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We investigate the one-dimensional longer-range Kitaev chain with an on-site complex Aubry-André-Harper
(AAH) potential. For the incommensurate (commensurate) case, by calculating the real-space (Bloch) winding
number and energy spectrum we discover the AAH potential-induced phases and present the related phase
diagrams. We also find that the imaginary phase shift in AAH potentials can suppress these topological phases
for both cases. For the incommensurate case, the inverse participate ratios of the eigenstates with the smallest
|E |s indicate the existence of the incommensurate AAH potential-induced phases, and the result of the mean
inverse participate ratio shows that these incommensurate AAH potential-induced phases are not always strongly
localized.
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I. INTRODUCTION

Recently, Majorana zero modes [1] have received much
interest due to their non-Abelian statistics [2,3] and the po-
tential of topological quantum computation [4]. Among the
proposals for realizing the Majorana zero modes, the one-
dimensional topological superconductor (1D TSC) has been
intensively studied in the past few years [5–11]. The first
model describing the 1D TSC is Kitaev’s 1D spinless p-
wave superconductor [5]. Under the open boundary conditions
(OBCs), this model is topologically nontrivial, and the Majo-
rana zero modes can exist at each end of the chain.

In Kitaev’s pioneering work, only the nearest hopping and
pairing terms are included in the model. However, recent stud-
ies have pointed out that taking the longer-range hopping and
pairing term is reasonable due to the finite range of hybridiza-
tion of the electron wave function and Cooper pairing [12,13].
It has also been found that the 1D spinless TSC with the
next-nearest hopping and pairing term can be connected with
the transverse field Ising model with three spin interactions
and enables us to investigate both the local and nonlocal qubits
[12,14,15]. Besides, several studies have shown that the topo-
logical states with longer-range hopping and pairing terms and
random disorders can have higher topological invariant and
have richer phase diagrams [12–14,16,17].

In the community of the TSC, the interplay of the dis-
order and topology in a 1D Kitaev chain with periodic and
quasiperiodic potential is also an important topic because it
is related to the robustness of Majorana zero modes against
disorders [18,19], which is critical to the error-free topological
quantum computation. And many works about the 1D Kitaev
chain with quasiperiodic potentials devote to the transition
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from the topological to the topologically trivial phase [20–24],
quench dynamics [25,26], and quantum criticality [27].

Up to now, we focus on the Hermitian case and recent
studies have found that the non-Hermitian Hamiltonian can be
employed to describe many physical systems [28–42] and has
many novel properties, such as the exceptional point [39,42–
47], the revised bulk-boundary correspondence [48–53], and
the non-Hermitian skin effect [48,49,54–58]. Based on these
motivations, growing efforts have been paid to investigate the
interplay between the non-Hermiticity and Anderson localiza-
tion in quasiperiodic systems [59–73].

As far as we know, on the one hand, most present works
about the 1D TSC with (quasi)periodic potentials only care
about the nearest hopping and pairing terms. And they usually
focus on the transitions from the TSC phase to Anderson
localized phases induced by the quasiperiodic potential; On
the other hand, random disorders can introduce topological
phases in the topological states with the nearest hopping and
pairing terms [12–14,17]. Besides, both random disorders
and the quasiperiodic potential can introduce inhomogene-
ity and cause Anderson localization [74,75]. However, the
study about the interplay between the quasiperiodic poten-
tial and the longer-range Kitaev chain is still lacking, and
the quasiperiodic potential-induced topological phases in su-
perconductors are also uncovered, which motivates us to
investigate whether the quasiperiodic potential can induce
topological phases in the 1D TSC with the longer-range term,
such as random disorders. If so, what is the difference between
the topological phases induced by quasiperiodic potentials
and ones induced by random disorders?

In this paper, we consider the longer-range Kitaev SC chain
with a complex Aubry-André-Harper (AAH) potential intro-
duced by the imaginary phase shift. For both incommensurate
and commensurate cases, we reveal the topological phases
induced by the complex AAH potential. We find that the AAH
potential-induced topological phases do not always require
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obvious Anderson localization, which is different from the
topological Anderson phase induced by the random disorders
in previous works [76–79]. We also find that the imaginary
phase shift can suppress the AAH potential-induced topologi-
cal phases.

This paper is organized as follows: In Sec. II, we review
the topological phase diagrams of the longer-range Kitaev SC
chain and discuss the symmetry and topological classes of
the model with the complex AAH potential. In Sec. III, after
introducing the corresponding real-space winding number, we
present the numerical results about the incommensurate AAH
potential-induced topological phase in Sec. III A, which in-
cludes the real-space winding number, the spectrum of energy
modulus |E |, and the density distribution of eigenstates with
the four smallest energy modulus |E |. To support the existence
of incommensurate AAH potential-induced topological phase,
we also show results of the participation ratio (MIPR) and the
related mean inverse participation ratio (IPR) in Sec. III B.
The commensurate AAH potential-induced topological phase
is also displayed and discussed in Sec. IV. Finally, we perform
a summary in Sec. V.

II. MODEL

Let us begin with the following Hermitian longer-range
Kitaev chain model [12–14],

H0 = −2μ

L∑
n=1

c†
ncn − �1

L−1∑
n=1

(c†
ncn+1 − cncn+1 + H.c.)

−�2

L−1∑
n=1

(c†
ncn+2 − cncn+2 + H.c.), (1)

where cn is the annihilation operator of the spinless fermion
at the nth site. The strength of the real chemical potential is
2μ. The �1(�2) corresponds to the strength of the nearest-
(next-nearest-) equal hopping and SC pairing.

Before introducing the non-Hermitian term, let us discuss
the topological phase diagram of the model given by Eq. (1).
To this end, we perform the Fourier transformation to obtain
the following Hamiltonian in momentum space:

H0(k) = 1

2

∑
k∈BZ

ψ
†
k H̃0(k)ψk, (2)

with the Nambu basis ψk = (ck, c†
−k )T and the single-particle

Hamiltonian,

H̃0(k) = −gz(k)τz + gy(k)τy, (3)

where τy and τz are Pauli matrices acting on the Nambu space,
gz(k) = μ + �1 cos k + �2 cos 2k and gy(k) = �1 sin k +
�2 sin 2k. Next, we introduce the following transformation:

U = 1√
2

(
1 1
i −i

)
. (4)

Then, we have the following off-diagonal matrix:

UH̃0(k)U † = i

(
0 −gz(k) + igy(k)

gz(k) + igy(k) 0

)
, (5)

FIG. 1. Phase diagram of the system in the V = 0 case. The
numbers in the figure denote the winding number from Eq. (6).
Here we set μ = 1.0. The white dashed line is �2 = �1 − 0.5 with
�1 ∈ [−1, 3].

and the winding number is given by

ν = 1

2π i

∫ π

−π

dk ∂k[gz(k) + igy(k)]

= 1

2π i

∫ π

−π

dk ∂k[ln(μ + �1eik + �2e2ik )]. (6)

We find that ν = 1 for (�2 − �1 + μ)(�2 + �1 + μ) <

0; ν = 2 for (�2 − �1 + μ)(�2 + �1 + μ) > 0, (μ −
�2)(�2 ± �1 + μ) < 0, and ν = 0 for another case (see Ap-
pendix A). In the following part, we set μ = 1.0 as the energy
unit. The corresponding phase diagram is presented in Fig. 1,
which is the same as the one of the longer-range SSH chain
[16,17].

Then, we consider the following complex AAH potential:

H1 = −V
L∑
n

cos(2παn − iβ )c†
ncn, (7)

where V is the strength of the potential, 1/α gives the period
of the AAH potential, and −iβ is an imaginary shift in the
potential. Under the Nambu basis,

ψ = (c1, c2, . . . , cN−1, cN , c†
1, c†

2, . . . , c†
N−1, c†

N−1)T , (8)

H = H0 + H1 can be written as H = ψ†H̃ψ/2. We can check
that single-particle Hamiltonian H̃ possesses the following
symmetry:

CH̃T C−1 = −H̃ , SH̃S−1 = −H̃ , (9)

with particle-hole symmetry (PHS) operator C = 1N ⊗ τx and
sublattice symmetry (SLS) S = 1N ⊗ τx. So this model be-
longs to class D and the SLS commutates with the PHS [80].

III. INCOMMENSURATE CASES

Let us begin with the commensurate case. Here α = (
√

5 −
1)/2 is the golden ratio number, and the model is quasiperi-
odic. Since this model has the non-Hermitian SLS SH̃S−1 =
−H̃ , we can adopt the following real-space winding number
method [81–83] to investigate the topological transition,

ν = 1

4L′ Tr′(SQ[Q, X ]) + H.c., (10)
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where X is the coordinate operator X . The Q matrix can be
given by

Q =
∑

n

(|ψR,n〉〈ψL,n| − |ψ ′
R,n〉〈ψ ′

L,n|). (11)

Here n is the band index and |ψR,n〉 and |ψL,n〉 are the right
and left eigenvectors satisfying

H̃ |ψR,n〉 = En|ψR,n〉, H̃†|ψL,n〉 = E∗
n |ψL,n〉. (12)

And |ψR,n〉 and |ψ ′
R,n〉 are SLS partners: When a right eigen-

vector |ψR,n〉 satisfies H̃ |ψR,n〉 = En|ψR,n〉, we can also find
a right eigenvector |ψ ′

R,n〉 = S|ψR,n〉 satisfying H̃ |ψ ′
R,n〉 =

−En|ψ ′
R,n〉. (This is also valid for left eigenvectors.) The

chain length L includes the two boundary intervals 1 � x � l
and L − l + 1 � x � L and the middle interval with length
L′ = L − 2l . For the L → ∞ limit ν → 1 when a system is
topological and 0 for the trivial phase. And Tr′ stands for the
sum over the middle interval and the Nambu index.

A. Incommensurate AAH potential-induced topological phase

Let us begin with β = 0, i.e., Hermitian cases. Here we
consider the �2 = �1 − 0.5 with �1 ∈ [−1, 3] (the white
dashed lines in Fig. 1) and set the chemical potential μ = 1.0.
The real-space winding number as a function of V and �1 are
shown in Fig. 2(a). We find that there are two types of the
topological transition involving the AAH potential-induced
topological phases: (a) The topological transition from the
normal superconductor (NSC) to the AAH potential-induced
TSC including ν = 0 → 1 and ν = 0 → 1 → 2. (b) The
topological transition from TSC to AAH potential-induced
TSC including ν = 2 → 1.

In Figs. 2(b1) and 2(b2), we show the real-space winding
number ν and spectra under the open boundary conditions
as functions of the incommensurate AAH potential strength
V with �1 = 1.4, �2 = 0.9, and β = 0. We first focus on
Fig. 2(b1). As the potential strength V increases, the AAH
potential-induced topological phases can be identified when
1.4 � V � 3.4. In this topological region, ν = 1 for V ≈ 1.4
and V ≈ 3.4; the ν = 2 plateau exists when 1.8 � V � 3; The
topological transition ν = 1 → 2 (ν = 2 → 1) happens when
1.4 < V < 1.8 (3 < V � 3.4). The spectra under the OBCs
in Fig. 2(b2) also show the existence of the incommensurate
AAH potential induce topological phases: The region where
the Majorana zero modes occur matches well with the topo-
logical region 1.4 � V � 3.4 in Fig. 2(b1). Thus, both results
indicate that the AAH potential can drive the longer-range
Kitaev chain (with �1 = 1.4, �2 = 0.9, and β = 0) from the
NSC phase to the TSC phase when 1.4 � V � 3.4.

After discussing the Hermitian limit, we take the imag-
inary phase shift iβ into account, which introduces the
non-Hermiticity in the model. In Figs. 2(c1) and 2(c2), we
show the phase diagram about V and �1. (Here, we take �1 =
1.4, �2 = 0.9, and β = 0.4.) Comparing with the results in
Figs. 2(b1) and 2(b2), it is found that the topological phase
with 2.2 < V � 3.4 is suppressed whereas the topological re-
gion with 1.4 � V � 2.2 is almost unchanged when β = 0.4.
The phase diagram about varying β and V in Fig. 2(d) is
also shown in Fig. 2(d). As the β increases, we find that the
AAH potential-induced topological phase with larger AAH

FIG. 2. (a) The real-space winding number ν as a function of
the AAH potential strength V and �1(�2 = �1 − 0.5). (b1)–(c1)
The real-space winding number ν as a function of the AAH po-
tential strength V . (b2)–(c2) Spectra of the energy levels with the
ten smallest |E |s under OBCs as functions of the AAH potential
strength V . Red points are zero modes. The inset figure shows the
enlarged topological region. (The eigenmodes with |E | > 10−8 are
not shown.) (d) The real-space winding number ν as a function of
the AAH potential strength V and β. Other parameters are lattice
strength L = 500, the length of the boundary interval l = 100, and
α = [

√
5 − 1]/2.

potential strength V is easier to be suppressed than the one
with the smaller potential strength V . And the phase bound-
aries in the ν = 0 → 1 and ν = 1 → 2 transitions are almost
the same for varying β until the corresponding AAH potential-
induced TSC phases are removed. Apart from the NSC →
AAH potential-induced TSC transition, similar suppression
effects of β in an example of the TSC → AAH potential-
induced TSC transition are shown in Appendix. B.

At the end of this subsection, we discuss the density distri-
bution of the following normalized eigenstate:

|ψm〉 =
L∑

n=1

(um,ncm,n + vm,nc†
m,n)|0〉, (13)
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FIG. 3. Density distributions of the eigenstates with the four
smallest |E |s. The parameters are �1 = 1.4, �2 = 0.9, β = 0.4, and
V = 0.4, 1.4, 2.0, 2.4 in (a)–(d), correspondingly, Other parameters
are μ = 1.0 and lattice strength L = 500.

where m is the band index and n denotes the nth site. Then,
the corresponding density distribution at the nth site is

|ψm,n|2 = |um,n|2 + |vm,n|2. (14)

Since νmax = 2, the system has four zero-edge modes at
most. So we consider the four eigenstates with the four
smallest |E |s. When the system is topological, the corre-
sponding edge modes occur. In Fig. 3, we take (�1,�2, β ) =
(1.4, 0.9, 0.4) and V = 0.4, 1.4, 2.0, 2.4 cases as examples
and display the density distribution of these eigenstates. When
V = 0.4, the system is topologically trivial and has no zero-
edge modes; then, the system has two zero modes for V = 1.4
and four zero-edge modes for the V = 2.0 case, which indi-
cates that the system is in ν = 1 and ν = 2 topological phases,
correspondingly. Finally, the system has no zero-edge modes
and is in a trivial phase when V = 2.4. These results are also
consistent with the ones shown in Figs. 2(c1) and 2(c2).

B. Localization properties

In this section, we discuss the localization properties of
this model. To this end, we calculate the IPR and MIPR
which have been adopted to investigate localization properties
of the standard 1D p-wave Kitaev SC chain with Hermi-
tian [20,23,24] and non-Hermitian quasiperiodic potential
[63,70–73]. For the mth right eigenstate |ψ〉m,R = ∑

j (u jc j +
v jc

†
j )|0〉R, the corresponding IPR Im is

Im =
∑L

n=1(|um,n|4 + |vm,n|4)[∑L
n=1(|um,n|2 + |vm,n|2)

]2 , (15)

where n is the site index. It is known that the Im → 1 when
the eigenstate is extended and Im → 1/(2L) when the eigen-
state is localized. Then, we can also define the MIPR Ī =
(
∑2L

m=1 Im)/(2L). Still, for the extended system Ī → 1/(2L),
whereas Ī → 1 for the localized system.

FIG. 4. (a): MIPRs under OBC with varying quasiperiodic po-
tential strength V and β = 0, 0.4. (b) and (c): IPRs of the energy
bands with the four smallest |E |s and OBCs as functions of varying
quasiperiodic potential strength V . Here β = 0 in (b) and 0.4 in (c).
The black dashed lines in (a)–(c) denote the phase boundaries given
by the real-space winding number. Other parameters are �1 = 1.4,
�2 = 0.9, μ = 1.0, and L = 500.

In Fig. 4(a), we show the MIPR Ī of our model with
(�1,�2) = (1.4, 0.9) and β = 0, 0.4 as functions of V under
OBC. For β = 0 cases, we find that Ī < 10−2 when 0 � V �
3.2, which means that the Hermitian AAH potential-induced
topological phase with 1.4 � V � 3.2 is not strongly Ander-
son localized (note that L = 500 so Ī is of the order 10−3 for
extended states). Then, Ī > 10−2 and continues to increase
when V > 3.2, which indicates that the system becomes
a localized phase and only the V ≈ 3.4 Hermitian AAH
potential-induced topological phase is a localized phase.

As for the β = 0.4 case, its Ī > 10−2 when V � 1.8,
which indicates that the system with β = 0.4 is easier to
be localized, and the non-Hermitian AAH potential-induced
topological phase with β = 0.4 tends to be more localized
than the Hermitian case with β = 0 when 1.8 � V � 2.2.
The IPRs of eigenstates with the four smallest |E |s are also
shown in Figs. 4(b) and 4(c). Still, we consider the four
smallest |E |s since the maximum of ν = 2. When 1.4 �
V � 3.4 from Fig. 4(b), we find that the first and second
eigenstates’ IPRs are relatively large (I > 10−2), whereas the
third and fourth eigenstates’ IPRs I ∼ 10−3 → 10−1 → 10−3

in the topological region. Since the system is not strongly
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FIG. 5. Schematic of the longer-range Kitaev chain with α =
1/2 AAH potentials given by Eq. (16). For the nth lattice in H =
H0 + H1, this lattice belongs to the sublattice A(B) when m is odd
(even), which is marked by a filled red (blue) circle. The solid
(dashed) lines represent the nearest (next-nearest) hopping and su-
perconducting pairing term.

Anderson localized, the increase in these IPRs indicates that
these eigenstates are edge states, and the AAH induced ν = 1
and 2 topological phases exist in this case. Similar results can
be found in Fig. 4(c) when 1.4 � V � 2.2 and β = 0.4.

IV. COMMENSURATE CASE

When α is rational, the AAH potential is commensurate,
and the Anderson localization transition will not occur in
the system. Here, we the discuss α = 1/2 case. In this case,
Eq. (1) can be rewritten as

H = V cosh β
∑

n

(c†
n,Acn,A − c†

n,Bcn,B)

−�1

∑
n

(c†
n,Acn,B + c†

n,Bcn+1,A − cn,Acn,B

− cn,Bcn+1,A + H.c.)

−�2

∑
n,σ=A,B

(c†
n,σ cn+1,σ − cn,σ cn+1,σ + H.c.)

− 2μ
∑

n,σ=A,B

c†
n,σ cn,σ , (16)

where σ = A(B) is the sublattice index corresponding to the
odd (even) lattice of the original longer-range Kitaev chain
with the AAH potential. The corresponding illustration of
Eq. (16) is shown in Fig. 5. To characterize the topological
properties of this model, we have to calculate the topological
invariants. Due to the periodic nature of α = 1/2 AAH poten-
tial, the winding number can be obtained in the momentum
space. With the Nambu basis,

� = (ck,A, ck,B, c†
−k,A, c†

−k,B)T . (17)

The Hamiltonian is H (k) = 1
2

∑
k∈BZ �

†
k H̃ (k)�k where

H (k) =

⎛
⎜⎝

−M−(k) −z(k) q(k) −w(k)
−z∗(k) −M+(k) w∗(k) q(k)
q∗(k) w(k) M−(k) z(k)

−w∗(k) q∗(k) z∗(k) M+(k)

⎞
⎟⎠,

(18)

and

M±(k) = (2μ ± V cosh β + 2�2 cos k),

z(k) = �1(1 + e−ik ),

FIG. 6. (a) The real-space winding number ν as a function of
the AAH potential strength V and �1(�2 = �1 − 0.5). The black
solid lines are phase boundaries given by Eqs. (20) and (21). (b)–(e)
Spectra under OBCs (only the energy levels with the ten smallest
|E |s are shown) as functions of the AAH potential strength V with
�1 = 0, �2 = −0.5, and β = 0, 0.4, 0.8, 1.2 correspondingly. Red
points are zero modes, and block dashed lines are phase boundaries
given by Eqs. (20) and (21). Other parameters are lattice strength
L = 500, the length of the boundary interval l = 100, and α = 1/2.

w(k) = �1(1 − e−ik ),

q(k) = −2i�2 sin k. (19)

We can also obtain the winding number given by (see Ap-
pendix C)

ν ′ = 1

2π i

∫ π

−π

dk ∂k ln(μ′ + �′
1eik + �′

2e2ik ), (20)

where

μ′ = V 2 cosh2 β − 4μ2, �′
1 = 4�2

1 − 8μ�2,

�′
2 = −4�2

2. (21)

Note that Eq. (20) has a similar form as Eq. (6), we
find that ν ′ = 1 for (�′

2 − �′
1 + μ′)(�′

2 + �′
1 + μ′) < 0;

ν = 2 for (�′
2 − �′

1 + μ′)(�′
2 + �′

1 + μ′) > 0 and (μ′ −
�′

2)(�′
2 ± �′

1 + μ′) < 0; ν = 0 for other cases. When V = 0,
Eq. (16) reduces to Eq. (1), and we check that Eqs. (20) and
(6) give the same phase diagrams in Appendix C.

In Fig. 6(a), we give the phase diagram and boundaries
for (α, β ) = (1/2, 0) and �1 − �2 = 0.5. We find that the
commensurate AAH potential can also introduce the topolog-
ical phases. (For example, ν = 0 → 1, ν = 0 → 2, and ν =
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2 → 1 without Anderson localization.) Besides, Fig. 6(a) in-
dicates that topological regions induced by the α = 1/2 AAH
potential can be expressed as f1(�1) < V < f2(�1) for a
specific �1. Since imaginary phase shift iβ just leads to the re-
placement V → V cosh β in phase boundaries [see Eq. (21)]
and cosh β > 1 when β = 0, the imaginary phase shift −iβ
suppresses the corresponding topological region about V ,
which is also supported by results of spectra and corre-
sponding phase boundaries under the OBCs with (�1,�2) =
(0,−0.5) and β = 0, 0.4, 0.8, 1.2 in Figs. 6(b)–6(e). At
last, we also note that Vn = − cos(πn − iβ ) = ± cosh β is
always Hermitian potentials for the α = 1/2 case, so the sup-
pression of the α = 1/2 AAH potential-induced topological
phase from the imaginary phase shift does not rely on the
non-Hermiticity.

V. SUMMARY

To summarize, we discover the topological phases induced
by commensurate (α = 1/2) or incommensurate [α = (

√
5 −

1)/2] AAH potentials in the 1D longer-range spinless Ki-
taev chain. For the α = (

√
5 − 1)/2 case, we find the AAH

potential-induced topological phases, and these topological
phases are not always a topological Anderson phase; For the
α = 1/2 case, the AAH potential-induced topological phases
can also exist in our model without Anderson localization. We
also find that the imaginary phase shift can suppress the AAH
potential-induced topological phases and leads the system to
be more localized. These results could be helpful in further
studies about topological phases with the longer-range inter-
actions. Besides, since the 1D TSC with the next-nearest term
is related to the transverse Ising model with three-spin inter-
actions [12,14,15], our results might be also helpful to further
studies about the related spin model and the local/nonlocal
qubit with the (quasi)periodic fields. Finally, it is also valuable
to simulate this model in some experimental systems includ-
ing photonic systems [84], cold atom systems [31–33], and
electric circuits [34].
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APPENDIX A: WINDING NUMBER OF THE
LONGER-RANGE KITAEV CHAIN WITHOUT

THE AAH POTENTIAL

In this section, we discuss how to obtain the winding
number of the longer-range Kitaev chain from Eq. (6). Note
that

gk = μ + �1eik + �2e2ik

= (μ + �1 cos k + �2 cos 2k)

+ i(�1 sin k + �2 sin 2k), (A1)

FIG. 7. Trajectories of gk for several different cases in topologi-
cal regions, the corresponding winding number ν is 1, 1, 2, and 0 in
(a)–(d).

we have

g0 = μ + �1 + �2,

gπ = μ − �1 + �2,

gk0 = μ + �1 cos k0 + �2 cos 2k0

= μ + �1 cos k0 + �2(2 cos2 k0 − 1)

= μ − �2, (A2)

where cos k0 = −�1/(2�2). Since the winding number is
identified by the the trajectory of g(k) on the complex plane
(see examples in Fig. 7), we can obtain that ν = 1 when
g0gπ < 0; ν = 2 when g0gπ > 0, gk0 gπ < 0, and gk0 g0 < 0;
ν = 0 for other cases. Thus, we obtain the results from Eq. (6).

APPENDIX B: EFFECTS OF THE IMAGINARY PHASE
SHIFT β IN TSC → AAH POTENTIAL-INDUCED TSC

PHASE TRANSITION

In this section, we present the effects of the imaginary
phase-shift β in the TSC→ AAH potential-induced TSC
phase transition in Fig. 8. Here we set �1 = 2.5, �2 = 2.0,
and find that the topological phase with a larger AAH poten-
tial strength V is easier to be suppressed than the one with
the smaller potential strength V : The ν = 2 TSC phase is sup-
pressed at first. Then, the ν = 1 AAH potential-induced TSC
phase is also suppressed. The boundaries in the ν = 2 → 1
transition are almost the same.
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FIG. 8. The real-space winding number ν as a function of the
AAH potential strength V and β with �1 = 2.5, �2 = 2.0. Other
parameters are lattice strength L = 500, the length of the boundary
interval l = 100, and α = [

√
5 − 1]/2.

APPENDIX C: WINDING NUMBER OF THE
LONGER-RANGE KITAEV CHAIN WITH THE α = 1/2

AAH POTENTIAL

In this Appendix, we give more details about the derivation
of Eqs. (20) and (21) in the main text. Let us begin with
Eq. (18) in the main text, To this end, we introduce the fol-
lowing unitary transformation:

U = 1√
2

⎛
⎜⎝

1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i

⎞
⎟⎠. (C1)

After this transformation, we have

H ′(k) = UH (k)U −1 =
(

0 A†
k

Ak 0

)
, (C2)

with

Ak = i

(
M−(k) − q(k) z(k) + w(k)
z∗(k) − w∗(k) M+(k) − q(k)

)
. (C3)

Then, we have

ν ′ = 1

2π i

∫ π

−π

dk ∂k ln[det(Ak )]

= [z(k) + w(k)][z∗(k) − w∗(k)]

− [M+(k) − q(k)][M−(k) − q(k)]

= 1

2π i

∫ π

−π

dk ∂k[ln(μ′ + �′
1eik + �′

2e2ik )]. (C4)

where

M±(k) = (2μ ± V cosh β + 2�2 cos k),

z(k) = �1(1 + e−ik ), (C5)

w(k) = �1(1 − e−ik ),

q(k) = −2i�2 sin k.

Then, we can obtain the results in the main text. i.e., ν ′ =
1 for (�′

2 − �′
1 + μ′)(�′

2 + �′
1 + μ′) < 0; ν = 2 for (�′

2 −
�′

1 + μ′)(�′
2 + �′

1 + μ′) > 0, (μ′ − �′
2)(�′

2 ± �′
1 ± μ′) <

0; ν = 0 for the other case.
Next we check that Eqs. (20) and (6) in the main text give

the same results when V = 0, we find that for ν ′ = 1,

(�′
2 − �′

1 + μ′)(�′
2 + �′

1 + μ′)
= −16[�2

1 + (�2 − μ)2][�2
1 − (�2 + μ)2] < 0, (C6)

i.e.,

(�2 + μ)2 − �2
1 = (�2 − �1 + μ)(�2 + �1 + μ) < 0

(C7)
for ν = 2, note that

�′
2 − �′

1 + μ′ = −4[�2
1 + (�2 − μ)2] < 0, (C8)

and

(μ′ − �′
2)(�′

2 ± �′
1 + μ′) < 0,

(�′
2 − �′

1 + μ′)(�′
2 + �′

1 + μ′) > 0, (C9)

we have

�′
2 + �′

1 + μ′ = 4[�2
1 − (�2 + μ)2] < 0,

μ′ − �′
2 = −4(μ2 − �2

2) < 0, (C10)

which leads to

�2 > μ, (�2 − �1 + μ)(�2 + �1 + μ) > 0. (C11)

And ν ′ = 0 for other cases. So Eqs. (20) and (6) in the main
text lead to the same phase diagrams under the V = 0 limit.
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