, see Fig. 5(b).

B. Numerical results

Having established the phase diagram of the RP model
analytically, we now confirm our results numerically. We
start with the investigation of the spectrum of the generalized
RP model defined in Eq. (1) in the case of the purely real
(ζ = εn) diagonal elements. Figures 2(a) and 2(b) shows the
radial (r) and angular component (−cos(θ )) for the complex

+ Γ −

(a) (b) (c)

FIG. 5. Qualitative explanation of the results. The level broad-
ening � (pink circle) of an energy level E is plotted on top of the
distribution of diagonal matrix elements (blue dots) for three differ-
ent cases: (a) real diagonal, (b) the interpolating regime with N−c

imaginary term amplitude in Eq. (48), (c) generic complex diagonal.

gap energy statistic defined in Eq. (7) as a function of the
tuning parameter γ for several N ∈ [26, 212]. As one can
notice for γ < 2, both r and −cos θ reach their ergodic value,
meaning that the gap statistic is similar to the one of a Ginibre
random matrix. Instead, for γ > 2, the r and −cos(θ ) tend
to the corresponding Poisson value. Notice, that in this case,
rPoisson = 1/2, since the spectrum is real in the limit N → ∞.
This is in agreement with an Anderson transition, between
delocalized to localized at γ = 2.

As pointed out in Ref. [59], the gap energy statistics does
not give access to the fractal nature of the wave function, but it
is only sensitive to separation between extended and localized
states. To detect the fractal phase, we investigate the scaling of
IPRq with N to extract the fractal dimension Dq. Figures 2(c)
and 2(d) show IPR2 for several N and D2, respectively. D2

has been computed considering the log derivative, Dq(N ) =
− 1

1−q
d log IPRq

d log(N ) . In good agreement with our analytical consid-
erations, we found that D2 = 1 for γ < 1, D2 = 2 − γ for
1 < γ < 2, and D2 = 0 for γ > 2. Furthermore, we check the
the fractal nature of the intermediate phase, meaning that Dq

is q independent, as shown in the inset of Fig. 2(d).
In Figs. 3 and 4, we analyze numerically the two remain-

ing cases. First, in Fig. 3 we demonstrate the case in which
the diagonal potential is generically complex (ζn = εn + iνn,
〈ε2

n〉 � 〈ν2
n 〉). Here the complex gap ratio undergoes the tran-

sition around γ = 1 from ergodic Ginibre to Poisson values.
Note that due to the complex nature of the diagonal potential,
the Poisson value of the absolute value is r̄ = 2/3 [75]. The
IPRq and the corresponding fractal dimension show the corre-
sponding behavior. The fractal dimension experiences a jump
close to γ � 1 from D = 1 to 0, implying a direct Anderson
transition from the ergodic to the localized phase.

Second, as an intermediate case, we consider ζn = εn +
iνn/Nc with c = 1/2 in Fig. 4. In this case, the gap ratio char-
acteristics undergo a transition at γ = 1 + c = 1.5 between
ergodic and localized values, while the fractal dimension first
follows the smooth linear curve D = 2 − γ of the Hermitian
RP model and then experiences a jump to zero at γ = 1 + c.

In both cases, the scaling analysis is in good agreement
with the analytical arguments and, in particular, with the ana-
lytical formula for the fractal dimension Dq.

Finally, in Fig. 6 we summarize our results in a density
plot, where the x axis is γ , the y−axis c in Eq. (48). The
color intensity in Figs. 6(a)–6(c) stands for r, −cos θ , and D2

for N = 210, respectively. As one can observe, for c ≈ 0 the
Anderson transition is at γ = 1 and from there opens a fractal
phase in 1 < γ < 1 + c, as predicted in Eq. (49).

IV. CONCLUSIONS

In this paper, we inspect the robustness of fractal states to
non-Hermiticity. We generalized the RP model to the non-
Hermitian case both in terms of gain and loss and kinetic
Hatano-Nelson contributions. The Hermitian RP model is
known to host three different phases: an ergodic, fractal, and
localized one. We provide both numerical and analytical ev-
idence that the phase diagram of the model depends only
on the non-Hermitian properties of the diagonal potential,
but not on those of the kinetic (off-diagonal) term. Indeed,
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FIG. 6. Phase diagram of the Rosenzweig-Porter model in the
case of complex potential with rescaled imaginary part: zn = εn +
iνn/Nc. In the x axis, we have the disorder parameter γ of the RP
model and in y axis is the c parameter in zn = εn + iνn/Nc. (a),
(b) The intensity in the figure stands for the complex gap ratio
defined in Eq. (7). (c) Finite-size fractal dimension D2 = − log IPR2

log N .

In all plots, N = 210. The black dashed lines are guides for the eyes,
indicating the theoretical prediction for the Anderson transition.

the phase diagram is unchanged compared to the Hermi-
tian case if the diagonal terms are purely real or imaginary.
For a generic complex potential, corresponding to gains and
losses, the fractal phase disappears, surprisingly, giving the
way to a localized one. The diagonal term, whenever is purely
real/imaginary or complex, changes the phase diagram of the
RP model, while the nature of the off-diagonal terms barely
affects it. Finally, we redefine our model by introducing a new
tuning parameter, which enables us to interpolate between the
above two cases, and to study the full phase diagram.

Our paper paves the way for the study of NEE phases
of matter in non-Hermitian quantum systems. Our general-
ized RP model could be thought of as an effective model
for disordered non-Hermitian many-body systems and could
have application in open or monitored systems. Understanding
the impact of the nature of the potential in local many-body
systems and the generalization of other random-matrix en-
sembles to the non-Hermitian case, remain objectives for
future research [71].
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of exceptional points out of Dirac cones, Nature (London) 525,
354 (2015).

[28] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G.
Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Topologi-
cally protected bound states in photonic parity–time-symmetric
crystals, Nat. Mater. 16, 433 (2017).

[29] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[30] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[31] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[32] N. Hatano and D. R. Nelson, Localization Transitions in
Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 77, 570
(1996).

[33] P. Shukla, Non-Hermitian Random Matrices and the Calogero-
Sutherland Model, Phys. Rev. Lett. 87, 194102 (2001).

[34] A. M. García-García, S. M. Nishigaki, and J. J. M.
Verbaarschot, Critical statistics for non-Hermitian matrices,
Phys. Rev. E 66, 016132 (2002).

[35] O. Bohigas and M. P. Pato, Transition between Hermitian and
non-Hermitian Gaussian ensembles, J. Phys. A: Math. Theor.
46, 115001 (2013).

[36] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-insulator
transition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. 321, 1126 (2006).

[37] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

[38] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[39] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Elec-
trons in Disordered Wires: Anderson Localization and Low-t
Transport, Phys. Rev. Lett. 95, 206603 (2005).

[40] R. Hamazaki, K. Kawabata, and M. Ueda, Non-Hermitian
Many-Body Localization, Phys. Rev. Lett. 123, 090603 (2019).

[41] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[42] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[43] F. Alet and N. Laflorencie, Many-body localization: An intro-
duction and selected topics, C. R. Phys. 19, 498 (2018).

[44] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenol-
ogy of fully many-body-localized systems, Phys. Rev. B 90,
174202 (2014).

[45] V. Ros, M. Müller, and A. Scardicchio, Integrals of motion in
the many-body localized phase, Nucl. Phys. B 891, 420 (2015).

[46] J. Z. Imbrie, On many-body localization for quantum spin
chains, J. Stat. Phys. 163, 998 (2016).

[47] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[48] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[49] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H.
Seligman, Transition from localized to extended eigenstates in
the ensemble of power-law random banded matrices, Phys. Rev.
E 54, 3221 (1996).

[50] A. D. Luca and A. Scardicchio, Ergodicity breaking in a model
showing many-body localization, Europhys. Lett. 101, 37003
(2013).

[51] D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization
edge in the random-field Heisenberg chain, Phys. Rev. B 91,
081103(R) (2015).

[52] N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings
Across the Many-Body Localization Transition, Phys. Rev.
Lett. 123, 180601 (2019).

[53] G. De Tomasi, I. M. Khaymovich, F. Pollmann, and S. Warzel,
Rare thermal bubbles at the many-body localization transition
from the Fock space point of view, Phys. Rev. B 104, 024202
(2021).

[54] V. N. Smelyanskiy, K. Kechedzhi, S. Boixo, S. V. Isakov, H.
Neven, and B. Altshuler, Nonergodic Delocalized States for Ef-
ficient Population Transfer within a Narrow Band of the Energy
Landscape, Phys. Rev. X 10, 011017 (2020).

[55] K. Kechedzhi, V. N. Smelyanskiy, J. R McClean, V. S Denchev,
M. Mohseni, S. V. Isakov, S. Boixo, B. L. Altshuler, and H.
Neven, Efficient population transfer via non-ergodic extended
states in quantum spin glass, arXiv:1807.04792.

[56] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[57] T. Micklitz, F. Monteiro, and A. Altland, Nonergodic Extended
States in the Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 123,
125701 (2019).

[58] N. Rosenzweig and C. E. Porter, “Repulsion of energy levels”
in complex atomic spectra, Phys. Rev. 120, 1698 (1960).

[59] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and M. Amini, A
random matrix model with localization and ergodic transitions,
New J. Phys. 17, 122002 (2015).

[60] V. E. Kravtsov, I. M. Khaymovich, B. L. Altshuler, and L. B.
Ioffe, Localization transition on the random regular graph as
an unstable tricritical point in a log-normal Rosenzweig-Porter
random matrix ensemble, arXiv:2002.02979.

[61] I. M. Khaymovich, V. E. Kravtsov, B. L. Altshuler, and

094204-9

https://doi.org/10.1103/PhysRevLett.123.083401
https://doi.org/10.1103/PhysRevA.100.063845
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1103/PhysRevLett.123.193605
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nmat4811
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevLett.87.194102
https://doi.org/10.1103/PhysRevE.66.016132
https://doi.org/10.1088/1751-8113/46/11/115001
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.123.090603
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevE.54.3221
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevB.104.024202
https://doi.org/10.1103/PhysRevX.10.011017
http://arxiv.org/abs/arXiv:1807.04792
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.123.125701
https://doi.org/10.1103/PhysRev.120.1698
https://doi.org/10.1088/1367-2630/17/12/122002
http://arxiv.org/abs/arXiv:2002.02979


GIUSEPPE DE TOMASI AND IVAN M. KHAYMOVICH PHYSICAL REVIEW B 106, 094204 (2022)

L. B. Ioffe, Fragile ergodic phases in logarithmically-normal
Rosenzweig-Porter model, Phys. Rev. Res. 2, 043346 (2020).

[62] G. Biroli and M. Tarzia, Lévy-Rosenzweig-Porter random ma-
trix ensemble, Phys. Rev. B 103, 104205 (2021).

[63] C. Monthus, Statistical properties of the Green function in finite
size for Anderson localization models with multifractal eigen-
vectors, J. Phys. A: Math. Theor. 50, 115002 (2017).

[64] I. M. Khaymovich and V. E. Kravtsov, Dynamical phases in a
“multifractal” Rosenzweig-Porter model, SciPost Phys. 11, 045
(2021).

[65] L. Faoro, M. V. Feigel’man, and L. Ioffe, Non-ergodic extended
phase of the quantum random energy model, Ann. Phys. 409,
167916 (2019).

[66] M. Tarzia, Many-body localization transition in Hilbert space,
Phys. Rev. B 102, 014208 (2020).

[67] S. Roy, I. M. Khaymovich, A. Das, and R. Moessner, Multi-
fractality without fine-tuning in a Floquet quasiperiodic chain,
SciPost Phys. 4, 025 (2018).

[68] W. Buijsman and Y. B. Lev, Circular Rosenzweig-Porter ran-
dom matrix ensemble, SciPost Phys. 12, 082 (2022).

[69] S. Bera, G. De Tomasi, I. M. Khaymovich, and A. Scardicchio,
Return probability for the Anderson model on the random reg-
ular graph, Phys. Rev. B 98, 134205 (2018).

[70] G. De Tomasi, S. Bera, A. Scardicchio, and I. M. Khaymovich,
Subdiffusion in the Anderson model on the random regular
graph, Phys. Rev. B 101, 100201(R) (2020).

[71] G. De Tomasi and I. M. Khaymovich, Many-body localization
in gain-loss non-Hermitian systems (unpublished).

[72] J. Ginibre, Statistical ensembles of complex, quaternion, and
real matrices, J. Math. Phys. 6, 440 (1965).

[73] G. de Tomasi, M. Amini, S. Bera, I. M. Khaymovich, and
V. E. Kravtsov, Survival probability in generalized Rosenzweig-
Porter random matrix ensemble, SciPost Phys. 6, 014 (2019).

[74] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution
of the Ratio of Consecutive Level Spacings in Random Matrix
Ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[75] L. Sá, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A
Signature of Dissipative Quantum Chaos, Phys. Rev. X 10,
021019 (2020).

[76] J. T. Chalker and B. Mehlig, Eigenvector Statistics in Non-
Hermitian Random Matrix Ensembles, Phys. Rev. Lett. 81,
3367 (1998).

[77] B. Mehlig and J. T. Chalker, Statistical properties of eigen-
vectors in non-Hermitian Gaussian random matrix ensembles,
J. Math. Phys. 41, 3233 (2000).

[78] D. Facoetti, P. Vivo, and G. Biroli, From non-ergodic eigen-
vectors to local resolvent statistics and back: A random matrix
perspective, Europhys. Lett. 115, 47003 (2016).

[79] E. Bogomolny and M. Sieber, Eigenfunction distribution for the
Rosenzweig-Porter model, Phys. Rev. E 98, 032139 (2018).

[80] A. Pandey, Brownian-motion model of discrete spectra, Chaos,
Solitons Fractals 5, 1275 (1995).

[81] E. Brézin and S. Hikami, Correlations of nearby levels induced
by a random potential, Nucl. Phys. B 479, 697 (1996).

[82] H. Kunz and B. Shapiro, Transition from Poisson to Gaussian
unitary statistics: The two-point correlation function, Phys. Rev.
E 58, 400 (1998).

[83] F. L. Metz, I. Neri, and T. Rogers, Spectral theory of sparse
non-Hermitian random matrices, J. Phys. A: Math. Theor. 52,
434003 (2019).

[84] J. Feinberg and A. Zee, Non-Hermitian random matrix the-
ory: Method of Hermitian reduction, Nucl. Phys. B 504, 579
(1997).

[85] J. Feinberg and A. Zee, Non-gaussian non-Hermitian random
matrix theory: Phase transition and addition formalism, Nucl.
Phys. B 501, 643 (1997).

[86] J. Feinberg, R. Scalettar, and A. Zee, “Single ring theorem”
and the disk-annulus phase transition, J. Math. Phys. 42, 5718
(2001).

[87] In the numerical simulations below, we diagonalize di-
rectly non-Hermitian matrices without using this Hermitization
technique.

094204-10

https://doi.org/10.1103/PhysRevResearch.2.043346
https://doi.org/10.1103/PhysRevB.103.104205
https://doi.org/10.1088/1751-8121/aa5ad2
https://doi.org/10.21468/SciPostPhys.11.2.045
https://doi.org/10.1016/j.aop.2019.167916
https://doi.org/10.1103/PhysRevB.102.014208
https://doi.org/10.21468/SciPostPhys.4.5.025
https://doi.org/10.21468/SciPostPhys.12.3.082
https://doi.org/10.1103/PhysRevB.98.134205
https://doi.org/10.1103/PhysRevB.101.100201
https://doi.org/10.1063/1.1704292
https://doi.org/10.21468/SciPostPhys.6.1.014
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1103/PhysRevLett.81.3367
https://doi.org/10.1063/1.533302
https://doi.org/10.1209/0295-5075/115/47003
https://doi.org/10.1103/PhysRevE.98.032139
https://doi.org/10.1016/0960-0779(94)E0065-W
https://doi.org/10.1016/0550-3213(96)00394-X
https://doi.org/10.1103/PhysRevE.58.400
https://doi.org/10.1088/1751-8121/ab1ce0
https://doi.org/10.1016/S0550-3213(97)00502-6
https://doi.org/10.1016/S0550-3213(97)00419-7
https://doi.org/10.1063/1.1412599

