
PHYSICAL REVIEW B 106, 094202 (2022)

Statistical mechanics of dimers on quasiperiodic Ammann-Beenker tilings
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We study classical dimers on two-dimensional quasiperiodic Ammann-Beenker (AB) tilings. Using the
discrete scale-symmetry of quasiperiodic tilings, we prove that each infinite tiling admits “perfect matchings”,
where every vertex is touched by one dimer. We show the appearance of so-called monomer pseudomembranes.
These are sets of edges, which collectively host exactly one dimer, which bound certain eightfold-symmetric
regions of the tiling. Regions bounded by pseudomembranes are matched together in a way that resembles perfect
matchings of the tiling itself. These structures emerge at all scales, suggesting the preservation of collective
dimer fluctuations over long distances. We provide numerical evidence, via Monte Carlo simulations, of dimer
correlations consistent with power laws over a hierarchy of different lengthscales. We also find evidence of rich
monomer correlations, with monomers displaying a pattern of attraction and repulsion to different regions within
pseudomembranes, along with signatures of deconfinement within certain annular regions of the tiling.
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I. INTRODUCTION

Dimer models have long attracted interest as elegant routes
to capture the interplay of local constraints and lattice ge-
ometry. The classical dimer problem is a combinatorial one,
counting the number of configurations of hard rods on a lat-
tice. It was solved in the early sixties for planar graphs by
Pfaffian techniques [1–3], a solution, which exposed a link to
the free fermion models. Much of the early interest was indeed
spurred by connections to the planar Ising model [4,5], which
famously falls into this class. Classical dimers have continued
to play an important role within physics, mathematics, and
computer science communities over the last century owing to
their ubiquity in problems of constraint satisfaction, optimiza-
tion, and combinatorics [6–9]. Many interesting questions
remain concerning the role of dimensionality, geometry, and
topology of the underlying graph on the emergent physics.

Perhaps the principal reason to study classical dimer
systems, however, is to better understand their quantum coun-
terparts. Quantum dimer models were introduced by Rokhsar
and Kivelson [7,10–12] as effective descriptions of short-
range resonating valence bond physics in high-temperature
superconductors [13,14]. They have since outgrown this orig-
inal motivation and now rank among the paradigmatic models
of quantum statistical mechanics. They are known to host a
rich variety of phases and phase transitions [15–21], includ-
ing both gapped and gapless quantum spin liquids [12,22–
27] and deconfined quantum critical points [28–30], whose
emergent gauge structure and fractionalized excitations have
particularly intuitive descriptions in terms of dimers [7]. More

*These authors contributed equally to this work.

recently, their local constraints have been proposed as a
route to glassy quantum dynamics and slow thermalization
[31–34]. The classical dimer model provides basic intuition
toward the quantum problem. Furthermore, at exactly one
point of the zero-temperature phase diagram—the critical
Rokhsar-Kivelson point—the wavefunction is given by the
equal amplitude superposition of all classical dimer states.1

The ground-state dimer correlations at the Rokhsar-Kivelson
point match the infinite temperature correlations of the clas-
sical model. The classical dimer model thus serves as an
important starting point to the quantum model.

Here we consider classical dimer models on bipartite
graphs [1–3,26,35–49]. A graph is a set of vertices connected
by edges. It is bipartite if its vertices can be partitioned into
two mutually exclusive sets such that there are no edges
between vertices belonging to the same set (same bipartite
“charge”). Dimers are placed on the edges such that each
vertex connects to zero or one dimers (a hard-core constraint).
This defines a dimer covering, or matching. An unmatched
vertex not connected to a dimer is termed a monomer. A
monomer-free configuration, if one exists, is called a perfect
matching.

The perfect matchings of graphs admitting planar embed-
dings can be counted exactly using the previously mentioned
Pfaffian techniques. In practice such methods amount to di-
agonalisation of the so-called Kasteleyn matrix, which in
many cases can be done analytically via Fourier analysis: If
the graph lacks translational invariance, however, no simple
analytical form is guaranteed to exist. Numerical solution

1This statement is strictly only true if the ground state is nondegen-
erate, but is simply generalized to the case with degeneracies.
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becomes computationally demanding for large systems (gen-
erally we are interested in the thermodynamic limit), and does
not offer the same insight. A more intuitive perspective is
afforded by the height representation [50–53], particularly
when it is applied to periodic bipartite lattices that admit
perfect matchings. On such lattices, the statistical mechanics
of dimer configurations can be understood by mapping dimer
coverings to configurations of an integer-valued “height” field
on edges of the dual lattice. The hard-core constraint becomes
a zero-divergence condition on this field—i.e., a Gauss law—
allowing it to be reexpressed as the lattice curl of a scalar
(vector) height variable in 2D (3D). The height mapping is
most useful when entropically favored dimer coverings corre-
spond to locally flat height configurations. Dimer correlations
can then be deduced using a coarse-grained free energy den-
sity for the height field, taking a local Gaussian form at long
wavelengths. Monomers appear as vortex defects of the height
field. In 2D, if the microscopic parameters correspond to the
vorticity being irrelevant (as on the square and honeycomb
lattices), the height model is in a rough phase, implying
critical (power law) dimer correlations and logarithmic con-
finement of monomers (i.e., the free energy cost of a pair
of test monomers in an otherwise-perfect matching diverges
logarithmically with their separation). When the vorticity is
relevant (as on the square lattice with additional aligning
interactions [40]), the height model is in its flat phase, with
exponentially decaying connected correlations of dimers and
linearly confined monomers. Since vortex defects are never
relevant in 3D, dimer correlations are always algebraic, and
monomers are deconfined. That is, a test pair can be separated
to arbitrary distance with finite free energy cost. However,
these arguments rely on both the existence of perfect match-
ings and the identification of locally flat height configurations
with high-probability configurations. Neither is guaranteed
for a generic bipartite graph.

Classical dimers have also been studied in settings with dis-
order, such as random regular graphs and Erdős-Renyi random
graphs [54–57], using approaches that are asymptotically ex-
act in the thermodynamic limit [58,59]. However, the absence
of conventional spatial locality in these ensembles rules out
any simple generalization of the notions of dimer correlations
and monomer confinement.

Recent work has explored the problem of classical dimer
models on Penrose tilings [60]. These are infinite tilings of the
plane constructed from two types of tiles. The tiles fit together
without gaps or defects, in such a way that no patch can be
tessellated periodically to reproduce the pattern [61–63]. De-
spite lacking the discrete translational symmetries of crystal
lattices, they nevertheless display long-range order. For ex-
ample, their Fourier transforms, which are tenfold rotationally
symmetric, feature sharp Bragg peaks, which can be labeled
by a finite number of wave vectors. This latter condition
defines the Penrose tiling to be quasiperiodic [63]. Penrose
tilings came to prominence in the physics community with
the discovery of quasicrystals, real materials whose atoms are
arranged quasiperiodically [64]. Considering the edges and
vertices of the tiles as those of a bipartite graph, Penrose
tilings do not admit perfect matchings despite having no net
imbalance in their bipartite charge [60]. Instead, they have a
finite density of monomers in the thermodynamic limit. The

maximum matchings on Penrose tilings, which contain the
maximum number of dimers, have an unusually rich under-
lying structure, quite distinct from either periodic or random
systems. In general maximum matchings, monomers can be
thought of as moving via dimer rearrangements. On Penrose
tilings, monomers are always confined within regions bound
by nested loops, or monomer membranes. These membranes
are composed of edges, which do not host a dimer in any max-
imum matching. Each such region has an excess of vertices
belonging to one or the other bipartite charge, and hosts a
corresponding number of monomers. Adjacent regions have
monomers of the opposite bipartite charge. The properties of
these membranes and the regions that they enclose follow
directly from the dimer constraint and the underlying sym-
metry of the tiling, and can hence be precisely determined.
Reference [65] identified similar monomer-confining regions,
separated either by membranes or perfectly matched regions,
as components of the Dulmage-Mendelsohn decomposition of
generic bipartite graphs [66–69]. This was used to investigate
phase transitions of such monomer-confining regions in en-
sembles of periodic lattices with random vertex dilution, such
as those used to model vacancy disorder in quantum magnets.

While both Refs. [60,65] consider bipartite dimer mod-
els, the usual mapping to height models does not apply to
quasiperiodic graphs, or graphs where vertices can have dif-
ferent coordination numbers. While a more general height
mapping is possible in principle [70], the resulting height
functions typically do not lead to analytically tractable coarse-
grained continuum free energy functionals. This is because
there is no longer a simple relationship between the local
configuration of the height field and the statistical weight of
the global dimer covering. In any case, due to a sizable density
of monomers in the cases studied in Refs. [60,65] connected
correlation functions of dimers are short ranged and more
or less unremarkable. In addition, monomer correlation func-
tions are nonmonotonic and strongly site dependent, making it
challenging to define a crisp notion of monomer confinement.
These facts challenge the goal of a precise characterization of
long-wavelength properties of dimer models in quasiperiodic
environments.

A. Results

In this paper, we meet this challenge in the setting of a
distinct quasiperiodic dimer problem for which we can make
a series of exact, and asymptotic, statements. Specifically, we
study classical dimers on the Ammann-Beenker (AB) tiling,
shown in Figs. 1(a) and 1(b). This tiling has been the topic
of much recent attention, with investigations in the context
of magnetism [71–73], superconductivity [74], critical eigen-
states [75], protected Majorana modes [76], and topological
insulators [77]. Like the Penrose tilings, AB tilings ex-
hibit discrete scale invariance: deflations (vertex decimations
followed by rescaling lengths by the irrational silver ra-
tio) map an AB tiling to another AB tiling. We prove
that these tilings host perfect matchings in the thermody-
namic limit, in contrast to the Penrose tilings investigated in
Ref. [60]. Our proof makes use of the discrete scale invari-
ance characteristic of quasicrystals: We find that at any given
coarse-graining scale, special vertices that are left invariant
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(a) (b)

(d) (c)

FIG. 1. Clockwise: (a) A finite patch of the Ammann-Beenker (AB) tiling. Composed of copies of square and rhombus tiles, the (infinite)
tiling covers the plane in an ordered fashion, yet never repeats periodically. (b) A maximum matching (dimer covering) of a patch of the AB
tiling. The tiling can be perfectly matched in the thermodynamic limit; on finite patches, an O(1) number of unmatched vertices (monomers)
generally appear, which can be moved to the boundary. Thick-black lines indicate links, which comprise overlapping pseudomembranes, each
of which collectively host one dimer. Yellow edges indicate a dimer on a pseudomembrane. (c) A patch of the AB∗ tiling, obtained from AB
by removing all 8-connected vertices. (d) A maximum matching of a patch of the AB∗ tiling. Pseudomembranes become membranes, hosting
zero dimers and leading to a decoupling of dimers residing on different ladders.

by double deflations lead to the preservation of strong dimer-
dimer correlations at the next scale. This suggests that certain
regions associated with these vertices retain mutual dimer
correlations. The preserved vertices have edge-coordination
eight and we refer to them as “8-vertices”.

The success of this iterative construction of dimer cov-
erings motivates us to consider an auxiliary problem on a
related graph that we dub the AB∗ tiling, Fig. 1(c). This is
obtained from the AB tiling by removing all the 8-vertices.
The AB∗ tiling is also perfectly matched and does not host
monomers, and we show that it decouples into perfectly
matched one-dimensional regions that we call ladders, sep-
arated by membranes. These membranes, like those in Refs.
[60,65] are composed of edges between different ladders that
do not host a dimer in any maximum matching. However,
unlike the monomer-confining regions of Refs. [60,65] they
separate perfectly matched regions. This structure allows us
to systematically treat the matching problem on the AB tiling

once the 8-vertices are reintroduced. We show that membranes
in the AB∗ tiling become pseudomembranes in the full AB
tiling, concentric with the 8-vertices: the edges belonging
to every pseudomembrane now collectively host exactly one
dimer, as the monomer reinstated on the central 8-vertex of
the region “crosses” the membranes in order to be matched
with monomers from other 8-vertices.

Each 8-vertex is surrounded by at least one pseudomem-
brane. Loosely speaking, a double deflation maps this 8-vertex
and its surrounding pseudomembrane-bounded region into a
single vertex at the next scale. Since each pseudomembrane
is crossed by exactly one dimer, this procedure preserves an
“effective dimer-constraint” at each successive scale—thereby
leading to effective matching problems at each scale. This
remarkable property provides a heuristic picture of the emer-
gence of correlated dimer fluctuations over large distances.
It also suggests that the AB tiling is an intriguing example
of a lattice-level (rather than continuum) coarse-graining of
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FIG. 2. Left: The e j dependence of the connected dimer correlations |C(e0, e j )| [Eq. (6)]. The source edge e0, indicated by the solid-red
triangle, connects an 82-vertex to a nearby ladder. The resulting correlations are typical of slowly decaying examples, and resemble a power
law (see Sec. V). Right: Density plot of the monomer correlation function Z (x, y), for the 84-vertex. Z (x, y) is displayed as a function of y,
with x fixed at a vertex marked by a solid-red dot.

a constrained system that faithfully imposes the constraint at
each successive decimation scale.2

We show that the discrete scale invariance exhibited by per-
fect matchings leaves its imprint in both dimer and monomer
correlations, as exhibited in Fig. 2. Investigating connected
dimer correlations numerically, we show that, while they are
strongly anisotropic and site dependent, the connected corre-
lation functions of certain dimers have slow decays, consistent
with power laws, cutoff by a set of lengthscales going up
to the system size. This is particularly striking given the ab-
sence of the continuum height description, which mandates
power law correlations in periodic bipartite lattices [9,53].
We then turn to monomer correlations, where we observe
a pattern of “charged” correlations set by the pseudomem-
branes, whereby a monomer is strongly (weakly) correlated
to monomers within pseudomembranes centered on 8-vertices
of opposite (equal) bipartite charge to the monomer. We fur-
ther show, that in the angular direction around an 8-vertex,
monomer-monomer correlations asymptote to finite constant
values at large separation—that is, a pair of monomers are
deconfined with respect to annular separation. We argue that
these behaviors arise as a consequence of effective matching
problems at each scale. Finally, we investigate the phase dia-
gram of dimer models on both the AB tiling and AB∗ tiling in
the presence of a classical aligning interaction resembling the
Rokhsar-Kivelson potential term, as a step on the road towards
a study of quasiperiodic quantum dimer models.

The remainder of this paper is organized as follows. We
introduce the necessary background on dimer covers and AB
tilings in Sec. II. In Sec. III we prove that perfect matchings

2We emphasize the deterministic nature, since real-space decima-
tions can have an especially simple structure in random systems.

exist for AB tilings in the thermodynamic limit. This con-
struction leads to the introduction of the auxiliary AB∗ tiling,
which is also perfectly matched. In Sec. IV A we prove the
existence of membranes in the AB∗ tiling; in Sec. IV B we
demonstrate how these become pseudomembranes in the AB
tiling, and in Sec. IV C, we explain how the pseudomembranes
lead to the structure of effective matchings at different scales
across the tiling. Turning to numerical results on the AB
tiling, after outlining our choice of samples and boundary
conditions in Sec. V A, we identify connected dimer corre-
lations consistent with power laws (Sec. V B), and long-range
monomer correlations with regions of annular deconfinement
(Sec. V C). In Sec. VI we investigate the effects of including a
classical aligning interaction in both the AB and AB∗ tilings.
We provide concluding remarks in Sec. VI.

II. BACKGROUND

A. Dimer models and graph theory

In this section we introduce the necessary terminology to
discuss dimer coverings on graphs. The graphs of interest
in this paper have two important properties. First, they are
bipartite, meaning the vertices can be partitioned into two
mutually exclusive subsets, U and V , so that every vertex in U
(V) only has edges to vertices in V (U ). If two vertices belong
to the same subset, we will say they have equal (bipartite)
charge; otherwise, they are oppositely charged. Second, the
graphs admit planar embeddings. We keep the geometry of
the tiling, although strictly speaking only the graph topology
is relevant to the matching problem.

A matching of a graph is a subset of edges such that no
vertex is incident with more than one edge in the subset [78].
A matching is equivalent to a dimer configuration, as edges in
the matching can be covered by dimers, with no vertex touch-
ing more than one dimer. A vertex connected to an edge in the
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FIG. 3. (a) A maximum matching, which is not perfect. Un-
matched vertices are marked with a blue circle. (b) A perfect match-
ing. (c) An alternating cycle; augmenting this cycle—swapping
covered and uncovered edges—yields a new matching with the same
number of dimers. (d) An even-length alternating path terminating at
a monomer; upon augmenting this path, the monomer is transported
to the other end of the path. (e) Augmenting an odd-length alternating
path between monomers, or augmenting path, annihilates the two
monomers in favor of a dimer.

matching is said to be matched; an unmatched vertex is called
a monomer. A perfect matching is a matching with every ver-
tex matched or, equivalently, a monomer-free dimer covering.
Not every graph admits a perfect matching—a simple coun-
terexample is any graph with an odd number of vertices. A
maximum matching is a matching with the maximum number
of dimers (minimum number of monomers): Figures 3(a) and
3(b) shows examples of maximum and perfect matchings. If a
graph admits a perfect matching, then any maximum matching
is necessarily perfect. When considering the limit of infinite
system size, as we will do here, a sensible definition of perfect
matchings requires that the density of monomers vanishes, in
this limit. This avoids the unnecessary complication of dealing
with a small, O(1) number of unpaired boundary vertices—
the exact number of such monomers depends on how exactly
one chooses to terminate the system, and does not scale with
the size of the graph.

Usually a graph will have multiple maximum or perfect
matchings and, from a statistical mechanics perspective, our
interest is in this full configuration space, possibly up to cer-

tain constraints (e.g., we may only consider perfectly matched
configurations, or penalise matchings with certain alignments
of dimers). An alternating path is a connected subset of edges
along which edges are alternately covered and uncovered by
dimers. Starting from any matching, switching which edges
are covered/uncovered in a closed alternating path (alternat-
ing cycle) results in another matching with the same number
of dimers [see Fig. 3(c)]. Switching those edges in an open
odd-length alternating path changes the number of monomers
in the matching—for example, two monomers can be created
by removing one dimer. This process of switching covered
and uncovered edges is known as augmenting the path. All
alternating cycles are of even length (on a bipartite graph this
statement is trivial since all cycles are of even length).

On a bipartite graph, monomers are assigned a charge
depending on which bipartite subgraph they reside on, and are
able to “move” through the dimer vacuum along alternating
paths: Taking an even-length alternating path with one end
terminating on one of the monomers, augmenting the path
results in the monomer being translated to the opposite end
of the path, while conserving the monomer’s charge [see
Fig. 3(d)]. The creation of a monomer pair on a bipartite
graph has a physical analogy in the excitation of a particle-
antiparticle or defect pair above the vacuum state (viewed
as one where all monomers are paired into neutral dimers).
Given a maximum matching, all other maximum matchings
in the configuration space can be reached by combinations
of two basic “moves”: (i) augmenting alternating cycles; and
(ii) transporting monomers along alternating paths of even
length. Detailed discussions on classical dimer coverings
and their application to physics can be found in, e.g.,
Refs. [70,79,80].

Monomers can be added to the matching by augmenting
odd-length paths of dimers. The reverse process is also pos-
sible. Starting from an imperfect matching, if an odd-length
alternating path can be found with end points terminating
on two monomers (an augmenting path), then this path can
be augmented to annihilate the two monomers in favor of
a dimer [see Fig. 3(e)]. If augmenting paths can be found
sequentially between all remaining monomers of a matching,
so that no monomer appears in more than one path, then the
augmentation of these paths results in a perfect matching. We
will use these facts to prove the Ammann-Beenker tilings can
be perfectly matched.

B. Ammann-Beenker tilings

Although we will use the language of graph theory in our
discussion of AB, the mathematical theory of quasicrystals
has traditionally been developed in the language of tilings.
A tiling is a filling of space with congruent shapes without
overlaps or gaps [63]. For clarity we will use tiling to refer to
an infinite tiling of the plane; finite sections of a tiling we refer
to as patches. Periodic tilings can be formed by repetition of a
single tile, such as a square or hexagon. Conventional crystals
can be seen as regular tilings of 3D space by an atomic unit
cell; the underlying symmetries can be deduced from diffrac-
tion experiments, and yield the 230 crystallographic space
groups [81]. However, the only rotational symmetries com-
patible with such periodic long-range order (in 2D or 3D) are

094202-5



JEROME LLOYD et al. PHYSICAL REVIEW B 106, 094202 (2022)

two-, three-, four-, and sixfold. When diffraction experiments
on AlMn-alloys revealed structures compatible with fivefold
rotational symmetry [64], crystallographic theory had to be
extended to include quasicrystals—alloys with long-range
atomic order but no translation symmetry. Quasicrystals can
feature finite patches of five-, eight-, 10-, or 12-fold rotational
symmetry [82–84].

Quasiperiodic tilings are a class of planar tilings without
translation symmetry, capable of accounting for the sym-
metries observed in quasicrystals, which are forbidden in
periodic tilings [62,63,85]. They are distinguished from the
more general set of aperiodic tilings by the fact that their
diffraction patterns can be indexed by a finite number of
wavevectors [63]. The most famous family of quasiperi-
odic tilings is due to Penrose [61]. Penrose tilings have
local patches of fivefold symmetry (and can have at most
one true fivefold rotational center). The Ammann-Beenker
tilings [62,86] have eightfold symmetry, and together with the
decagonal (10-fold) and dodecagonal (12-fold) tilings, they
make up the “Penrose-like” tilings [87]. The remarkable fact
that the four symmetries displayed by these tilings account
for the symmetries of all physical quasicrystals (i.e., those
observable in experiment) was explained by Levitov based on
arguments of energetic stability [88]. The Penrose-like tilings
have therefore seen extensive study in connection to physics.

Classical dimers on Penrose tilings were studied in pre-
vious paper [60]; here we focus on the Ammann-Beenker
(AB) tiling, a patch of which is shown in Fig. 1(a). The AB
tiling is constructed from copies of two inequivalent tiles:
a square, and a rhombus with angles π/4 and 3π/4. Both
tiles have edges of unit length. No shifted copy of this tiling
can be exactly overlaid with the original. Many mathematical
properties of AB tilings are well understood and can be found
in, e.g., [63]. Here we briefly mention those relevant to the
following discussion.

The Ammann-Beenker tilings (plural) constitute an un-
countable set of LI (locally indistinguishable or locally
isomorphic) tilings. Two tilings are LI if any finite patch of
one can be found in the other. In this way, all AB tilings
“look the same” from a local perspective, distinguished only
in their global structure. In fact, every finite patch recurs with
positive frequency in all tilings. This property accounts for the
long-range order of the quasiperiodic tilings. This structure
can be compared to that of the periodic tilings, where the
long-range order arises from the repeated unit cell. Results
that we discuss in the following sections apply in generality
to the entire set of AB tilings.

Any ABtiling T can be generated by several methods
[62,63,89]. Square and rhombus tiles can have their edges
decorated by matching rules, which force the tiles to fit to-
gether quasiperiodically; an AB tiling can be created as a
slice through a higher dimensional periodic lattice (the cut-
and-project technique); or the tilings can be generated via
an inflation procedure. This inflation method allows us to
discuss the scale symmetry of the tilings, and is our primary
workhorse in this paper.

Starting from a finite seed patch T0 (e.g., a single square
tile) an inflation rule σ is repeatedly applied to grow the patch
as Tn = σ n(T0), with the number of tiles growing exponen-
tially under inflation. σ consists of two steps: decomposition,

FIG. 4. The inflation rule σ , in which a tile is decomposed into
smaller tiles, followed by a rescaling of all lengths by a factor of the
silver ratio δS = 1 + √

2 (which we do not show here). The inverse
σ−1, deflation, is uniquely specified. An arbitrarily large AB tiling
can be generated from a small patch by repeated inflations. (Note
the inflation of the square tile breaks the rotation symmetry so we
must keep track of orientation, as captured by the triangular motif
shown. We will usually leave the markings absent in future figures for
clarity.)

where every tile is divided into smaller tiles as shown in Fig. 4,
followed by rescaling, where the decomposed tiling is scaled
so that the new tiling is formed from exact copies of the
original tiles. The scaling factor is the silver ratio δS , defined
by

δ2
S = 2δS + 1 (1)

and equal to

δS = 1 +
√

2. (2)

The Penrose tiling instead has as its scale factor the golden
ratio ϕ = 1+√

5
2 . Note that it is the length (rather than area) of

the tile edges that scales by δS under decomposition: this can
be seen geometrically in Fig. 4, with each edge divided into a
rhombus edge and the square diagonal. The area of each tile
scales by δ2

S under decomposition. In the following, if we say
one tiling is larger than another by some power of the silver
ratio, we are always referring to the respective lengths of their
tile edges.

Patches of arbitrarily large size can be generated by the
inflation process. The tiling T is recovered after an infinite
number of inflations. The inverse of the inflation rule σ−1,
deflation, is also uniquely specified on a tiling, consisting of
composition—reconstruction of the larger tiles from smaller
tiles—and rescaling by the inverse of the silver ratio. Acting
with σ or σ−1 on T returns another tiling in the same LI class.

Every possible configuration of tiles around a vertex in
AB is identical to one of the seven vertex configurations
shown in Fig. 5 (up to rotations). The 5-vertices (5A and
5B) yield two distinct results upon inflation depending on the
orientation of the adjacent square plaquettes. All other ver-
tices can be uniquely identified by their coordination number
(valence, in graph theory nomenclature). Under σ , each ver-
tex configuration is mapped to a different configuration, e.g.,
4 → 6, with the exception of the 8-vertex, which inflates to
another 8-vertex. These inflations are also shown in Fig. 5.

The scale symmetry of the Ammann-Beenker tilings arises
from this inflation structure, and specifically from the in-
vertibility of σ . One expression of this symmetry is that all
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FIG. 5. The seven-vertex configurations, and their action under inflation (Fig. 4). All vertices map to 8-vertices under at most two inflations.

8-vertices of T are positioned at the vertices of the tiling
obtained by twice composing T , i.e., the twice-deflated tiling
T−2 ≡ σ−2(T ) with lengths rescaled by δ2

S . This follows from
noticing that every vertex is mapped to an 8-vertex under
two inflations, as can be checked from the vertex inflations in
Fig. 5. By the inverse, deflating twice maps the 8-vertices of
T to the vertices of T−2. This scale symmetry is more clearly
shown in Fig. 6, which shows a patch of T overlaid with the
scaled T−2. The 8-vertices of T are colored by their bipartite
charge, and are seen to coincide with the vertices of the scaled
T−2. We will rely on this symmetry in the rest of the paper.
Anticipating this 8-vertex ↔ vertex mapping, we introduce σ 2

inflation tiles, shown in Fig. 7. Compared to the basic inflation
tiles (Fig. 4), the σ 2 tiles have the property that their vertices
become 8-vertices in the inflated tiling.

FIG. 6. The scale symmetry of the AB tiling: The 8-vertices of
an AB tiling are positioned to sit at the vertices of another locally
indistinguishable ABtiling, with lengths increased by a factor of δ2

S ,
where δS = 1 + √

2 is the silver ratio. 8-vertices are colored by their
bipartite charge.

This scale hierarchy continues: under σ 2, the 8-vertices of
T inflate to 8-vertices, and these twice-inflated 8-vertices are
positioned to sit at the vertices of a tiling with lengths scaled
by δ4

S . With this in mind, it is convenient to define an ordering
to the 8-vertices. An 8-vertex is order-zero if it maps to a
7-, 5A-, or 6-vertex under a single deflation; order-one if it
deflates to an order-zero 8-vertex; and so on. This flow of
vertices is represented in Fig. 8. We denote an order-n 8-vertex
an 8n-vertex. An 8n-vertex is therefore the nth inflation of an
order-0 8-vertex, 80. We find that 8n-vertices of T sit at the
vertices of an AB tiling, LI to T , with lengths scaled by a
factor of δ

(n+2)
S . Since all vertices of T are mapped to order-n

or higher 8-vertices under σ (n+2), 8-vertices of order n and
higher can also be viewed as those vertices of T that are
preserved under n + 2 deflations. We will denote the n-times
deflated tiling of T as T−n (generally we will not distinguish
between deflations and decompositions, unless the distinction
is important).

To conclude this section, we discuss the eightfold sym-
metry that defines the Ammann-Beenker tilings. First, as
mentioned previously, the Bragg spectrum (Fourier transform
of the lattice) has a discrete eightfold rotational symmetry (D8

in Schönflies notation) [90]. Second, and most importantly to
us, the symmetry shows up in the structure of tiles surrounding
an 8-vertex. Every vertex configuration has a set of tiles,
which always appears around the vertex wherever it is placed
in the tiling. Such a motif is known as the vertex empire
[62,91]. Vertex empires are generally not simply connected;
the set of empire tiles simply connected to a vertex is called
the local empire of the vertex. The local empire of the 80-

FIG. 7. The σ 2 (in/de)flation rules, which map vertices directly
to 8-vertices in the completed tiling. Here we leave off triangular
motifs in the inflation for clarity.
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FIG. 8. The flow of vertices under successive inflations. The
ordering of 8-vertices is defined so that an order-zero 8-vertex, 80,
deflates once to a 5A-, 6-, or 7-vertex, and an order-n 8-vertex, 8n,
deflates to 8n−1.

vertex is shown in Fig. 9, and has D8 symmetry. The inflation
σ preserves this symmetry, and so the radius of symmetry of
an 8n-vertex is a factor of δS larger than for an 8n−1-vertex.
The local empire of an 8n-vertex (which we will refer to as
an 8n-empire) in fact includes that of an 8n−1-vertex within
it. According to the definition of the LI-class of tilings, every
finite region can be found with positive frequency across the
tiling. It follows that D8-symmetric 8-empires of arbitrarily
large size can be found across the tiling, with a frequency
corresponding to the frequency of the respective 8-vertices.

III. PERFECT MATCHINGS ON THE
AMMANN-BEENKER TILINGS

We now show that Ammann-Beenker tilings can be per-
fectly matched. We work in the thermodynamic limit, where
the tiling covers the infinite plane and boundary effects can be
ignored. Taking the thermodynamic limit is a delicate proce-
dure in quasiperiodic systems since one must necessarily work
with open boundary conditions and bound their contribution
as the system size increases. By “perfect matchings” in the
thermodynamic limit, we mean those with zero monomer
density. While efficient algorithms exist to determine the
maximum matching of finite graphs [92,93], showing that an
infinite graph (the relevant case in the thermodynamic limit)
admits a perfect matching is in general nontrivial. Quasiperi-

FIG. 9. The local empire of an 80-vertex, the simply connected
set of tiles that always appear around an 80-vertex in the tiling. The
local empire has D8 symmetry.

odic Penrose tilings cannot be perfectly matched: although the
infinite tiling is charge neutral, monomers are confined within
regions with an excess of one or the other type of bipartite
charge. Such confinement emerges as a direct consequence
of the quasiperiodic geometry: monomers cannot annihilate
those of the opposite charge as they cannot cross so-called
monomer membranes. Membranes are sets of edges, which
cannot be covered by dimers in any maximum matching.
Equivalently, no augmenting paths exist between monomers
on opposite sides of a membrane. Deleting these edges dis-
connects the graph.

The perfect matching problem on AB is of a similarly
nontrivial nature. We note that the matching problem on finite
patches of the AB tiling depends sensitively on the patch
considered. Clearly a patch with a net imbalance of bipar-
tite charge never admits a perfect matching. However, the
AB tilings have vanishing net charge density in the ther-
modynamic limit, because the average vertex connectivity
is the same for the two bipartite subsets. Less trivially, it
is also possible to find charge-neutral patches with unpaired
monomers. An example is the patch generated by inflating the
basis square four times: exactly two monomers remain in the
maximum matching, with opposite charges. This is akin to
the Penrose problem where membranes stop the monomers
from matching. In contrast to that case, where the density of
monomers approaches ∼10%, the observed number of un-
paired monomers on AB remains of order unity as the tiling
is grown. We have verified these statements using the above
graph-theoretic methods to compute maximum matchings on
a large sample of patches generated via inflation. While sim-
ilar membrane structures to those in Penrose tilings exist on
AB (as we will show in Sec. IV), in the latter case they do
not frustrate the perfect matching, as we will show below. On
finite patches, the presence of monomers arises from defects
at the boundary, which migrate into the bulk, and no finite
density persists in the thermodynamic limit.

The strategy of our proof that the AB tilings can be per-
fectly matched is as follows. Consider the perfect matching
problem on an AB tiling T . We first match up all vertices of
T except for the 8-vertices (recall that these are the vertices,
which remain under two deflations). We then show that the
problem of matching the remaining 8-vertices maps to a per-
fect matching problem on the twice-deflated tiling T−2. On
this tiling, we match all but the 8-vertices again (this matches
all 80- and 81-vertices on the original T ). We then use the
scale symmetry of T to iterate this procedure and obtain an
upper bound on the monomer density of the AB tiling after
n deflations. This density vanishes exponentially as n → ∞,
corresponding to taking the thermodynamic limit.

Our motivation for separating out the 8-vertices comes
from the requirement for a bipartite graph to be charge neutral
in order to admit a perfect matching. This is true of the
AB tiling in the thermodynamic limit. Note, however, that
any D8 local empire has an excess charge of at least one.
This follows since every D8 local empire has an 8-vertex at
its center (by definition), and its eightfold rotational sym-
metry mandates that the total number of vertices within the
region must be 8m + 1, for some integer m. Since this num-
ber is odd, there must be an excess of bipartite charge. The
same argument shows that any symmetric region centered on
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FIG. 10. (Left) The dimer inflation tiles: Deflating with the
squared tiles in Fig. 7, T → T−2, and then reinflating with these
dimer-decorated tiles places dimers on T . This matches all vertices
of T except the 8-vertices (marked with red and blue circles denot-
ing bipartite charge). Unmatched vertices on tile boundaries (black)
overlap with matched vertices (white) in the completed tiling. (Right)
Augmenting paths always exist between neighboring 8-vertices (the
other choice of charge-neutral pairing follows from the symmetry of
the dimers).

8-vertices cannot be perfectly matched without placing at least
one dimer outside of the region. Since such regions exist at
all scales across the tiling, we can always find arbitrarily large
regions that cannot be perfectly matched internally. This struc-
ture of coupled D8 regions complicates the problem. By first
removing the 8-vertices at the centres of these regions, we can
match the rest of the tiling systematically before progressively
reintroducing and matching the remaining monomers.

A. Proof of perfect matching

(1) Let T be an AB tiling not covered by dimers. Let T−2

be the tiling obtained by deflating twice on T . Replacing the
tiles of T−2 by the dimer inflation tiles (DITs) in Fig. 10, we
obtain a matching of T , such that only the 8-vertices remain
unmatched.

The last statement follows from noting that (a) no dimers
touch the corner vertices of the DITs, which map to the 8-
vertices of T (see Sec. II B); (b) all vertices in the interior
of the DITs are matched; and (c) all remaining unmatched
vertices on the boundary of the DITs (large, black) overlap
consistently with matched vertices on adjacent tile boundaries
(large, white). No double covering occurs.

The density of unpaired monomers on T after application
of the DITs gives an upper bound on the true monomer density
ρ (i.e., the density remaining in any maximum matching of
T ). Therefore,

ρ � ν8v, (3)

where ν8v = δ−4
S ∼ 0.03 is the density of 8-vertices on the

Ammann-Beenker tiling [63].
(2) Next, we allow the monomers to move around the

tiling via augmenting paths. We define 8-vertices (monomers)
to be deflate neighbors on T if they become true nearest-
neighbors on T−2. An augmenting path always exists between
two deflate-neighboring monomers. This is clear from the
right of Fig. 10, since deflate-neighboring monomers sit on
adjacent corner vertices of either one of the DITs.

The bound on ρ will be reduced by augmentation of
these paths, annihilating two deflate-neighboring monomers
to give a dimer. Each augmentation removes the monomers
from future possible pairings, but otherwise does not af-
fect the possibility of annihilations between other monomers,
since augmenting paths between disjoint pairs of deflate-
neighboring monomers can be chosen so as not to intersect.
The paths in Fig. 10 are nonintersecting.

Augmentation of a complete (nonintersecting) set of paths
between deflate-neighboring monomers results in a perfect
matching of T . According to our definition of deflate-
neighbors, a complete set of augmenting paths is given by a
perfect matching of T−2, via the identification of dimers on
T−2 with augmenting paths on T . Figure 6 shows that aug-
menting paths between deflate-neighboring 8-vertices indeed
has the structure of a matching problem at the next scale.

(3) A perfect matching of T−2 is evidently no easier to
obtain than for T . However, by application of the DITs to the
tiling T−4, we match all vertices of T−2 except the 8-vertices.
Augmenting the corresponding paths on T annihilates all
monomers on 80- and 81-vertices of T . The remaining un-
matched vertices correspond to the 8n>1-vertices, and the
bound on ρ is reduced by another factor of ν8v ,

ρ � ν2
8v. (4)

(4) We now apply this procedure to all scales of the
AB tiling. We call a monomer on an 8n-vertex an order-n
monomer. Finding augmenting paths between all order-n and
order-(n + 1) monomers of T corresponds to finding aug-
menting paths between all order-(n − 2) and order-(n − 1)
monomers of the T−2 tiling, and by induction, to a matching
of the non-8-vertices of the T−(n+2) tiling (here we identify
order-n for n < 0 with the non-8-vertices according to Fig. 8).
Each matching of the non-8-vertices of T−(n+2) is performed
via the DITs, reducing the bound on ρ by a factor of ν8v . Since
the infinite tiling T can be deflated an arbitrary number of
times (and ν8v < 1), the density of monomers must tend to
zero in the thermodynamic limit,

ρ � ν2n
8v , lim

n→∞ ρ → 0, (5)

and the tiling admits a perfect matching �.
We point out finally that the above proof does not guarantee

a vanishing number of monomers on the tiling. In fact, it is
easy to construct counterexamples: the infinite tiling obtained
by repeated inflation of the eightfold symmetric patch in Fig. 9
is one. This tiling must have an excess charge of at least one
monomer, which can be seen as the charge residing on the
“order infinity” 8-vertex at the center of the tiling. It will
never be matched under a finite number of the above inflation
matching rules. These monomers are artefacts of how the
boundary of the graph is terminated (for the above example,
we can imagine adding a small number of vertices to the graph
boundary, which break the symmetry and allow the monomer
to be matched). Crucially, the number of such monomers
is O(1), i.e., it does not scale with the size of the graph.
Consequently, the density of monomers vanishes on all ver-
tices in the thermodynamic limit, and all observables of
interest remain unchanged by the specific choice of boundary.
We emphasize that an O(1) number of monomers on the
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infinite graph is not a peculiarity of our problem; a similar
number of monomers appears for periodic graphs with certain
choices of boundary conditions (e.g., an Lx × Ly square lattice
with with both Lx and Ly odd always hosts one monomer).

IV. MEMBRANES, LADDERS, AND EFFECTIVE
MATCHING PROBLEMS

In proving the existence of perfect matchings on the
Ammann-Beenker tilings, 8-vertices of T were matched (by
augmenting paths) if the corresponding sites shared a dimer
on the deflated tiling T−2n. Since the 8-vertices sit at the
vertices of tilings with lengths rescaled by powers of the silver
ratio, δ2n

S , a natural question is whether an effective description
emerges in terms of matchings at larger lengthscales. In this
section, we will show how the 8-vertices of the AB tiling
are surrounded by concentric structures of sets of edges col-
lectively hosting exactly one dimer. We call these monomer
“pseudomembranes”. Each pseudomembrane, therefore, im-
poses an effective dimer constraint at a larger scale, with the
pseudomembrane bounding a region acting as an effective
vertex (“effective unit”), connected to the rest of the graph
by exactly one dimer. This effective matching description, in
turn, has far-reaching consequences for the system’s correla-
tions, which we explore in Sec. V.

Monomer membranes were introduced in Refs. [60,65] as
sets of edges hosting zero dimers. In Penrose tilings mem-
branes separate unmatched regions with an excess bipartite
charge. The complete AB tiling does not host membranes.
However, we identify similar structures of sets of edges—
the pseudomembranes—which host exactly one dimer in any
perfect matching. Like membranes, pseudomembranes cap-
ture how certain aspects of the quasiperiodic graph structure
are encoded in the set of perfect matchings. The proper-
ties of membranes and pseudomembranes can be understood
in terms of the Dulmage-Mendelsohn decomposition of the
graph and its “fine” generalization as discussed in Ap-
pendix A. Here, we provide their construction and establish
their properties. We do this by first introducing an auxiliary
tiling, “AB∗”, obtained from AB by deleting all 8-vertices.
AB∗ admits exact membranes, which separate perfectly
matched quasi-1D regions (“ladders”). This is in contrast to
Refs. [60,65] where membranes confine monomers. We next
demonstrate how the exact membranes become pseudomem-
branes on AB with the reintroduction of the 8-vertices. The
pseudomembranes lead to the natural identification of per-
fectly matched regions of D8 symmetry (“H regions”) within
the local empires of 8-vertices, which play an important role
in the monomer correlations discussed in Sec. V. To conclude
the section, we comment on the effective matching problem.

A. Membranes and ladders on the AB∗ tiling

The important point to take from Sec. III is that at each
(double) deflation step, only the augmenting paths between
two 8-vertices survive as a dimer at the next scale. Crucially,
all information that correlates different inflation scales in-
volves the 8-vertices. By removing these vertices from AB
(equivalently localizing monomers on all 8-vertices), we ob-
tain the AB∗ tiling. AB∗ has particularly simple correlations

FIG. 11. The AB∗ ladder tiles: dimer inflation tiles of Fig. 10
with edges incident to 8-vertices removed. The removed 8-vertices
are marked with solid blue and red circles, the colors denoting the
two bipartite charges. The yellow- and blue-shaded segments join
up to form ladders, which host dimers in a maximum matching of
AB∗. The edges in the unshaded regions comprise membranes, which
never host a dimer in any maximum matching of AB∗. The edges
enclosing the green-shaded region form stars of 16 edges around the
absent 8-vertices, and can be perfectly matched in the bulk of AB∗.

and provides insight into the more complicated statistics of
AB.

The AB∗ tiling can be perfectly matched. This follows
trivially from Step 1 of the Perfect Matching proof, since the
DITs (Fig. 10) match all vertices except for the 8-vertices.
We will use a decorated version of the DITs, Fig. 11, to
emphasise structures that emerge when the tiles are placed
in the full AB∗ tiling. In Fig. 11 the edges connecting the
8-vertices (solid blue and red circles) to the rest of the graph
are removed. The blue- and yellow-shaded plaquettes join to
form the regions we call ladders. The color codes relate to
the inflation properties of the ladders (see Appendix B). The
edges enclosing the green-shaded regions close to form loops
of 16 edges, centered on the missing 8-vertices, which we
call stars (or order-0 ladders). To see how individual ladder
segments match up to form ladders in the graph, it is useful to
refer back to the vertex configurations. They are shown for the
AB∗ tiles in Fig. 12 (compare Fig. 5 for the undecorated tiles).
The continuation of blue and yellow regions into ladders, as
well as the formation of closed stars around the green regions,
is apparent.

We denote the closed all-blue ladder appearing in the 5A-,
6-, 7-, and 8-vertex configurations of Fig. 12 the L1 ladder.
Higher order ladders Ln are constructed by n − 1 inflations
σ (Sec. II B) of L1. The star is obtained by a single deflation
of L1, and so we denote the star a zero-order ladder L0. A
detailed discussion of this inflation structure is provided in
Appendix B. From the D8 symmetry of the L0 and L1 ladders,
the fact that all ladders that close3 do so with D8 symmetry can
also be proven. In general, an order-n 8-vertex is surrounded
by concentric D8 symmetric ladders of orders 0 through n,
which justifies the terminology. This structure can be seen in
Fig. 13, where we display a finite patch of the AB∗ tiling, with

3The reader may note that unclosed system-spanning ladders are
not ruled out by the ladder continuations of Fig. 12. Such ladders
in fact exist, but are necessarily of “order infinity” in the inflation
scheme: they therefore occur with zero frequency on the infinite
tiling and will not play a part in the remaining discussion.
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FIG. 12. All vertex configurations of the ladder-decorated tiles of Fig. 11. This shows all possible ways in which ladder segments can join
up to form ladders in the AB∗ tiling. The segments shaded with yellow and light blue in Fig. 11 match up to form ladders, whereas the green
segments match up to form stars in the bulk of the AB∗ tiling.

ladders of orders up to L3 surrounding the correspondingly
ordered 8-vertices.

In every perfect matching, stars and ladders form perfectly
matched regions, separated by exact membranes, which do
not host any dimers. Figure 11 has dimers residing only on
edges that belong to the stars and ladders. We will show that
all vertices in each star (ladder) must be matched to vertices
in the same star (ladder) in all perfect matchings. Therefore,

FIG. 13. A finite patch of the AB∗ tiling, in terms of stars and
ladders. An 8n-vertex is the center of concentric ladders of orders
0 � m � n, which close with D8 symmetry. White space represents
impermeable membranes separating ladders.

any edges external to the stars and ladders (thick white edges
in Fig. 11 and Fig. 12) are never covered by dimers in any
perfect matching and hence form exact membranes.

The proof follows from two observations. First, stars are
closed loops of 16 vertices, with eight vertices in each bi-
partite subset (we denote the two subsets U and V) and no
vertices in the interior (due to the removal of the 8-vertices
in constructing AB∗). For each star, all “exterior” vertices
with edges to the rest of the graph (i.e., the “points” of the
star) are of the same charge. The “interior” vertices alternate
with these and therefore are all of the opposite charge. Since
they cannot match with any other vertex, we must match
each interior vertex with an adjacent exterior vertex. Therefore
each star hosts eight dimers forming one of two possible
alternating paths around the star, leaving no exterior vertices
unmatched.

Ladder segments in the tiles of Fig. 11 always contain
the same number of vertices of each charge. This property
is inherited by any section of a ladder built up from these
segments. Figure 12 shows the vertex configurations for the
ladder-decorated tiles, allowing us to read off all the ways in
which different ladder segments can match up to form ladders.
For each ladder section in Fig. 12, all vertices with edges to
other ladder segments are of the same charge, say U . While
V-vertices do have edges connecting them to stars, those
edges can never host dimers in a perfect matching, as we have
already shown that the vertices in a star are always matched
to vertices within the star. Since there are an equal number of
vertices of each charge in any ladder, this immediately implies
that all U -vertices in a ladder must match to V-vertices in the
same ladder in a perfect matching to avoid a contradiction.
Thus, edges outside ladders and stars constitute membranes,
which never host a dimer in any perfect matching of the AB∗

tiling.
This splitting of the AB∗ tiling into ladder regions sep-

arated by membranes means that no statistical correlation
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can occur between distinct ladders. The no-dimer constraint
implies membranes act as impermeable boundaries for each
ladder subsystem, and the dimer partition function of the
entire 2D tiling factorises into a product of partition func-
tions for lower-dimensional quasiperiodic ladders. Thus, the
notoriously difficult problem of enumerating dimer config-
urations on a graph is simplified on AB∗. We use this fact
in Appendix C to calculate an asymptotically exact result
for the free energy of dimers on AB∗, via transfer matrices.
These properties also provide insight into the more com-
plex correlations of AB, as we will return to in Sec. V C.
The ladder regions and membranes in any perfectly matched
patch of AB∗ can be determined algorithmically by using
the Dulmage-Mendelsohn decomposition described in Ap-
pendix A.

B. Pseudomembranes on the AB tiling

Armed with our results on AB∗, we now return to the
full AB tiling, and show that the restoration of the deleted
8-vertices transforms the membranes of AB∗ to pseudomem-
branes on AB. As we defined earlier, a pseudomembrane is
a connected set of edges, which collectively host exactly one
dimer between them in any maximum matching. Pseudomem-
branes satisfy two additional properties: (i) deleting all the
edges in a pseudomembrane disconnects the graph into two
components; (ii) pseudomembranes close with D8 symmetry,
and are centered on 8-vertices.

Anticipating the second point, we consider local empires of
8n-vertices, which we refer to as 8n-empires. An 8n-empire is
generated by inflating the local empire of an 80-vertex (Fig. 9)
n times. Since the 8n-empire cannot be perfectly matched (due
to the charge imbalance), we first remove the central 8-vertex
from the 8n-empire, yielding what we term a punctured 8n-
empire. Generally, in any matching of the punctured empire,
small components of the tiling lying outside the outermost
Hi will remain unmatched, on account of the finite patch
boundary. Choosing boundary conditions to exclude these
outer vertices, the remaining region can be perfectly matched,
and this is what we will take an 8n-empire to mean in the
rest of section. With this caveat, the punctured 8n-empire is
perfectly matched, and splits into certain perfectly matched
D8-symmetric annular subregions, which we label as Hi. In all
perfect matchings of a punctured 8n-empire, vertices in each
subregion Hi can only match to other vertices within Hi. The
Hi are separated from each other by exact membranes con-
centric with the central 8-vertex.4 The zeroth subregion is the
star, H0 ≡ L0, and the first subregion is the first-order ladder,
H1 ≡ L1. Higher order subregions correspond to connected
components of AB formed from lower order 8-empires, closed
ladders, and the membrane links in between. As explained
in Appendix D, even subregions are essentially inflations of
the star L0, while odd subregions are inflations of L1. We
therefore refer to Hi as “star-like” for i even, and “ladder-like”
for i odd. These statements generalise the result that the stars

4These H regions are the perfectly matched components of the
Dulmage-Mendelsohn decomposition reviewed in Appendix A.

and ladders of AB∗ separated by membranes, can be perfectly
matched.

The proof of these statements, along with a more detailed
discussion of the inflation structure of the H regions, can be
found in Appendix D. Essentially, we first adapt the methods
of Sec. III to use the inflation structure of H regions and prove
that each Hi subregion can be perfectly matched. We then
follow it up with a proof that in all perfect matchings vertices
in a region Hi match only to other vertices within the same
region Hi. We display the membranes and Hi subregions for
punctured 82 and 84-empires in Fig. 14.

If the central 8-vertex is reinstated to this perfect matching
it will host a monomer. Moving this monomer out of any
region enclosed by a membrane of the punctured empire con-
verts the membranes to pseudomembranes. This follows since
moving the monomer requires the augmentation of alternating
paths of even length, which terminate on the monomer. Since
such paths traverse a membrane that originally enclosed the
monomer, they will place a single dimer across the former
membrane. Since only a single monomer was added to the
perfect matching, it follows that there can be no more than
one such dimer in any pseudomembrane.

One might wonder if a monomer can recross the mem-
brane in the opposite direction and thereby place another
dimer across the membrane; this is ruled out by some simple
observations about the perfectly matched regions. Any two
perfectly matched regions separated by a membrane have the
property that all edges in the membrane connect vertices of
the same bipartite charge in one region to vertices of the
opposite bipartite charge in the other region (Appendix D).
If the central 8-vertex is a U -vertex, this implies that each per-
fectly matched component of a punctured 8n-empire has only
V-vertices on its inner boundary and U -vertices on its outer
boundary. When a monomer is introduced by reinstating the
central 8-vertex, the monomer recrossing a membrane would
imply the existence of a perfectly matched region such that
its inner boundary is crossed twice by the monomer and its
outer boundary is not crossed by the monomer. This matches
two V-vertices of that region with vertices outside the region,
leaving an excess of two U -vertices in the rest of the region. It
is therefore not possible in a maximum matching.

Note that the results of the previous paragraph also hold for
8n-empires with generic boundary conditions. Punctured 8n-
empires admit a perfect matching only when the unmatched
components outside the outermost H region are excluded,
otherwise they typically host a few monomers at their bound-
aries. While such monomers have a vanishing density in the
thermodynamic limit, our construction of pseudomembranes
outlined above does not carry over. However, when such an
8n-empire is embedded in a larger system, the monomers
at the boundaries are annihilated with other monomers in a
maximum matching (recall that AB tilings host perfect match-
ings in the thermodynamic limit), and pseudomembranes
appear.

In general, an 8n-empire hosts n + 2 pseudomembranes
concentric with the 8-vertex at the empire’s center (includ-
ing the membrane enclosing the outermost H subregion and
the eight edges incident to the 8-vertex). The 8n-empire also
hosts smaller 8m-empires, and all these empires host their
own pseudomembranes, concentric with each empire’s central
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FIG. 14. Membranes in perfectly matched punctured 82n-
empires, which separate perfectly matched Hi regions demarcated
with different colors. An 8n-empire is the local empire of an 8n-
vertex. A punctured 8n-empire is an 8n-empire without the central
8-vertex. On adding the 8-vertex back, each membrane becomes a
pseudomembrane, which can host a single dimer on its edges. Top:
Membranes in a punctured 82-empire, separating regions H0 (gold
star), H1 (purple) and H2 (red). Bottom: Membranes in a punctured
84-empire, separating regions H0−4. The 84-empire contains a copy
of the 82-empire. Small components of the empires outside the
largest Hi regions are not shown.

8-vertex. These 8-vertices are necessarily of order m < n.
Taken together, the edges that make up the pseudomembranes
of AB are those that form the membranes of the AB∗ tiling, as
described in Sec. IV A.

C. The effective matching problem

The full AB tiling exhibits a rich hierarchical structure of
nested pseudomembranes. Each pseudomembrane bounds a

region (set of edges and vertices), which acts as an effec-
tive unit in the matching problem, such that only one dimer
connects the region to the rest of the graph. Motivated by
this, we define an 8n-unit to be the region bounded by the
n + 2-th pseudomembrane from the center of the local empire
of any (m > n) 8m-vertex. Note the 8n-unit coincides with the
definition of the 8n-empire, minus the components outside and
including the outermost pseudomembrane.

In the sense of Sec. III, the perfect matching problem
can be seen as the problem of matching up 81-units, medi-
ated by the background of perfectly matched ladder regions.
This means that each 81-unit matches to a ladder (made up
of non-8-vertices) with a single dimer (placed on the pseu-
domembrane). The edges of this ladder in turn match to other
81-units. Similarly, based on the scale symmetry of the AB
tilings, the perfect matchings can be described by the match-
ing up of 8n-units mediated by effective ladders. Here we
define an nth order effective ladder as a ladder built from 8n−1-
and 8n−2-units (so that the effective ladder deflates to one of
the ladders of Sec. IV A on the T−2n tiling). We dub these
“effective matching problems”.

In Fig. 15, we display dimer occupation densities for the
84-, 82-, and 80-units to highlight the structures discussed
in this section. The data were obtained using Monte Carlo
methods, as discussed in the next section. The pseudomem-
branes appear as rings of edges with near-zero dimer density,
concentric with the centres of local D8 symmetry. For the
84-unit we have highlighted the structures of the second-order
effective ladders. The matching of the 84-unit can therefore
be seen from multiple scales: As the matching of vertices on
the basic T graph; as the effective matching of 80-vertices,
mediated by the ladders of the AB∗ tiling; or of the effective
matching of 82-units, mediated by the second-order effective
ladders. The scale symmetry in the matching problem—where
effective units are matched at each scale of the tiling—hints at
the possibility for nontrivial signatures of the scale invariance
in the dimer and monomer correlations. We now proceed to
explore this question numerically.

V. NUMERICAL RESULTS ON THE AB TILING

In this section, we explore the correlations of the AB tiling
via a numerical study of the classical dimer model on finite
patches of the AB tiling using the directed-loop algorithm.
Originally introduced to efficiently sample space-time config-
urations using quantum Monte Carlo algorithms [17,94,95],
this method has been adapted to sample the configuration
space of classical dimer models and to access their monomer
correlations [40,96]. The algorithm involves introducing two
monomer defects into a maximum matching and transporting
one of the monomers around an alternating cycle until annihi-
lating it with its partner monomer (or with any other monomer,
in graphs not admitting perfect matchings). Since detailed bal-
ance is satisfied for these intermediate configurations with two
monomers, the corresponding partition function can be sam-
pled. This gives us access to monomer correlations without
additional computational effort. For completeness, we review
the algorithm in Appendix E.
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FIG. 15. Left: Dimer occupation densities on an 84-unit, a finite D8-symmetric patch of AB tiling. The region is bounded by the sixth
pseudomembrane. The lighter colors indicate a rich nested structure of pseudomembranes associated with different 8-vertices and their local
empires. The black lines emphasize the scale symmetry of the lattice (and consequently maximum matchings): they denote sections of the
larger ABtilings (T−2 and T−4) composed of the 82 and 80-units. Each 8n-vertex is surrounded by a pseudomembrane, and hence connected to
the rest of the graph by at most one dimer. They sit at the vertices of a larger ABtiling (T−n), and act as effective units. Right: An 80-unit (top)
and an 82-unit (bottom), with edges colored to indicate dimer-occupation densities.

A. Choice of samples and boundary conditions

Since quasiperiodic systems are not translationally invari-
ant and do not admit periodic boundary conditions, some care
must be taken in choosing appropriate finite patches for our
numerical studies of the AB tiling. We consider finite patches
with exact D8 symmetry. We anticipate that understanding
matching problems on such patches can yield results repre-
sentative of an arbitrary finite patch of AB tilings, since those
are characterized by an effective matching problem of D8

empires. Additionally, every finite patch of tiling is a part of a
larger D8 empire of the infinite tiling.

For our largest simulations we consider an 84-unit. We use
the 84-unit rather than the 84-empire as the components of
the empire outside the largest pseudomembrane generate sig-
nificant boundary effects. The central 8-unit has 6 concentric
pseudomembranes around it. As explained in Sec. IV B, in
any perfect matching of the AB tiling, precisely one dimer
straddles the pseudomembrane to correlate the dimer config-
urations inside and outside the region it encircles. Hence, it is
reasonable to expect that calculations of observables defined
entirely inside a region enclosed by a pseudomembrane will
not be severely affected by the rest of the tiling even in fi-
nite patches. With these modifications, the largest AB patch
we consider contains 15 473 vertices and 30 136 edges. In
some cases, we consider a smaller patch consisting of the
82-unit. This sample contains 481 vertices and 872 edges.
Below we present dimer and monomer correlations for these
finite patches. Note that all maximum matchings of these
patches host a single monomer with the charge of the central
8-vertex. If the finite patch were extended to the infinite tiling,

this monomer would annihilate with an oppositely charged
monomer in another region, creating the single dimer crossing
the pseudomembrane. With this in mind, we also consider
monomer correlations on the charge-neutral punctured tilings,
obtained from the above patches by removing the central
vertex. We will show that the two cases (entire and punctured
tilings) demonstrate qualitatively different behaviors for the
monomer correlations.

B. Dimer correlations

The dimer occupation densities are displayed in Fig. 15.
Motivated by the structure of effective matchings and the pos-
sibility of nontrivial long-range correlations, we investigate
the connected correlations C(ei, e j ) of dimers on edges e1 and
e2, defined to be

C(ei, e j ) = 〈n(ei )n(e j )〉 − 〈n(ei )〉〈n(e j )〉, (6)

where n(ei ) = 1 if the edge ei hosts a dimer, and n(ei ) = 0
otherwise. For the system sizes under consideration we find
that connected dimer correlations do not decay exponentially,
as they would for either long-range ordered or disordered
dimer covers. Characterizing C(ei, e j ) is complicated owing
to its lack of translational invariance, and its high degree of
inhomogeneity. Figure 2 shows the dimer-correlation function
C(e0, e j ) for an edge e0, which connects a 4-vertex to a ladder
(formed of 2-vertices).

To characterize the decay of correlations, we calculate
Cmax(e0, x): the maximum value of |C(e0, e j )| such that the
edge e j has a graph distance of x edges from e0. We dis-
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FIG. 16. Power-law connected correlations of dimers for a D8-
symmetric sample (an 84-unit). For several edges e0, Cmax (e0, x), the
maximum absolute value of dimer correlations at a graph distance
of x edges from e0 has a slow decay consistent with a power law.
The apparent dip at log10(x) ∼ 2 corresponds to effects of the sample
boundary. We have displayed several choices of e0 in this figure: a, b,
and c are edges between 80-units and L2 ladders; d is a edge between
an 80-unit and an L3 ladder; e is a edge on an L1 ladder; f connects
an 82-unit to L4; g is a edge between an 82-unit and an L1 ladder. A
large-scale plot of the tiling showing all the different source edges
for this plot is provided in Appendix F.

play this quantity, computed for seven different choices of
e0, in Fig. 16. We see a slow decay across the system, con-
sistent with power-law asymptotic behavior, cut-off only by
the boundaries of the sample. We conjecture that this slow
power law is a manifestation of the description in terms of
the effective matching problems, at all scales, in terms of
8n-vertices, mediated by the effective ladders formed of 8n−2-
and 8n−1 − units as described in Sec. IV C. We emphasize that
these power-law-like correlations are neither homogeneous
nor translationally invariant, and are unrelated to the familiar
power laws appearing in bipartite lattices with a continuum
Gaussian action. Not all edges have dimer correlations, which
decay slowly across the whole system. In general, different
dimer correlation functions decay slowly until a cutoff length-
scale, after which they rapidly fall off. The cutoff lengthscales
are set by the pseudomembranes. To gain an understanding
of this, we look at the dimer correlations within the basic
star surrounding the 8-vertices. For a dimer on one of the
eight central membrane links, connected correlations outside
the star are identically zero.5 Combined with the discussion
of effective matching problems, this suggests that links on
and inside the nth pseudomembrane have dimer correlations,
which are effectively cut off by the (n + 1)-th pseudomem-
brane. In a system of linear size L, we therefore expect slowly
decaying correlations over all scales, cut off by lengthscales
in the set L, L/δ2

S, L/δ4
S . . . We confirmed this numerically.

For example, inside an 82-unit, the edges connecting 80-units

5This can be seen by checking that for each choice of dimer con-
necting the central 8-vertex to the star, and the dimer connecting
the star to the rest of the tiling, there is exactly one possible dimer
configuration on the star itself.

FIG. 17. Connected correlations of dimers for a D8-symmetric
sample (an 84-unit). In contrast to Fig. 16, for several edges e0,
Cmax (e0, x), the maximum absolute value of dimer correlations at a
graph distance of x edges from e0, is sizable only inside the 82-unit
in which e0 lies. In this figure, we have chosen e0 to be edges a − h,
all connecting an 80-unit to an L1 ladder, inside a larger 82-unit. A
large-scale plot of the tiling showing all the different source edges
for this plot is provided in Appendix F.

to L1 ladders (i.e., inside the third pseudomembrane) do not
have significant connected correlations outside the 82-unit
(bounded by the fourth pseudomembrane). Such correlations
are displayed in Fig. 17. We remark that the correlations
outside the 82-unit are significantly reduced, but unlike an
elementary star, they are not exactly zero; the analysis of the
elementary star presented above merely provides us with a
guiding principle to understand the cut-off lengthscales in the
decay of dimer correlations for larger regions.

C. Monomer correlations

Next we turn to monomer correlations. For bipartite graphs
with perfect matchings, the monomer correlation function is
just the partition function Z (x, y) over dimer configurations,
up to normalisation, with two oppositely charged monomers
situated on vertices x and y. As noted in the Introduction,
the symmetric patches have an extra vertex in the bipartite
subset of the central 8-vertex. Without loss of generality we
denote this subset U . To probe the physics associated with a
single monomer defect pair in maximum matchings, we first
introduce an auxiliary partition function Z ′(x1, x2, y), having
two U -monomers on the vertices x1 and x2 and a single V-
monomer at y. We then define the two-particle correlation
function as

Z (x, y) =
∑
x1,x2

Z ′(x1, x2, y)(δx1,x + δx2,x ), (7)

which calculates the pair correlation of oppositely charged
monomers in a gas of three monomers.

To understand the monomer correlations, it is useful to
consider dynamical processes like those in Fig. 3(d) applied to
the three-monomer gas, where the monomers “random-walk”
across even-length alternating paths by augmenting them. As
explained in Appendix E, such processes can be designed to
respect detailed balance in the configuration space with three
monomers (thereby leading to a Monte Carlo scheme to com-
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putationally study such monomer correlations). Consequently,
they provide valuable insight into ensemble averages in the
three-monomer gas like the pair correlation functions. In the
rest of this section, we will use the term “random-walk” to
mean such processes.

Without loss of generality, we consider the movement of
V-monomers while the U -monomers are held fixed. Figure 2
shows a typical profile for Z (x, y), with x fixed and y allowed
to vary. While the structure of correlations Z (x, y) varies
considerably with the U -monomer position x, we observe two
distinct features, which hold across all values of x:

(i) Z (x, y) is strongly peaked for y within the first few
pseudomembranes near the central 8-vertex, taking its max-
imum value on the eight V vertices neighboring the central
8-vertex. Minima reside on the eight highest order V-
charged 8-vertices. Additional local maxima (minima) occur
for y around (on) the locations of U -charged (V-charged)
8-vertices. Sites around (on) higher order U -charged (V-
charged) 8-vertices are associated with stronger maxima
(minima) of Z (x, y).

(ii) Z (x, y) has comparable support around the entire an-
gular range of the region, and is not confined in the vicinity of
the U -monomer.

The first point describes a “charged” attraction between the
free V-monomer and the tiling’s 8-vertices, with the strength
of the interaction set by the order of the 8-vertex. By charged,
we mean that the V-monomer has large correlations around
the U -charged 8-vertices (the central vertex being the highest
order U -charge in the region), but small correlations on and
around V-charged 8-vertices. This can be understood from
the properties of the (pseudo) membranes. It is simplest to
first understand the effect for exact membranes around the
central vertex (i.e., on the punctured tiling with the central
vertex removed). The V-monomer acts as a random walker,
and begins its walk in some Hi region bounded by the two
membranes Mi and Mi+1. No alternating path exists that
crosses Mi+1 and also has an end point terminating on the
monomer. This follows from the arguments in Appendix D.
Hence, the monomer’s walk cannot cross the Mi+1 mem-
brane. Heading inward, however, the monomer may cross Mi

at any point xi on the membrane, but may then only return to
Hi by recrosssing Mi at the same point. It may further cross
the next membrane Mi−1 at any xi−1, but cannot come back
unless it can return to the same xi−1. For large membranes,
the monomer is effectively “trapped” on the inward side (like
a lobster in a pot). The net effect for high-order 8-vertices is
thus a large probability for the monomer to be found near the
center. This process is illustrated in Fig. 18.

The reinstatement of the central vertex places a single
dimer on each pseudomembrane Mi at a position x′

i . For large
patches, with the averaging described in Eq. (7), a U monomer
is likely to be found far from the center, and so almost all
pseudomembranes will host a dimer. This dimer provides an
additional path for the V-charged monomer to escape the
trapping by pseudomembranes. That is, once a V monomer
crosses inward from Hi to Hi−1 through the pseudomembrane
Mi at xi, it can recross either at xi or x′

i . However, for large
membranes, this does not significantly affect the arguments
for trapping of monomers presented earlier. The existence of
local maxima and minima of monomer correlations across the

FIG. 18. A random walking V-monomer feels a global attraction
to the central U-charged 8-vertex on account of the membranes. The
monomer, moving inward, can cross a membrane Mi at any point xi,
but then may only recross the membrane at the same point.

tiling’s 8-vertices follows from the same reasoning applied to
the pseudomembranes of all 8-vertices. This directly implies
a high probability for the monomer to be found near the
U -charged 8-vertices. For the V-charged 8-vertices, the effect
is reversed. Now the monomer may only cross inward at the
single point where a dimer exists on the pseudomembrane, but
it may cross outward at any point along the pseudomembrane.
Thus, a V monomer is trapped by the U -charged pseudomem-
branes, and blocked by the V-charged pseudomembranes.
From the same argument, it is easy to see that for a fixed
position of the V -charged monomer y, a random-walking
U monomer is trapped by V-charged pseudomembrane and
blocked by U -charged pseudomembranes. This implies that
Z (x, y), for fixed y, has local maxima (minima) for x around
(on) V-charged (U -charged) 8-vertices.

Higher order 8-vertices, having more concentric pseu-
domembranes, result in stronger maxima/minima on sites on
or around them. The configuration with largest pair correla-
tion (consequently smallest free energy) corresponds to the
V-monomer around the central 8-vertex and the U -monomer
around the highest order V-charged 8-vertex. The separation
between the central U -charged 8-vertex and the highest order
V-vertex scales with the size of the sample, and this implies
that monomers have the lowest free energy when separated
over very large distances. Thus, monomers are radially “an-
ticonfined”, in striking contrast to familiar cases in periodic
lattices where monomers are typically either confined or de-
confined.

The above mechanism effectively describes the behavior of
correlations in the radial direction (towards the central vertex,
and other 8-vertices as a sub-leading effect). With this in mind,
we ask how the correlation behaves at large angular distances
(around the central vertex) within a given Hi region. Hi can
be partitioned into eight identical sectors (“wedges”), each
spanning an interior angle 2π/8, which we label by Sn for
n = 0 . . . 7. We fix x in S0 and ask how Z (x, y) behaves for y
in Sn and large n (by “large”, we mean the distance in sectors
from S0). On the Ammann-Beenker tiling the largest n we
have access is n = 4. However, we can artificially increase
n by inserting additional symmetric wedges into the basic
AB tiling. This allows us to probe the large-n limit without
changing the basic physics. In Fig. 19 we display the results
for an effective 84-unit extended to 13 sectors; this patch is
large enough to see clear asymptotic behavior while remaining
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FIG. 19. Averaged correlation function for a U-monomer at posi-
tion x and a V-monomer at y, both within a given Hi region. 〈Z (x, y)〉
is averaged over x in the sector S0 and over y in Sn. On the extended
graph with 13 sectors (see main text), the furthest sector from S0

corresponds to n = 6. For every Hi region, 〈Z (x, y)〉 decays to a
finite constant at large n, signifying annular deconfinement of the
monomers. Inset: On the punctured tiling with the central vertex
removed, star-like (i even) Hi regions remain deconfined, while
ladder-like (i odd) are confined, decaying exponentially to zero at
large n. The log scale on the inset y axis is set by α = 1

2+√
3
.

computationally accessible. For each of the five Hi regions in
the effective 84-unit, we plot Z (x, y) averaged over all x in
S0 and all y in Sn, for n � 6. In each region we observe a
distinct plateau to a nonzero constant at large n. This implies
that, within a given Hi region, the free energy cost to separate
a monomer along the annular direction does not increase with
distance. We dub this effect “annular deconfinement”. Along
with the charged attraction to 8-vertices explained above, this
completes our characterisation of the structure of monomer
correlations in the AB tiling.

It is interesting to contrast this behavior to the monomer-
monomer correlations for the punctured tiling, the inset to
Fig. 19. Here we see that the correlations for the ladder-like
regions (i odd) H1 and H3 now decay exponentially with
the sector distance n, whereas those of the star-like (i even)
regions again plateau to a finite constant. In fact, a transfer
matrix calculation for the H1 region requires that at large n,
the leading behavior of the correlation function goes as

Z1(x, y) ∝
(

1

2 + √
3

)n

. (8)

The effective matching problems (recall all odd-i Hi form lad-
ders of effective 8i−2-units) suggest that analogous behavior
should emerge for the H3 region, and all other ladder-like
region. This statement is supported by the near-identical ex-
ponential fit of H3 in the inset of Fig. 19. However, once the
central 8-vertex is reinstated, this large-n “confinement” of
the ladder-like regions on the punctured tilings is fragile to

the deconfinement of the star-like regions. On the punctured
tilings the Hi regions are bounded by two exact membranes
Mi and Mi+1, and monomer correlations within the region
Hi can be described by considering the V-monomer to be
confined within the Hi region. Note that the V-monomer can
indeed cross Mi to escape to the region Hi−1, but since it
can only cross back through the same point, its excursion
outside Hi does not contribute to monomer correlations within
Hi. The reinstatement of the central vertex places a dimer on
each of the membranes, meaning the monomer can now take
paths that cross one of the pseudomembranes at one point x,
and re-cross at another point x′. For a monomer starting and
ending its path in a ladder-like region, these paths provide
a mechanism to deconfinement: the monomer takes a path,
which crosses over to a neighboring star-like region, where it
is annularly deconfined, only crossing back over near the end
of the path. On the entire tiling, the monomer can therefore
find deconfining paths between all points starting and ending
in the same Hi region.

D. Aligning interactions

Finally, we briefly discuss the role of aligning interactions.
To explore the possibility of ordered dimer phases and their
associated transitions in the absence of periodic lattice sym-
metries, we consider a classical model defined by the energy
function

(9)

where the sum is taken over all plaquettes � (the four edges
comprising a square or rhombus tile of AB). The potential
V either favors (negative sign) or disfavors (positive sign)
the presence of “flippable” plaquettes, which host a pair of
parallel dimers. Our energy function can be understood as the
classical limit of the quantum Rokhsar-Kivelson Hamiltonian
[10], with the kinetic term set to zero. Working entirely within
the manifold of maximum matchings, the partition function is
weighted according to

Z =
∑
C

e−V NF (C)/T , (10)

where NF (C) counts the number of flippable plaquettes in a
dimer configuration C. T is a temperature that we introduce
for convenience. Only the combination V/T has physical
significance. Regardless of sign, a nonzero value stabilizes
ordered phases, which break lattice symmetries.

To orient the discussion, first consider the effect of aligning
interactions on the ladders, which make up the AB∗ tiling.
Negative V favors the maximally flippable columnar states
on the ladders, while positive V favors the two staggered
states, which are in topologically distinct sectors. That is, each
staggered state cannot be reached from any other state by a
sequence of local plaquette flips. These ladders can be treated
exactly using the transfer matrix approach, as described in
Appendix C.

We calculate the intensive specific heat for an mth-order
ladder with Nm edges (this is obtained by taking derivatives
of the free energy in the usual way). We show the result
in Fig. 20. For V < 0, the intensive specific heat exhibits a
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FIG. 20. The intensive specific heat, Cm
v /Nm, of an mth-order

ladder with aligning interactions, as a function of the temperature
T . Lines denote transfer matrix calculations, whereas the points
represent data obtained from Monte Carlo simulations. Left: When
V < 0, the intensive specific heat has a broad feature independent of
the ladder size, associated with a crossover to columnar states. Right:
When V > 0, the ladders exhibit a sharp feature in the intensive
specific heat, which scales with the number of edges in a ladder
(shown in inset).

broad peak, which does not scale with the size of the ladder.
This feature corresponds to the loss of entropy incurred in
the crossover to the columnar state. Each ladder has a macro-
scopically degenerate number of columnar ground states—in
the language of Appendix B, each A segment contributes two
states while each B segment contributes three. When V > 0,
the intensive specific heat has a sharp feature at T/V ≈ 1.0,
signaling the onset of staggered states in the ladders. As
shown in the inset of Fig. 20, Cm

V /Nm ∼ Nm. This conven-
tionally signals a first-order phase transition, although the
latter term should be used cautiously since one can only take
a particular sequence of Nm. Note, however, that this does
not drive a first-order transition in the AB∗ tiling, since any
thermodynamic singularity is suppressed by the exponential
decay in the density of ladders with their order m.

We now compute the intensive specific heat cv = Cv/N
of AB patches with N edges (Fig. 21) using Monte Carlo
simulations. As in the case of the AB∗ ladders, for V < 0,
cv has a broad feature at T/V ≈ 0.5, which corresponds to
the onset of columnar-like configurations on the ladders. On
AB, dimer correlations are no longer restricted to ladders, but
since the ladders host most of the flippable plaquettes, tuning
V enhances the role of the ladders even in this case. However,
when V > 0, the sharp feature associated with the transition to
the staggered states at T/V ≈ 1 in the AB∗ ladders (Fig. 20)
is no longer present in the AB patches.

We calculate the standard deviation σNF of the number of
flippable plaquettes NF as

σNF = (〈
N2

F

〉 − 〈NF 〉2
)
. (11)

The results are displayed in the inset of Fig. 21. We see
that σNF /N exhibits a broad feature at T ≈ 1, which suggests
that the dimers settle into configurations resembling staggered
states on the ladders without undergoing a phase transition.

FIG. 21. The intensive specific heat, Cv/N of finite AB patches
with aligning interactions, as a function of the temperature T . Left:
When V < 0, the crossover to columnar states on the ladders is asso-
ciated with a broad feature, which does not scale with the size of the
tiling. Right: For V > 0, the sharp peak seen in the case of the ladders
in Fig. 20 is significantly broadened here. Inset: σNf /N [Eq. (11)],
indicating fluctuations in the number of flippable plaquettes, has a
broad feature, which indicates a crossover to staggered states on the
ladders.

Figure 22 shows the dimer densities of an AB patch in the
presence of aligning interactions of both signs. We see that at
large negative values of V the dimers align along the rungs
of the ladders, while at large positive values of V the dimers
align along the legs of the ladders. This suggests that typical
dimer configurations of the full AB tiling in these limits can be
described in terms of the cartoons of columnar and staggered
states on the ladders.

VI. CONCLUSIONS

We have demonstrated that classical dimers on the AB
tiling admit perfect matchings in the thermodynamic limit,
with a rich structure linked to the interplay of constraints
with quasiperiodicity. A crucial feature of our analysis is
the identification of collections of edges whose dimer con-
tent can be strictly bounded from above in any maximum
matching. Previous paper on the Penrose tiling identified exact
membranes, sets of edges that host zero dimers in maxi-
mum matchings, separating regions hosting monomers with
distinct bipartite charge [60]. The present paper extends this
analysis in two ways. First, we identified exact membranes
on the auxiliary quasiperiodic AB∗ tiling obtained by delet-
ing 8-vertices from the AB tiling. These membranes can be
understood in terms of the fine Dulmage-Mendelsohn decom-
position of a bipartite graph, reviewed in Appendix A. Second,
returning to the full AB tiling by replacing the 8-vertices,
we found that membranes become pseudomembranes, sets of
edges that collectively host precisely one dimer in any perfect
matching.

The pseudomembrane structure of AB implies the exis-
tence of “effective matching problems” at every scale of
the quasiperiodic tiling. Effective units bounded by pseu-
domembranes are matched together in the same way as the
basic graph vertices, with a hard-core dimer constraint im-
posed by the pseudomembranes. This scale invariance leads
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FIG. 22. Dimer densities on an AB patch (82-vertex) with align-
ing interactions. Top: At T/V = −1/3, the dimer densities reveal
a strong tendency to align along the legs of the ladders, indicating
that staggered configurations on the ladders are favored. Bottom: At
T/V = 1/3, the dimers tend to align along the rungs of the ladders,
indicating that columnar states on the ladders are favored.

to long-ranged, anisotropic, and site-dependent connected
dimer correlations with a series of cut-off scales, which
we found evidence for using classical Monte Carlo simu-
lations. Monomer statistics are likewise dominated by the
tiling’s pseudomembranes. In contrast to familiar cases, e.g.,
monomer correlations on the periodic square tiling, where
a pair of oppositely charged monomers are confined by
the pair separation, on the AB tiling a neighboring pair
of test monomers reach their lowest free energy for very
large separations (of the order of the system size). Along
with this radial anticonfinement, we also observe annular
deconfinement around the 8-vertices. Our results on dimer
and monomer correlations place the behavior of the dimer
model on AB tilings in sharp contrast to familiar examples
of dimer models of bipartite periodic graphs, where both
dimer correlations (either algebraic or short-range) and test-
monomer correlations (confining) are translationally invariant
and isotropic, like the coarse-grained continuum height ac-
tion, which describes these systems. From the correlations
discussed above, it is unlikely that the dimer model on AB
tilings have such a description. Putting the connection be-
tween the effective matching problems and the underlying

statistics on a firm quantitative basis is an important future
direction.

The existence of perfect dimer matchings on the AB tiling
in the thermodynamic limit is also distinguished from the
situation in other two-dimensional quasicrystals [60]. There
are six minimal quasicrystals in two dimensions as identified
in the classification scheme of Ref. [87]. All vertices of the
Penrose tiling belong to regions of one or other excess bipar-
tite charge. The oppositely charged regions are separated by
exact membranes. These are the prototypes for the AB pseu-
domembranes in the present study. In some sense, however,
it is the lack of perfectly matched regions, which makes the
Penrose tiling unique, just as it is the absence of unmatched
regions, which makes AB unique. The remaining four 2D
quasicrystals contain regions with an excess of one or the
other bipartite charge alongside perfectly matched regions.
The division between different regions is always formed by
sets of edges, which cannot host dimers in maximum match-
ings. Other graph decorations of the tiles can change these
results. In the tiling literature such decorations are said to give
“mutually locally derivable” (MLD) tilings [63]. For example,
it is possible to define a tiling MLD to the rhombic Penrose
tiling, which can be perfectly matched [60]. Such special cases
aside, however, the remaining minimal quasicrystals, while
still quasiperiodic and long-range ordered, begin to approach
the generic results found in random or disordered bipartite
graphs with two-dimensional embeddings [65–67]. It is in this
context that the results in the present study truly stand out.

Turning to the more thorny issue of quantum fluctuations,
the existence of columnar and staggered states for opposing
signs of the alignment potential suggests that upon includ-
ing dimer resonance moves, the phase diagram of quantum
dimers on quasicrystals will resemble the Rokshar-Kivelson
picture for periodic lattices [7,10]. Therefore we anticipate
the existence of at least a point in the quantum dimer phase
diagram, between the columnar and staggered limits, where
equal-time dimer correlations resemble those of the classical
models studied in this paper. However, whether this point
requires fine tuning, or instead represents the properties of a
robust phase of matter, is a more delicate question. Histor-
ically, studies of dimer models on periodic bipartite lattices
have made use of the height representation [28,97]; in the
quantum case, the height action must be supplemented by
instanton contributions linked to the integer-valued nature of
the height field. Instantons destroy the long-range quantum
dimer correlations in two spatial dimensions, rendering them
exponentially short ranged. In essence, this is Polyakov’s
argument for the absence of a deconfined phase of U (1)
quantum lattice gauge theories in three spacetime dimensions
[98]. This means that the power-law correlations of the RK
model require the fine-tuning characteristic of a multicritical
point rather than the stability of a robust phase. The situation
is less clear in the present case since, as we have noted above,
there does not seem to be an obvious local height action
that characterizes maximally probable dimer configurations
on quasicrystals. In fact, the anisotropic and site-dependent
nature of dimer and monomer correlations strongly suggest
the absence of any local, isotropic, and translationally in-
variant action of coarse-grained fields, which describe our
system. Therefore, Polyakov’s arguments do not apply di-
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rectly, and as we have seen, the notions of confinement and
deconfinement become richer and subtler. Consequently there
is a possibility that long-wavelength dimer correlations persist
in the quantum problem. Verifying this is challenging, since
in order to make precise statements one must approach the
thermodynamic limit via a discrete sequence of inflations, and
we are forced by quasiperiodicity to work with open boundary
conditions. This means that the relevant computational cost
likely becomes prohibitive before finite-size effects have been
suppressed. In light of this, further study of the classical prob-
lem to determine if there is a convenient, possibly nonlocal,
characterization of maximally probable dimer configurations
seems warranted, as this might open a route to an analytical
treatment.

A more numerically tractable direction is to explore dimer
models on the D8-symmetric ladders introduced in the con-
text of the AB∗ tiling in Appendix C. Recall that each of
the eight symmetry-related segments of the ladder forms a
system, which tends to quasiperiodicity in the thermodynamic
limit in its own right. This presents an interesting avenue for
investigating quasiperiodic quantum dimer ladders. Periodic
ladders, and closely associated frustrated spin ladders, have
long been studied to shed light on the phases and transitions of
quantum dimers [99–104]. We expect studies of quasiperiodic
ladders to be similarly fruitful.

On a given bipartite graph there is a well-established
mapping between monomers in dimer matchings, and local-
ized electronic zero-energy modes in tight-binding models
[65,105,106]. Here, the number of monomers hosted in a max-
imum matching is associated with the number of zero modes,
while the monomer-confining regions are associated with
wave functions whose support is confined within a compact
subgraph. The computed monomer densities and geometry
of monomer-confining regions on the Penrose tiling [60] are
consistent with the density of zero modes and the nature of
confined states obtained from investigations of hopping prob-
lems on the Penrose tiling [107–109]. Reference [73] recently
computed a finite density of confined zero modes on the AB
tiling; naively, this appears to be in conflict with our results
that demonstrate that the AB tiling can be perfectly matched
with vanishing monomer density in the thermodynamic limit.
This apparent contradiction may be resolved by noting that
the zero modes obtained in Ref. [73] are “fragile”, in the sense
that they move away from zero energy upon the introduction
of arbitrarily weak disorder in the hopping matrix elements.
In contrast, the Penrose tiling hosts “strong” zero modes that
survive to any disorder strength. Formally, the monomer den-
sity computed in the dimer cover problem exactly equals the
density of strong zero modes, but is not linked to the density
of fragile zero modes. The fragility of the AB zero modes
may be explicitly verified by computing the spectrum of the
random-hopping problem: For any nonzero randomness, ex-
actly one zero mode from Ref. [73] survives (the strong mode
associated with the unavoidable central monomer on eightfold
symmetric patches), with all the remaining modes moving to
finite energy.

Finally, we comment on a relationship between the ideas
explored in this paper and fracton phases of matter [110–116].
The latter are usually defined on translationally invariant
lattices, and blend topological features with sensitivity to ge-

ometry. Type-I fracton phases host quasiparticle excitations,
which cannot move individually, but which can combine into
pairs or quadruplets to move along lines or planes. There is a
passing resemblance to the membranes in AB∗, in which the
minimum excitation out of a perfect matching would be the
deletion of a single dimer, creating a monomer-antimonomer
pair. Membranes restrict each individual monomer to move
on a subset of vertices of the same bipartite charge. But the
pair together is free to move anywhere, with one or other
monomer “opening a door” through a membrane, which the
other closes. However, a key feature of mobile fracton pairs
is that their separation is fixed, while the monomer pair has
no such constraint. Very recent paper [117] has extended the
duality between fractons and elasticity theory [118] to qua-
sicrystalline systems, but as yet it is unclear whether this has
direct implications for the results presented here. In type-II
fracton phases the excitations can only move along fractal
subsets of the full system. Loosely speaking, they are an
instance where a complicated set of gauge constraints on
a simple lattice leads to emergent low-energy behavior in
which the natural gauge-charged objects are fractals. Con-
trast this with the present example, where a conventional
Gauss-law-like structure (imposed by the dimer constraint)
leads to a setting where “gauge lines” are themselves sub-
ject to fractal—and fractally distributed—barriers. It seems
therefore that the study of dimer models on quasicrystals
presents an intriguing counterpoint to fractons. In future, it
will be interesting to explore whether properties such as un-
usual topological robustness at finite temperature and glassy
dynamics characteristic of fractonic phases also emerge in the
quasiperiodic dimer setting.
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APPENDIX A: MEMBRANES IN PERFECTLY
MATCHED BIPARTITE GRAPHS

Here, we provide a graph-theoretic picture of how per-
fect matchings on a bipartite graph decouples into perfectly
matched regions separated by membranes. These regions are
such, that in all perfect matchings, vertices in each region are
matched to sites within the same region. Further, edges con-
stituting membranes, which separate these regions are never
matched in any perfect matching. It turns out that these re-
gions are precisely the components of the “fine” version of the
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Dulmage-Mendelsohn decomposition of bipartite graph the-
ory [67], well known in computer science and computational
graph theory [66–68]. As we will describe below, the literature
also provides us with computationally efficient methods to
determine these regions.

We note that in general bipartite graphs a maximum
matching is not necessarily perfect. In general, such maxi-
mum matchings decouple into regions, which host monomers
in addition to perfectly matched regions and membranes
[60,65]. These regions also turn out to be components of a
more general Dulmage-Mendelsohn decomposition, involv-
ing monomer carrying regions. However, this does not directly
concern us in the context of AB tilings, and we will focus on
the special case of perfectly matched graphs.

Consider a bipartite graph G with a perfect matching, with
the bipartite subsets denoted by U and V . Given a perfect
matching M, any other perfect matching N can be reached by
flipping the dimer-occupancy states on some set of alternating
cycles on the graph. One can see this by first constructing
the symmetric difference M ⊕ N . M ⊕ N consists of edges,
which are matched in either M or N , but not both. It is easy
to see that M ⊕ N decomposes into cycles. By construction,
these cycles are alternating cycles in M. Starting with M,
flipping the dimer-occupancies on these alternating cycles
gives us N . The preceding arguments bring alternating cycles
to the center stage in our discussions on the finer structure of
perfect matchings of bipartite graphs. Loosely speaking, the
perfectly matched regions are the ones into which alternating
cycles localize, while the membranes are edges through which
no alternating cycles pass (such that they are not matched in
any perfect matching).

Let us formalize this intuition to define these regions pre-
cisely. First, consider an equivalence relation on the vertices of
a graph. Given a maximum matching M, two vertices va and
vb are related if there is an alternating loop going through both
va and vb. This is an equivalence relation on the vertices, and
therefore it divides up the vertices into equivalence classes Vi.
The vertices in the class Vi along with the edges, which have
both vertices in Vi define a subgraph Gi. The Gis precisely
describe the regions we are interested in—all vertices in Gi

are perfectly matched within Gi for all perfect matchings of
the graph G. Edges, which do not belong to any of these Gi

constitute the membranes—these edges are not a part of any
alternating cycle, and consequently do not host a dimer in any
perfect matching.

We now turn to the algorithmic determination of these
regions [67]. It is convenient to construct an auxiliary directed
graph Gd . To construct Gd , given a perfect matching M in the
graph G, we first direct all unmatched edges from U -vertices
to the V-vertices. Then all matched edges are collapsed to a
single vertex, labeled by the U -site. This specifies the directed
graph Gd , with vertices labeled by U -vertices. By construc-
tion, alternating cycles of G are now directed cycles of Gd .
This recasting frames the problem in terms of a standard
one: determination of “strongly connected components” of a
directed graph. Two vertices va and vb of a directed graph
are strongly connected if there exist a directed path from
va to vb, and another directed path from vb to va. Strong

connection defines an equivalence relation, and the corre-
sponding equivalence classes define the strongly connected
components. Standard algorithms, such as ones by Tarjan
[119] and Kosaraju [120] can efficiently solve the problem of
determination of strongly connected components of a bipartite
graph.

Finally, we briefly outline an alternative, but illuminating,
view of the problem in terms of block-triangular factorisation
(BTF) of matrices, which was the initial context in which
many of the above ideas were introduced [67]. A bipartite
graph can be represented by a matrix G with rows denot-
ing one bipartite subset U , and columns denoting the other
subset V . An edge between an U -vertex i and a V-vertex j
corresponds to a nonzero value of the element Gi j . For our
purposes, the actual numerical value of Gi j is not important,
but it may encode other information like the weights of edges
in a weighted matching problem. Readers may be more fa-
miliar with the graph adjacency matrix A, a square matrix
labeled by vertices of the graph, and whose nonzero entries
correspond to edges. In terms of G, the adjacency matrix is

A =
(

0 G
GT 0

)
. (A1)

The decoupling of the graph into perfectly matched regions
and membranes can also be viewed as a block-triangular fac-
torisation (BTF) of the matrix G, achieved by a permutation
of its rows and columns. Such a BTF is of the general form

G =

⎛
⎜⎜⎜⎝

G1 M12 . . . M1n

0 G2 . . . M2n
...

...
. . .

...

0 0 0 Gn

⎞
⎟⎟⎟⎠. (A2)

The diagonal blocks Gi are square matrices, which denote
the perfectly matched regions, while the off-diagonal blocks
Mi j denote the edges, which make up membranes. This can
be easily seen. Consider the first diagonal block G1. First
note that the U -vertices in G1 must match to the V-vertices
in G1 because we know that G is perfectly matched and the
V-vertices in G1 have no neighbors outside of the U -sites
in G1. This implies that the edges in the blocks M11 · · · M1n

are never matched in a perfect matching, i.e., they constitute
membranes. With the U -vertices in G1 used up, the V-vertices
in G2 must all match to U -vertices in G2, implying that the
edges in M23 · · · M2n constitute membranes. This argument
can be continued to show that sites in the regions Gi are
perfectly matched to sites in the same region, while edges in
Mi j are never matched in any perfect matching. Of course, the
BTF ultimately depends on the graph, and it might happen that
no such BTF is possible for certain graphs, or more precisely
the BTF corresponds to a single diagonal block encompassing
the whole graph.

APPENDIX B: INFLATION STRUCTURE
OF LADDERS ON THE AB∗ TILING

As explained in Sec. IV, the structure of AB∗ is composed
of stars, ladders and membranes. The AB inflation rule σ

094202-21



JEROME LLOYD et al. PHYSICAL REVIEW B 106, 094202 (2022)

FIG. 23. The inflation of the ladder tiles in Fig. 11. We dis-
tinguish three distinct units that build the stars and ladders of the
AB∗ tiling: P, A, and B. White space separating segments represents
impermeable membranes. Denoting the three different tile environ-
ments that appear in any segment as S, R, and R′, we have A = SRS,
B = SR′R2R′S. The segments are marked on the tiles by colored arcs
of internal angles π

4 , π

4 , π

2 for segments P, A, B respectively, which
retain the symmetry of the original segment.

implies an inflation rule, displayed in Fig. 23, for the ladder
tiles of Fig. 11 (technically, to perform inflation on AB∗, the
inflation is performed on the ABtiling and then the 8-vertices
are once again removed, mapping back to AB∗). Rather than
work at the level of the tiles, we distinguish three repeat-
ing units: the basic 2-edge unit of the star, which we label
P (shaded green); a ladder segment with the structure SRS
(square-rhombus-square), which we label as A (shaded light
blue); and a ladder segment with the structure SR′RRR′S,
which we label B (shaded yellow). Each unit connects at its
two end points with other units, forming longer segments. We
note the basic rhombus tile can appear in two distinct envi-
ronments (R and R′): the R rhombi appear in the A segment
or in the center of the B segment, and have a single vertex,
which only has edges to two other vertices in the ladder; the
R′ rhombi appear sandwiched between S and R in B. [Viewing
each ladder as a graph, the R′ environment is equivalent to the
S environment in the way in which it connects to neighboring
tiles, and this identification is used in defining the transfer
matrices for enumerating matchings, Eq. (C6).] We denote a
tile or segment T repeated consecutively n times as T n.

From Fig. 23 we can read off the inflation of the segments,

P → A, A → B1/2AB1/2, B → B1/2A4B1/2. (B1)

Although a one-to-one identification creates fractional-power
B segments, two of these always join to form a whole segment:
(B1/2)2 = B. We are free to shift our inflation rule by B1/2 to

the right, obtaining the more convenient form

ξ : P → A, A → AB, B → A4B. (B2)

A 1D inflation rule ξ over the three-letter6 “alphabet” (P, A, B)
is then obtained if we further define

ξ (MN ) = ξ (M )ξ (N ) (B3)

for any “words” M, N . Due to the invertibility of σ , the inverse
of ξ must also exist: we denote it ξ−1. The 2D inflation σ is
therefore reduced to an effective 1D inflation ξ on the ladders
forming the AB∗ tiling.

The P segments always close into isolated stars with D8

symmetry, i.e., P8 (with periodic boundary conditions). Each
ladder either closes in a loop or spans the entire tiling—this
follows by noting from the configurations in Fig. 12 that
ladders cannot branch or terminate in the tiling. Additionally,
if a ladder closes, it does so with D8 symmetry. To see this,
observe that the inflation of the ladder tiles (Fig. 23) preserves
the symmetry of the segments. Then, given a closed ladder
loop, repeated deflation must eventually result in a loop con-
taining P segments, since ξ−1 only destroys Ps. It follows that
ladders can only close with D8 symmetry.

The possibility of a system-spanning ladder on the infinite
tiling is evident by considering the case of repeated inflation
of any single segment; the infinite ladder is obtained in the
limit. The possibility of multiple system spanning ladders is
more interesting. Similar curves to those in Fig. 23 can be
used to decorate the tiles of the Penrose tiling; in that case,
Penrose and Conway have independently shown that at most
two system-spanning curves can exist in a tiling [121]. We ex-
pect that a similar statement holds for the Ammann-Beenker
tiling. Such infinite ladders are very rare in any case—from
the LI property of AB, any finite patch of tiling can be taken
to lie inside a closed ladder of large enough extent, wherein
all ladders must close. The existence of these rare ladders will
have negligible effect on the matching problem, and in the
main text we assume all ladders are closed with D8 symmetry.

With the terminology of Sec. IV A, we define the star P8

to be the order-0 ladder, set A0 ≡ P, and henceforth phrase
our discussion in terms of ladders of order n � 0 according
to the inflation hierarchy. With the D8 symmetry constraint,
and assuming periodic boundary conditions, we obtain the
structure of the order-n ladder as

Ln = (ξ n(A0))8 ≡ A8
n. (B4)

Thus the order-1 ladder corresponds to A8, the order-2 ladder
to (AB)8, the order-3 ladder to (ABA4B)8, and so on.

The order-n ladders are fractal structures in the limit n →
∞, and their fractal dimension can be derived from the pre-
ceding inflation rules. Denoting the number of A (B) segments
in an order-n ladder as αn (βn), the growth under ξ is specified
by the inflation matrix(

αn+1

βn+1

)
=

(
1 4
1 1

)(
αn

βn

)
. (B5)

6Since P never occurs after the first inflation the alphabet is effec-
tively two letter.
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The largest eigenvalue of this matrix is 3, and so the number of
both A and B segments in a ladder grows by 3 under inflation,
in the above limit. It would appear to follow that the length of a
ladder likewise increases by a factor of 3 under inflation. How-
ever, there is a subtlety here in the fact that the orientations of
A and B segments are reversed under a single inflation; this is
easily resolved by considering the action under ξ 2. Then the
length of a ladder increases by a factor of 9, whereas all edge
lengths are scaled by the silver ratio δ2

S . The (box-counting)
fractal dimension dF of the ladders is then found by setting
(δ2

S )dF = 9, from which

dF = 1

log3 δS
≈ 1.246 . . . (B6)

This is similar to the case on the Penrose tiling, where
the membranes were found to have fractal dimension
1/ log2 ϕ [60], where ϕ is the golden ratio.

The statement that an 8n-vertex is the center of concentric
ladders of orders 0 � m � n follows from the fact that all
80-vertices are enclosed by stars, and an order-n ladder inflates
from a star. Consequently, the number of ladders at a given
order n is in one-to-one correspondence with the number of
8-vertices of order m � n. This in turn can be computed by
counting the number of all 8-vertices on the tiling obtained
by deflating n times. Given a tiling with N vertices, for N
large, the n-fold deflated tiling has ∼N/δ2n

S vertices, a fraction
1/δ4

S of which are 8-vertices. These statements become exact
as N → ∞. Combining these results, we see that the number
Nn of order-n ladders on an N-site tiling is given by

Nn ≡ νnN with νn → 1

δ4+2n
S

as N → ∞. (B7)

Here, νn is the frequency of order-n ladders, equal to the sum
of frequencies of 8m-vertices for m � n (so ν0 ≡ νv8 in the
notation of Sec. III). Note that N refers here to the number
of vertices on the “parent” AB tiling; the number of vertices
on the AB∗ tiling is given by eliminating the N/δ4

S 8-vertices,
with

lim
N→∞

N∗ = N
(
1 − δ−4

S

)
. (B8)

APPENDIX C: STATISTICAL MECHANICS OF THE AB∗

TILING: TRANSFER MATRIX CALCULATIONS

We consider the statistical mechanics of perfect matchings
of the AB∗ tiling, which, as noted in Sec. IV A, is particularly
simple on account of the membrane constraints. This allows
us to derive an exact asymptotic form for the free energy
of perfect matchings on the AB∗ tiling, and compute, e.g.,
monomer correlations on the ladders.

The most general partition function for the dimer problem
on a graph G is a weighted sum over all dimer configurations
C,

Z =
∑
C

w(C). (C1)

Restricting to equally weighted perfect matchings (i.e., w =
1 if C is a perfect matching, otherwise w = 0), Z simply
counts perfect matchings. Given a perfect matching of G,
all other perfect matchings can be obtained by augmenting

alternating cycles (Sec. II A). On AB∗ an alternating cycle
cannot intersect a membrane. Therefore, the enumeration of
configurations on AB∗ is obtained as the product over the
enumerations on each ladder. That is, the partition function
factorizes over ladders, with each ladder defining an inde-
pendent 1D dimer problem. All ladders of order n have the
identical partition function Zn, and so the partition function in
the thermodynamic limit Z∗ is simply

Z∗ =
∞∏

n=0

ZNn
n , (C2)

where Nn is the number of order-n ladders on the tiling,
given in Appendix B. The one dimensional nature of the stars
and ladders suggests that the partition functions Zn can be
efficiently calculated in terms of transfer matrices. To outline
our approach for the AB∗ ladders, we first consider the simpler
problem of enumerating coverings of a closed periodic ladder
consisting only of square tiles.

The basic repeating unit of the ladder can be directly lifted
to write down the transfer matrix in graphical notation:

which simply assigns an index to each edge of the unit. Each
index runs over the two values (0,1), representing the edge
in an uncovered state and a state with a dimer. The transfer
matrix entry corresponding to a given set of indices (i ji′ j′α|
is assigned a weight w = 1 if the corresponding state obeys
the hard-core dimer constraint and perfectly matches the two
black vertices, otherwise we set w = 0. For example, (10010|
is a valid dimer configuration, but (11001| is not. The internal
index α is then summed over, and the left (right) indices are
combined into a single index (i j| ((i′ j′|) to enable us to write
down the transfer matrix Pi ji′ j′ ≡ (i j|i′ j′), or

P =

⎛
⎜⎜⎝

1 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (C3)

Note that we have chosen to order the indices as
(00|, (11|, (10|, (01| to take advantage of the block diag-
onal nature of P . This splitting reflects a more fundamental
property of the configuration space of perfect matchings,
wherein the space is further subdivided into topological sec-
tors: while all configurations are reachable from one another
via alternating cycles, only configurations in the same sec-
tor are connected via local cycles; configurations in distinct
topological sectors can only be connected via cycles, which
wind around the entire system (in one of the directions with
periodic boundary conditions). The periodic square ladder has
three possible sectors, s = 0,±1. The s = ±1 sectors contain
only one configuration each. These are the “staggered” config-
urations with dimers alternating between the top and bottom
legs of the ladder. These are captured by the lower block of
P . All other configurations belong to the s = 0 sector and are
enumerated by the upper block matrix. For a closed periodic
ladder consisting of M plaquettes, the partition function is
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then7

Z̃M = Tr(PM ) = FM+1 + FM−1 + 2, (C4)

with FM the Mth Fibonacci number, and F1 = F2 = 1. The
term +2 is the staggered contribution.

The aperiodic ladders defined by Eq. (B4) are treated in
an analogous fashion. Clearly (C3) still defines the transfer
matrix between two square tiles. We similarly introduce the
matrix for an A-section rhombus (left) and the B-section cen-
tral (R-type) rhombi (right) as

with the internal states of the rhombi again summed over
and only the external legs (i ji′ j′) “free”. These are written
explicitly as

Q =

⎛
⎜⎜⎝

2 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠, R =

⎛
⎜⎜⎝

3 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (C5)

It is seen that each rhombus simply adds a state for which none
of the free legs hosts a dimer. Again the ladders decouple into
three topological sectors, with two staggered configurations
entirely analogously to the periodic ladders.

The three matrices P, Q, R allow for exact enumera-
tion of the ladder configurations. Unfortunately, they do not
commute and so cannot be simultaneously diagonalised—
consequently, each Zn calculation requires multiplication of an
ever-longer (exponentially growing) string of matrices, which
tends to quasiperiodicity in the thermodynamic limit. The
inflation rules defined on the ladders, however (B2), allow the
traces to be computed efficiently (approximately linearly in n)
to arbitrary finite order.

We take advantage of the block diagonal nature of the
matrices to keep only the s = 0 block. The staggered sector
contributes two configurations to each ladder partition func-
tion. Then we introduce two matrices for the basic A and B
sections of the ladders,

A1 ≡ P ′Q′ =
(

3 1
2 1

)
,

B1 ≡ P ′2R′P ′ =
(

9 7
5 4

)
. (C6)

(Primed matrices represent the upper block of the respective
matrix.) Here we used the fact that the transfer matrix for
the R′ rhombi appearing in the B section is the same as the
square’s transfer matrix, P (or P ′). The inflation rule ξ in (B2)

7The same result appears in models of chains of Rydberg atoms
[122,123], owing to a mapping between the dimer constraint and
the “Rydberg blockade” constraint, which forbids two neighboring
atoms to be in simultaneously excited states.

then carries over straightforwardly to the generalized transfer
matrices An and Bn via

An+1 = AnBn, Bn+1 = A4
nBn. (C7)

The partition function of the order-n ladder in the s = 0 sector
is thus

Z (0)
n = Tr

[
A8

n

]
, (C8)

which effectively solves (C2) as the An can be computed
recursively. We note that Z0, the partition function of the
stars, is equal to two: these two configurations can be seen
as analogues to the ladder’s two staggered states (the only
alternating cycle connecting the two configurations winds all
the way around the star).

The free energy density per edge of the AB∗ tiling in the
thermodynamic limit is given in terms of the ladder partition
functions as

f∗ = lim
N→∞

− ln Z∗
NE∗

= − 1

6(1 + 4δS )

∞∑
n=0

ln Zn

δ2n
S

(C9)

or with (C8),

f∗ = − 1

6(1 + 4δS )

[
ln 2 +

∞∑
n=1

ln
(
Tr

[
A8

n

] + 2
)

δ2n
S

]
. (C10)

where we have used Eq. (B7) and Eq. (B8), and simplified
powers of δS using Eq. (1). Here NE∗ is the number of edges
on the AB∗ tiling in the thermodynamic limit, calculated in
terms of the number of vertices N of the AB tiling as NE∗ =
N (4 − 8δ−4

S )/2. The infinite series in Eq. (C10) converges ex-
ponentially to its limit, on account of the exponential drop-off
in the frequency at which higher-order ladders occur. Using
the inflation, it is possible to bound the error incurred in the
free energy from truncating the ladder series at some finite M
(the proof is simple but not particularly insightful),

|δ f M
∗ | <

1

24(1 + 4δS )δ2M+1
S

(�M + ζ ),

�M = 3M (1 + δS )(4 ln a+
1 + 2 ln b+

1 ),

ζ = (δS − 1)(4 ln a+
1 − 2 ln b+

1 ) + 2 ln 2. (C11)

where we introduce the maximum and minimum eigenvalues
of A1 as a+

1 and a−
1 respectively, and those of B1 as b+

1 and b−
1 .

Taking for example the first 40 terms in the ladder summation,
we find f∗ = −0.06884471896847(17).

To calculate the partition functions in the presence of an
aligning interaction [see Eq. (10)], we define new transfer ma-
trices expressed in a basis of plaquette states. For the square
plaquette, we take the three basis states as

which leads to

P ′
int =

⎛
⎝0 0 κ

1 κ 0
1 1 0

⎞
⎠. (C12)

The weights are given by w = κ ≡ e−V/T if |i, j) is a flippable
dimer configuration, w = 1 if |i, j) is a nonflippable config-
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uration, and w = 0 if |i, j) is not a valid (hard-core) dimer
configuration. Only whole plaquettes i.e., those not including
the dotted edge, can be counted as flippable—this avoids over-
counting. The matrices for the rhombi sections are defined
in the same basis, mapping from the square on the right of
the rhombi to the one on the left, summing over intermediate
states,

Q′
int =

⎛
⎝0 0 κ

1 κ κ2

1 κ κ

⎞
⎠, R′

int =
⎛
⎝0 0 κ

1 κ 2κ2

1 κ κ + κ2

⎞
⎠.

(C13)
Note we are again working in the s = 0 block, and the stag-
gered configurations give a contribution of +2. Multiplication
of these transfer matrices according to the ladder structures
gives the analytic curves in Fig. 20.

Transfer matrices can also be employed to compute more
complicated correlations. Here we outline how to compute
monomer-monomer correlations, but the extension to dimer-
dimer and higher order correlators is not more difficult.
Returning first to the periodic ladder, it can be observed that
the sector number s changes by ±1 either side of a monomer
(below).

The monomers therefore provide a matrix element between
the staggered s = ±1 sectors and the s = 0 sector, which were
previously disconnected in the space of perfect matchings.
As noted in the main text, the monomer-monomer correlation
function is just the partition function with two monomers at
x and y, Z (x, y) (up to normalisation). A monomer U (V)
residing on the upper (lower) black vertex of the graphical
square-square transfer matrix will act as

U =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠, V =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠.

(C14)
The correlation function is then calculated by replacing P by
U or V at the position of the monomers, and taking the trace
over the transfer matrix product as usual. For example, for
the figure above (assuming periodic boundary conditions), we
have

Z̃ (0, 4) = Tr(P4UP3V ) = 5. (C15)

The calculations for the aperiodic ladders go through al-
most the same. The only difference is that the monomers can
reside in several distinct environments along the ladder (any
of the black vertices in the graphical diagrams). For example,
a monomer residing on the “point” of the rhombus in the
A-section graphical diagram has the matrix

U =

⎛
⎜⎜⎝

0 0 1 0
0 0 1 0
1 1 0 0
0 0 0 0

⎞
⎟⎟⎠. (C16)

We are primarily interested in the asymptotic behavior of
the monomer-monomer correlator at large separations. The
main physical point to note is that the monomers once again
mix the staggered and s = 0 sectors, with a string of stag-
gered states stretching between two monomers. Since it is the
s = 0 sector that primarily contributes to the entropy of the
ladders, the monomer-monomer correlators are exponentially
suppressed in the monomer separation (i.e., in the length of
the staggered string).

From the idea of effective matching problem, we expect
the correlators for all odd-i Hi regions to be controlled by the
correlator of the L1 ladder, and those for all even-i regions
to behave like the star. The asymptotics of the L1 ladder
are accessed by considering the large-n limit of monomer
correlations on the extended ladder L1(n) formed by ajoin-
ing n identical A sections. While the overall normalisation
of the correlations depends on the environments of the two
monomers, we expect from the above discussion that the
leading order behavior of the correlator depends only on the
largest eigenvalue of the A1 matrix, i.e.,

Z1(x, y) ∝
(

1

a+
1

)n

+ · · · (C17)

where x lies in S0 and y in Sn. With a+
1 = 2 + √

3, we obtain
the form quoted in Eq. (8). The same problem for the star gives
the trivial result that whenever two monomers are present,
only one compatible dimer configuration exits. Thus, the star’s
monomer-monomer correlator is independent of the monomer
separation,

Z0(x, y) = 1. (C18)

APPENDIX D: PERFECTLY MATCHED H REGIONS

In Sec. IV A, we showed that the AB∗ tiling hosts a perfect
matching, and membranes separate stars and ladders, which
host dimers in the perfect matching. Here, we consider punc-
tured 8n-empires, obtained by removing the central 8n-vertex
from the 8n-empire, and prove that when such 8n-empires are
terminated with certain D8-symmetric boundary conditions
they host a perfect matching. Further, concentric membranes
around the absent central 8-vertex separate perfectly matched
components, which we label as Hi. These statements can be
proven as follows:

(i) Starting with H1, which we take as the first closed
ladder (L1, in the language of Sec. IV A), which surrounds the
absent 8-vertex and the star around it, there exists an inflation
rule λ such that Hi+1 = λi(H1) are mutually exclusive D8-
symmetric regions, concentric with the central 8-vertex, and
all vertices of the punctured 8n-empire belong to one of the Hi

for some i. In an 8n-empire, the central 8-vertex is surrounded
by a star (we define H0 to be the star, H0 ≡ L0), which in
turn is surrounded by H1, and a region Hi is surrounded by
the region Hi+1. The inflation rule λ can be easily read off
from the inflation of the ladder tiles in Fig. 23. Vertices in a
ladder are no longer entirely matched to vertices within the
same ladder (dimers are placed on the membranes). However,
it is convenient to describe the inflation rules in terms of the
ladder segments. A region Hi is composed of certain closed
ladders that follow from the inflation, as well as the links con-
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FIG. 24. Starting from H1, the order-1 ladder, an inflation rule
λ generates concentric, D8-symmetric regions Hi = λi(H1), which
can be perfectly matched, such that all sites in an 8n-empire belong
to one of the Hi for some i. We have presented the inflation rules in
terms of ladder segments of Fig. 11. As before, the ladder segments
are represented by colored arcs of internal angles π/4, π/4, π/2 for
the segments P, A, and B respectively. Each region Hi is composed
of closed ladders as well as the links connecting those ladders. For
clarity, we have suppressed both the 8-vertices located at the center
of the green circles (stars) and the links between the ladder segments.

necting them, which can be read off from Fig. 12 (previously
membranes on the AB∗ tiling). We present the λ inflation rule
in Fig. 24. From λ, all regions Hi can be constructed starting
from H1. The first two regions constructed using the inflation
rules of Fig. 24 are displayed in Fig. 25.

(ii) Second, each component Hi generated by the inflation
rule λ can be perfectly matched. Such a perfect matching
can be constructed following the arguments of Sec. III used
to construct a perfect matching of the AB tiling: Hi con-
tains ladder segments, which can be perfectly matched, using
the dimer-decorated ladder tiles displayed in Fig. 11. The
8-vertices (located at the centres of green circles in Figs. 24
and 25, not shown) now lie at the vertices of the component
Hi−2 = λ−2(Hi ), with edge-lengths larger by a factor of δ2

s .
Each edge of the larger Hi−2 component implies an odd-
length alternating path between the corresponding 8-vertices
in Hi, and can be augmented to match the 8-vertices. This
follows directly from applying the augmenting paths for the
dimer-inflation tiles, Fig. 10, to connect up the (now reintro-
duced) 8-vertices in the ladder tiles (Fig. 11). Since both the
star and order-1 ladder can be perfectly matched, all Hi can be
perfectly matched. If boundary conditions are imposed on an
8n-empire such that all vertices outside the largest component
Hn are excluded, then the truncated empire hosts a perfect

FIG. 25. Using the inflation rules of Fig. 24, we construct the
first two inflated regions H2 and H3, starting from the order-1 ladder
H1 ≡ L1. Ladder segments P, A, and B are represented by colored
arcs as in Fig. 23. The H regions are composed of closed ladders as
well as the links connecting those ladders. Each Hi region admits a
perfect matching.

matching. Now we argue the existence of membranes within
the perfect matching.

(iii) Each component Hi has the property that if the central
8-vertex is (say) a U -vertex, all vertices on the inner boundary
of Hi (towards the central 8-vertex) are V-vertices while those
on the outer boundary are U -vertices. This can be seen by
first noting that this is true for H1. If Hi has ladder segments
with U -vertices at a boundary, inflations of Fig. 24 result in
segments with U -vertices at the boundary.

In a perfect matching, vertices in the smallest component
H0 (the star surrounding the absent 8-vertex) must be per-
fectly matched to vertices within H0. H0 has an equal number
(8) of U - and V-vertices, with only U -vertices having edges
connecting them to the rest of the graph. In a perfect matching,
this constrains the U -vertices to match to V-vertices on the
interior of H0, lest the V-vertices remain unmatched. For the
component H1, the outer boundary has only U -vertices having
edges connecting them to vertices in H2. At the inner bound-
ary, only V-vertices have edges connecting them to vertices
in H0, but these edges cannot be matched as vertices in H0

are always matched to vertices within H0. This implies that
vertices in H1 are matched to other vertices in H1 in all perfect
matchings.

Extending this argument implies that for all components
Hi, vertices of Hi are matched to vertices within Hi. Hi

are the perfectly matched components Gs
i of the Dulmage-

Mendelsohn decomposition reviewed in Appendix A.
We have shown that if we choose boundary condi-

tions of the punctured 8n-empire, which exclude vertices
lying outside the outermost component Hn, then the punc-
tured 8n-empire hosts a perfect matching with n concentric
membranes.

APPENDIX E: THE DIRECTED LOOP ALGORITHM

In this Appendix we summarize the directed-loop algo-
rithm for sampling dimer configurations/maximum match-
ings, as originally introduced in Refs. [40,96]. Note that
this approach works both for maximum as well as perfect
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matchings, so we develop the discussion without specializing
to the perfect-matching case. Given a maximum matching, the
algorithm generates new maximum matchings as follows:

(1) Start with a maximum matching. Randomly pick a
matched vertex s0. Let s0 be matched to s1. Set si = s0 and
s j = s1.

(2) Pivot: Randomly choose a neighbor of s j , say sk . (The
probability governing this choice is described below.) Remove
the dimer on the edge (si, s j ) and place a dimer on the edge
(s j, sk ). This is the elementary step of the update, where a
dimer “pivots” over the vertex s j from the edge (si, s j ) to the
edge (s j, sk ). Note that in the first step, the dimer-pivoting
move leaves an extra monomer at s0.

(3) Stop if sk hosted a monomer before the pivot.
(4) Grow: if sk hosts a dimer (sk, sm) with sm �= s j , the in-

termediate configuration has a monomer at the starting vertex
s0, and an antimonomer (two dimers touching a site) at the
vertex sk . Set si = sk, s j = sm, and go to Step 2 (Pivot).

Intuitively, each step of the algorithm creates a monomer-
antimonomer defect-pair and moves the antimonomer around
until it annihilates with another monomer. The value of sk

when the procedure terminates determines, which of two pos-
sible updates have been implemented: sk = s0 corresponds to
flipping the dimer-occupancies in a closed alternating path of
edges (a loop update), while sk �= s0 corresponds to transport-
ing a monomer from sk to s0 (string update).

The utility of the algorithm lies in the fact that any two
maximum matchings can be connected by a sequence of loop
or string updates, and so it can sample the whole configuration
space of maximum matchings.

To ensure detailed balance in the space of maximum
matchings generated by the update, we implement it in
the enlarged configuration space that includes all maximum
matchings as well as the intermediate configurations gener-
ated by the algorithm. The latter correspond to configurations,
which have an extra monomer-antimonomer pair relative to a
maximum matching. Imposing detailed balance at each step
of the update yields the transition probabilities Pi j; jk for a
dimer to pivot on a vertex j from the edge (si, s j ) to the
edge (s j, sk ),

wi jPi j; jk = w jkPjk;i j (E1)∑
( jk)

Pi j; jk = 1. (E2)

wi j is the weight contributed to the partition function by a
dimer on the edge (si, s j ). In general, the system of equa-
tions (E2) subject to the constraints (E1) is underdetermined.
It is necessary to look for solutions, which minimize the
probabilities Pi j;i j of the loop retracing itself. Such solutions
can be found using linear programming techniques [124]. If
the dimers are noninteracting, as is the case in most of this
paper, the backtracking probabilities can be set to zero. In this
case, for an n-coordinated vertex s j , Pi j; jk = 1/(n − 1) for all
edges (s j, sk ) �= (si, s j ).

Since the algorithm respects detailed balance in the ex-
tended configuration space with the monomer-antimonomer
pair created while making the loop, it affords access to the
partition function Zma. This involves configurations with the

same number of dimers as the maximum matching, but with
one additional monomer and one additional antimonomer.
The loop update samples this partition function with the
correct weights. This is very nearly the quantity we are in-
terested in when understanding questions of confinement,
though there one usually considers a closely related partition
function Zmm, which involves two more monomers than the
maximum matching. In fact, the loop-construction procedure
outlined above could equivalently be described as creating
two monomers in a maximum matching, and propagating one
of the monomers until it annihilates with another monomer
to give a new maximum matching. To be precise, a step
where the dimer pivots on the vertex s j from the edge (si, s j )
to the edge (s j, sk ) can be equivalently described in terms
of a monomer hopping from the vertex s j to the vertex sm

(which is matched to sk), while another monomer is fixed
at the starting vertex s0. The dimer on the edge (sk, sm) is
moved to the edge (s j, sk ) during this hop. However, the
detailed balance equations are satisfied with respect to the
partition function Zma instead of Zmm. To sample from Zmm

correctly we weight each intermediate configuration gener-
ated in the loop update (with monomers at s j and s0) with
a factor of (

∑
k w jk )−1. Measurement of Zmm closely corre-

FIG. 26. Top: The set of source edges e0 considered in Fig. 16,
which are representative of edges for which connected correlations
of dimers decay as power laws. Bottom: The set of source edges e0

considered in Fig. 17, for which connected correlations of dimers are
bounded within pseudomembranes. The color of the edges indicate
dimer occupation density to reveal the structure of pseudomem-
branes. We use the D8 symmetry to choose (and display) source
edges within a wedge—eight of these wedges make up the whole
sample.
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sponds to the monomer correlations as discussed in the main
text.

APPENDIX F: SOURCE EDGES FOR DIMER
CORRELATIONS

To investigate connected correlations of dimers, we inves-
tigated the quantity CMax(e0, x), the maximum absolute value

of the dimer correlation function at a distance of x edges from
e0, in Sec. V B. Figure 16 shows slow decay of CMax(e0, x),
consistent with power laws, for many different source
edges e0. Figure 17 shows that for some other choices of
source edges, the connected correlations are bounded within
pseudomembranes. For a 84-vertex considered in Sec. V B,
we label the source edges considered in Fig. 16 and Fig. 17 in
Fig. 26.
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