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Molecular dynamics simulations can explore the characteristics and evolution of microstructures in alloys out-
side of experiments, with reliability and accuracy guaranteed by the interatomic potentials employed. Machine
learning potential (MLP) is widely used for its accuracy close to first-principles calculations. When developing
an MLP, the construction of the training dataset is crucial, determining the accuracy and generalization of the
MLP. In this work, a Monte-Carlo-like (MCL) strategy is proposed to construct training datasets for developing
MLPs of alloys, which is characterized by the efficient consideration of element distributions in alloys. As an
example, a training dataset for the equimolar NbTiZrHf alloy is constructed based on the MCL strategy, and
the corresponding MLP is developed subsequently. By comparing with two traditional strategies, it is found
that the training dataset constructed based on the MCL strategy has greater dispersion, and the corresponding
MLP has better prediction performance. In addition, a hybrid molecular statics and Monte Carlo simulation with
the MCL-based MLP is performed to optimize the element distribution of the equimolar NbTiZrHf alloy, and
segregation and short-range ordered structures are observed in the final configuration, which is consistent with
the experimental results reported in the literature. The MCL strategy proposed in this work can provide a fast
solution for considering the element distribution when constructing training datasets for developing MLPs of
alloys.
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I. INTRODUCTION

In recent years, high-entropy alloys (HEAs) or multicom-
ponent alloys have been rapidly developed [1–6]. Different
from traditional alloys, which are mainly composed of one
or two principal elements and a trace of auxiliary elements,
HEAs generally have more than four or five principal elements
[1,2]. Due to the cocktail effect brought about by the mixing of
various elements, HEAs often exhibit outstanding mechanical,
physical, chemical, and biological properties, such as high
thermal stability, high corrosion resistance, etc., and thus have
potential applications in aerospace, nuclear energy, and other
fields [3–6]. In early studies on HEAs, it was generally be-
lieved that the elements in HEAs were completely randomly
distributed in the matrix, thus forming corresponding random
solid solutions. However, a growing number of experimental
and theoretical research have shown that this is not the case.
In other words, the elements in HEAs are not completely
random and disordered, but form segregation or short-range
ordered structures (SROs) in some localized regions, which
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have important effects on many properties of HEAs [7–9].
Due to the compositional complexity of HEAs [10], it is
still very challenging to investigate SROs at the atomic scale
based on experiments. As an important complement to the
experimental study, molecular dynamics (MD) simulations
can provide insight into the dynamic evolution process of
SROs and further explore their impact mechanism on various
properties [11–19].

When performing MD simulations on a specific material
system, the first and very crucial step is to construct the cor-
responding interatomic potential, which is used to accurately
describe the interactions between atoms in the system. For
metal or alloy systems including HEAs, the potentials used
earlier are mostly empirical, such as embedded atom method
and modified EAM [14,19]. Such potentials are usually con-
structed by first proposing some descriptive formulas with
parameters based on the physical model of atomic interac-
tions, and then determining the relevant parameters by fitting
some properties of a specific material obtained from exper-
iments or first-principles calculations. Recently, researchers
have attempted to introduce machine learning theory into
the development of interatomic potentials, resulting in a new
class of potentials quite different from empirical potentials,
namely machine learning potentials (MLPs) [20]. Typical
MLPs are based on the framework of the neural network,
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developed by inputting a large amount of data obtained from
first-principles calculations to train the weight coefficients.
Although MLPs are quite different from empirical poten-
tials in form, they are essentially the same, which is to map
the information related to the atomic configuration, such as
atomic coordinates, species, etc., into potential energy or
atomic forces. In contrast, the accuracy of MLPs is generally
higher than that of empirical potentials, approaching that of
first-principles calculations. As a trade-off, the computational
cost of MLPs is also typically greater than that of empirical
potentials, but significantly lower than that of first-principles
calculations. As computing power increases, the require-
ment for accuracy outweighs the savings for computational
cost, resulting in the growing application of MLPs in MD
simulations [16,17].

Although MLPs have different theoretical frameworks, the
development process is similar. The first step in develop-
ing an MLP for a specific material system is to construct a
training dataset where each sample corresponds to a unique
atomic configuration [20]. By performing first-principles cal-
culations on each atomic configuration, the corresponding
total potential energy and atomic forces can be obtained. The
coordinates and species directly determined by the configu-
ration, as well as the calculated potential energy and atomic
forces, together constitute a training sample. Therefore, the
basis for constructing a training dataset is to construct an
atomic configuration dataset, which is essentially sampling
in the corresponding configuration space. For pure metals,
the difference between samples in the configuration space is
merely atomic coordinates, while for alloys, the difference
also includes the element distribution. Obviously, for HEAs
composed of multiple elements, the configuration space is
huge, so it is impossible to construct a configuration dataset
based on exhaustion. Instead, the configuration space can only
be limitedly sampled based on a certain strategy. Depending
on the purpose for which the MLP is used, the sampling strat-
egy will also vary. The most common strategy for constructing
the configuration dataset is to perform different modes of de-
formation operations, such as stretching, shearing, etc., or MD
simulations at different temperatures on completely random
solid-solution models and extract some configurations from
the corresponding trajectories [21,22]. It should be pointed
out that deformation operations or MD simulations at lower
temperatures can only change the relative positions of atoms
in the configuration, but hardly change the element distribu-
tion. Therefore, the MLP developed using the training dataset
constructed from random element distribution models (named
as the Random strategy) is difficult to describe segregation or
SROs that may appear in alloys. Another improved strategy
is to generate so-called special quasirandom structures (SQS),
referred to as the SQS strategy, which optimizes the shape of
the lattice jointly with the occupation of the atomic sites, thus
ensuring that the configuration space searched is exhaustive
and not biased by a prespecified lattice shape [23,24]. Nev-
ertheless, the diversity of atomic configurations constructed
based on the SQS strategy is still limited, and the element
distribution characteristics corresponding to the configuration
space cannot be fully exploited, leading to the possibility of
failing to reproduce segregation or SROs under special condi-
tions.

In this work, we propose a Monte-Carlo-like strategy
(called the MCL strategy) to construct training datasets for
developing MLPs. In the implementation of the MCL strategy,
we first define an average probability parameter (APP) that
characterizes the distribution of different element pairs, so that
an atomic configuration with a specific element distribution
can be described by a set of APPs. Then, we discretize each
set of APPs within its value range, which is equivalent to
the uniform sampling of the configuration space. Finally, we
introduce the Monte-Carlo-like method to target each set of
APPs and construct the corresponding configuration. To verify
the effectiveness of the MCL strategy, we construct the train-
ing dataset of equimolar NbTiZrHf HEA as an example, and
further develop the corresponding MLP. Meanwhile, we also
construct the training datasets based on the Random strategy
and the SQS strategy and develop corresponding MLPs. By
comparison, it is found that the training dataset constructed
based on the MCL strategy has greater dispersion, while the
corresponding MLP has better prediction performance. Fur-
ther, we perform a hybrid molecular statics (MS) and Monte
Carlo (MC) simulation using the MCL-based MLP to op-
timize the element distribution of the equimolar NbTiZrHf
HEA. By comparing with the experimental results reported
in the literature, it is found that the MLP can accurately re-
produce the segregation and SROs present in NbTiZrHf HEA,
again verifying the reliability of the MCL strategy.

II. METHODOLOGY

A. Construction of the training datasets

As mentioned above, the first step in developing an MLP
for a specific alloy system is to construct a training dataset
based on atomic configurations. In this study, we selected
the quaternary equimolar NbTiZrHf HEA as an example, and
adopted different strategies, including the Random strategy,
the SQS strategy, and the MCL strategy, to construct training
datasets and develop corresponding MLPs, respectively. The
following is an introduction to the MCL strategy proposed in
the present work.

To quantitatively describe the element distribution of
HEAs and thus provide an indicator for constructing the
training dataset, a simple parameter, named as the average
probability parameter, was proposed and applied to construct
an atomic configuration with a certain element distribution.
Considering the APP between element m and element n in the
HEA (denoted as P̄mn), its definition is as follows:

P̄mn =
〈Zmn

Zm

〉
, (1)

where Zm is the total number of all-type atoms around a
particular m-type atom within a specified cutoff distance, and
Zmn is the number of n-type atoms within the same cutoff
distance. The notation 〈 …〉 means to take the average of the
value within it over all m-type atoms in the alloy. In the present
work, the cutoff distance was taken between the first and the
second nearest neighbors. As a result, Zm can be determined
directly by the crystal structure of the alloy, which is equal to
the number of first-nearest neighbors. From the above defini-
tion, it can be seen that the value of P̄mn is between 0 and 1.
The closer P̄mn is to 1, the more likely n-type atoms will appear
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FIG. 1. (a) Schematic diagram of the construction of the training dataset used for developing the MLP of NbTiZrHf HEA based on the
MCL strategy. (b) Flowchart for generating an atomic configuration targeting a specified APP set using the MCL method.

around m-type atoms, resulting in a more ordered arrangement
between m-type atoms and n-type atoms, whereas, if P̄mn is
close to 0, it means that the m-type and n-type atoms tend to
be separated from each other. For a given HEA, each pair of
elements, including elements of the same type and different
types, corresponds to such an APP. As far as the quaternary
NbTiZrHf HEA is concerned, there are ten pairs of elements,
of which four pairs are composed of the same element (i.e.,
Hf-Hf, Nb-Nb, Ti-Ti, and Zr-Zr) and six pairs are composed
of different elements (i.e., Hf-Nb, Hf-Ti, Hf-Zr, Nb-Ti, Nb-Zr,
and Ti-Zr). Therefore, for the NbTiZrHf HEA with a specific
atomic configuration, it corresponds to a set of ten APPs. For
the convenience of description, a set of APPs corresponding
to a specific atomic configuration is abbreviated as an APP
set. It should be pointed out that the APPs in an APP set
are not completely independent, but have some inherent con-
straints. Obviously, for any m-type element in the alloy, the
sum of all APPs associated with the m-type element should
be 1.

With the definition of APP, it can be seen that the APP
set is a quantitative description of the atomic configuration
with a specific element distribution. Therefore, if we want to
construct a configuration dataset with high dispersion, that
is, each configuration in the dataset has essentially different
element distribution as much as possible, we only need to
construct configurations corresponding to different APP sets.
If these APP sets are highly dispersed, then of course the
corresponding configurations are dispersed. With that come
two problems to be solved: one is how to define a series of
APP sets with high dispersion, and the other is how to generate
a corresponding atomic configuration according to a specified
APP set. In the present work, the first problem was solved
by discretizing the APP set in its valid range and the second
was solved by proposing an MCL method. As a note, when
mentioning the MCL method in this paper, we refer to the
process of constructing a configuration targeting a specific
APP set from an initial configuration, while the MCL strategy
refers to a set of methods for constructing a training dataset
with the MCL method as the core. Figure 1(a) shows the

schematic diagram of the construction of the training dataset
used for developing the MLP of NbTiZrHf HEA based on the
MCL strategy, explained below.

Firstly, the APP set is discretized within its valid range.
For each APP in the set, its theoretical range is from 0 to
1. However, considering the actual element distribution in
HEA, the APP cannot reach 1. For the NbTiZrHf HEA, as-
suming the APP between Hf and Nb is 1, it means that the
first-nearest neighbors of Hf atoms are all Nb atoms, and the
first-nearest neighbors of Nb atoms are all Hf atoms; that
is, these two types of atoms are completely separated from
the other two, which is unrealistic in an alloy. Therefore, we
took a value of 0.8 as the upper bound. Another thing to
consider is the discrete interval. Obviously, the smaller the
discrete interval, the more APP sets will be generated, and
the greater the subsequent computational cost will be. For
example, if the discrete interval is 0.2, there will be about
1000 APP sets, and if 0.1 is taken, there will be nearly 30 000
APP sets. Considering the subsequent computational cost, the
interval of 0.2 was taken, resulting in a total of 986 APP
sets.

Secondly, the MCL method is used to generate the atomic
configuration targeting a specified APP set. Figure 1(b)
shows the corresponding flowchart. Specifically, we first built
a random single-phase solid-solution model of equimolar
NbTiZrHf HEA as the initial configuration. According to
previous research [25–27], we set the lattice structure to body-
center cubic (bcc) and created a 4a × 4a × 2a (a is the lattice
constant) supercell with a total of 64 atoms (verification of
the supercell size will be simply discussed in Sec. III A). The
lattice constant a was defined as the value corresponding to
the lowest energy of the potential energy per atom versus the
lattice constant curve of the random solid-solution NbTiZrHf
HEA model obtained by performing density-functional theory
(DFT) calculations. Then, two atoms of different types in the
configuration were swapped, resulting in a new configuration.
Next, the APP set corresponding to the new configuration was
calculated and then the error between the APP set and the
target APP set was computed. The error, expressed as �P,
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is defined as follows:

�P =
√√√√ 1

10

10∑
i=1

(
P̄i − P̄target

i

)2
, (2)

where i denotes the ith pair of elements in the alloy, P̄i is the
calculated ith APP of the configuration, and P̄target

i is the target
ith APP. In Eq. (2), the number 10 represents the ten pairs of
elements in the quaternary NbTiZrHf HEA. For alloys with N
elements, the value should be replaced by N (N + 1)/2. The
next step was to decide whether to continue the process. Two
different criteria were considered: one is based on the error
�P and the other is based on the total number of iterations.
If the error �P is less than 0.035 or the number of iterations
is greater than 20 000, the process will stop; otherwise, it will
continue. Here, the values used in the two criteria are empir-
ical, which can be determined by testing the convergence of
the error �P. In this work, the number of iterations can fully
guarantee the error �P of the final configuration converges to
a constant value. As the process continues, the MCL method
was employed to update the configuration. Assuming that the
current iteration step is j and the error of the corresponding
configuration is �Pj , if the error �Pj is smaller than that of
the previous configuration �Pj−1, the current configuration is
directly accepted for the next iteration. Conversely, if �Pj is
greater than �Pj−1, the current configuration is accepted with
the following probability:

p j = e
−|�Pj −�Pj−1|

kT , (3)

where k is the Boltzmann constant and T is the temperature.
In the present work, T was set to 300 K. If, unfortunately, the
current configuration is rejected, the previous configuration
will be used again. After the configuration has been updated,
the process will continue. Observing the above process, it can
be found that the MCL method used in the process is very
similar to the traditional MC method [28], with the main dif-
ference being that one criterion is changed from the potential
energy to the error of the APP set. For each process using
the MCL method, an atomic configuration will be generated,
targeting an APP set. Therefore, the process will be performed
many times according to the total number of the discretized
APP sets, resulting in the same number of configurations.

Finally, by performing DFT calculations on each con-
figuration, the training dataset can be constructed from the
atomic configuration dataset obtained in the previous step,
as shown in Fig. 1(a). As mentioned above, each sample
in the training dataset is composed of atomic coordinates,
species, total potential energy, and atomic forces. In terms of
computational details, Vienna Ab initio Simulation Package
(VASP) [29] was adopted to perform all DFT calculations in
the present work. Exchange and correlation were treated at
the Perdew-Burke-Ernzerhof functional level [30]. The plane-
wave energy cutoff was set at 400 eV. Brillouin-zone sampling
was performed using the Monkhorst-Pack scheme [31] with
a 2 × 2 × 4 k−point mesh. The global break condition of
energy for the electronic self-consistency loop was set to be
1 × 10−8 eV and the maximum number of electronic self-
consistency step was set to be 60. The results show that,
for all structures calculated using DFT in this work, the en-

ergy and force precisions for each structure can reach about
1 × 10−7 eV and 1 × 10−5 eV/Å, respectively.

To compare the training dataset generated based on the
MCL strategy with traditional strategies, two more training
datasets were constructed based on the Random strategy and
the SQS strategy, each including 1000 samples. For the train-
ing dataset constructed based on the Random strategy, the
element distribution of each configuration was completely
randomly generated. For the training dataset constructed
based on the SQS strategy, the samples were generated by
performing the SQS process on 50 initial configurations with
random element distribution, and sampling 20 configurations
for each process. The lattice structures, lattice parameters, and
details of DFT calculations for generating the three training
datasets were all the same, with the only difference being the
element distribution.

The dispersion of the training dataset is crucial for devel-
oping an MLP with good prediction performance. To learn
about the dispersion of the training datasets constructed based
on three different strategies in the present work, two indicators
were employed to evaluate them: one is the potential energy
per atom and the other the well-known Warren-Cowley pa-
rameter (WCP) [32,33]. For the convenience of readers, the
WCP of the m-n pair in the alloy is given as follows:

WCP = 1 − Zmn

ωnZm
, (4)

where ωn is the atomic fraction of n-type atoms in the alloy,
and Zmn and Zm are the same as in Eq. (1). According to
the definition, if the WCP is close to 0, the m-type atoms
appear randomly around the n-type atoms. If the WCP is less
than 0, the m-type atoms are more likely to appear around
the n-type atoms, and if the WCP is greater than 0, the m-type
atoms are with less probability to appear around the n-type
atoms.

B. Development of the machine learning potentials

After the construction of the training dataset for a specified
HEA, the corresponding MLP can be developed by training
a specific machine learning model. So far, many researchers
have developed a series of models for MLPs, and many
have provided the corresponding codes [34–36]. In contrast,
DeePMD [36–39] is one of the relatively mature MLP models:
on the one hand, it provides a package called DEEPMD-KIT

[37] that can be conveniently used to develop MLPs from
training datasets, and on the other hand, it is compatible with
the widely used MD software package LAMMPS [40]. Since
the birth of DeePMD, extensive MD studies have been carried
out based on DeePMD, ranging from simple water molecules
[36] to complex HEAs [21,22,41]. In the present work, the
software package DEEPMD-KIT was adopted to construct the
MLP of the quaternary NbTiZrHf HEA, and LAMMPS was
employed to perform all MS or MC simulations with the
developed MLPs.

When developing an MLP using DEEPMD-KIT, some pa-
rameters need to be set. In the present work, the relevant
parameters were set as follows: (1) the embedded network
was set to a three-layer residual network with the nodes in
each layer being 25, 50, and 100, respectively; (2) the fitting
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network was set to a three-layer fully connected network with
240 nodes in each layer; (3) the cutoff distance was set to
8.0 Å with the smooth operation starting from 2.0 Å; (4) the
start value and the limit value of energy error for the prefactor
in the loss function were set to 1000 and 1, respectively; those
of force error were set to 0.02 and 2, respectively; and those
of virial error were set to 0 because no virial data were used
in the present work; and (5) a total of 100 000 epochs were
performed during the training. For the above three training
datasets, the corresponding MLPs were developed with the
same parameter settings.

C. Construction of the testing datasets

To evaluate the reliability, accuracy and generalization of
the developed MLPs, testing datasets need to be constructed.
To avoid spuriously high prediction accuracy, the testing
dataset should meet at least the following two requirements:
(1) it should be independent of the training datasets; and (2)
the samples in it are well dispersed. In the present work, we
propose a similar strategy to MCL to construct the testing
dataset. The main difference is the evolution direction of the
Monte-Carlo-like process: for the MCL strategy of generat-
ing training samples, the evolution direction is to reduce the
error of the APP set, so as to ensure that the APP set of the
other configuration is closer to the corresponding target APP
set, while for the method of generating testing samples, the
evolution direction is to increase the error, thereby ensuring
that the other configuration is more different from the initial
one. Therefore, it can be said that the process of generating
testing samples is based on a reverse MCL strategy, so we call
it the rMCL strategy for short. The process of constructing a
testing dataset based on the rMCL strategy can be described
as follows briefly.

Firstly, several initial atomic configurations of single-phase
solid-solution NbTiZrHf HEA with random element distri-
bution were generated. The lattice points for these atomic
configurations were the same as those used in the training
dataset. Secondly, the process based on the rMCL strategy was
performed on each initial configuration, resulting in a corre-
sponding evolution trajectory of configuration, which contains
many other configurations. By extracting configurations from
each trajectory, the atomic configurations for constructing
the testing dataset could be obtained. The generation process
can be described as (1) calculate the APP set of the initial
configuration; (2) swap two atoms of different types in the
initial configuration arbitrarily to generate another configu-
ration; (3) calculate the error of the APP set between the
other configuration and the initial one; (4) decide whether to
continue the process: only if the number of iterations is greater
than a specified number, the process will stop; and (5) up-
date the configuration using the rMCL method as the process
continues: if the error �Pj is larger than �Pj−1, the current
configuration is accepted for the next iteration; otherwise, the
current configuration is accepted with the probability given by
Eq. (3). After the configuration has been updated, the process
will continue. By comparing the above process with that of
MCL, it can be observed clearly that the main difference is
the method used for saving the other configuration: for MCL,
the method is to save configurations with smaller errors from

the target, while for rMCL, the method is to save those with
larger errors from the initial one. It should be pointed out that
although the error of the APP set between the configuration in
the trajectory and the initial one increases with the number
of iterations, there may be an inherent correlation between
them, which might affect the dispersion performance of the
generated testing dataset. Therefore, it is recommended not to
generate a very long trajectory from one initial configuration
and then extract all new configurations from the trajectory
to construct the testing dataset, but to generate several rel-
atively short trajectories from different initial configurations
and then extract some configurations from each trajectory. In
the present work, four initial configurations were used to gen-
erate four trajectories, and 50 configurations were extracted
from each trajectory to constitute four testing datasets, labeled
as testing 1, 2, 3, and 4, respectively. Finally, DFT calculations
with the same settings as those used to generate the training
datasets were performed on each configuration to obtain the
corresponding total potential energy and atomic forces to con-
struct the testing datasets.

III. RESULTS AND DISCUSSION

A. Evaluation of the training datasets

To evaluate the effectiveness of the MCL strategy, the
errors of the APP set between the generated atomic config-
urations and corresponding targets are plotted in Fig. 2(a) for
all samples in the training dataset. It can be seen clearly that
most configurations have errors between the stopping criteria
0.035 and 0.1, with only a few having errors slightly greater
than 0.1. It is worth mentioning that to explore whether the
supercell size used in the present work has an effect on the
error of the generated configuration, we selected 40 APP sets
as targets and used a larger 4a × 4a × 4a supercell to generate
corresponding configurations. The inset in Fig. 1(a) shows the
comparison of the errors using two different supercells. As can
be seen, the errors are basically the same, demonstrating that
the supercell size used in the present work is appropriate. To
reduce the subsequent computational cost, a smaller supercell
size of 4a × 4a × 2a was adopted.

To gain further insight into the distribution of APP error
over its value domain, Fig. 2(b) presents the comparison of
APP between the actual values and corresponding targets for
all configurations, taking the Nb-Hf pair as an example. It can
be observed that the actual APP values are basically consistent
with corresponding targets in trend. In detail, when the value
is between 0.1 and 0.7, the actual APP values agree well
with the corresponding targets, while when the value is less
than 0.1 or greater than 0.7, the actual values have relatively
large deviations from the targets. Such a result is reasonable
because when the APP takes a value close to the boundaries
of the value range, the element distributions of corresponding
configurations are in an extreme state, such as severe segre-
gation, which is unlikely to appear in statistical theory or in
practice. Therefore, it can be concluded from Fig. 2 that the
MCL strategy used in the present work can efficiently generate
atomic configurations with small errors from the target APP
sets.
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FIG. 2. (a) Errors of the APP set between the atomic configurations in the training dataset generated based on the MCL strategy
and corresponding targets. The inset shows a comparison of the errors for 40 configurations generated using two different supercells. (b)
Comparison of APP of Nb-Hf between the actual values of the generated configurations and corresponding targets.

To learn about the dispersion of the training dataset con-
structed based on three different strategies, the WCPs of
different element pairs for each atomic configuration in the
training datasets constructed based on the MCL strategy, the

Random strategy, and the SQS strategy are computed and
shown in Figs. 3(a)–3(c), respectively. As seen in Fig. 3(a),
the WCPs for the training dataset constructed based on the
MCL strategy vary from −1.6 to 1.0 with a variation interval

FIG. 3. WCPs of different element pairs for each atomic configuration in the training datasets constructed based on (a) the MCL strategy,
(b) the Random strategy, and (c) the SQS strategy. (d) Comparison of potential energy per atom for each atomic configuration in the training
datasets constructed based on different strategies.
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FIG. 4. (a) APP set error, (b) potential energy per atom, and (c) WCPs of different element pairs for each configuration in the four involved
testing datasets constructed based on the rMCL strategy.

of 2.667. Comparing Figs. 3(b) and 3(c), the training datasets
constructed based on the Random strategy and the SQS strat-
egy have relatively small variation intervals of WCP, 0.788
and 0.712, respectively. Therefore, it can be concluded that
the training dataset constructed based on the MCL strategy
has a higher dispersion of element distribution, which makes
the corresponding MLP more likely to capture the segregation
or SROs that may exist in the configuration. It should be
noted that WCP is only an indicator describing the element
distribution of an atomic configuration and has no direct
relationship with the potential energy. In other words, a train-
ing dataset with high dispersion of WCP cannot guarantee
the high dispersion of potential energy. Therefore, it is also
necessary to understand the dispersion of potential energy
separately. Figure 3(d) shows the comparison of potential
energy per atom for each atomic configuration in the training
datasets constructed based on different strategies. It can be
observed that the maximum potential-energy difference is of
the training dataset constructed based on the MCL strategy
and reaches 0.078 eV per atom, which is significantly larger
than those of the other two datasets, indicating that even
thermodynamically, the training dataset constructed based on
the MCL strategy exhibits better dispersion. In conclusion, the
training datasets constructed based on the MCL strategy have
better performance on the dispersion of samples.

B. Evaluation of the testing datasets

Next, the four testing datasets constructed based on the
rMCL strategy were evaluated. Figure 4(a) shows the curves

of the APP set errors between the generated configurations
based on the rMCL strategy and corresponding initial config-
urations as a function of iteration steps for the four involved
testing datasets. As can be seen clearly, the APP set errors
of the generated configurations show an overall upward trend
with slight fluctuations, which is consistent with the aim of
the rMCL strategy employed. In other words, as the number
of iteration steps increases, the generated configuration has
an increasingly large difference in element distribution from
the initial one. In addition, it can also be found that during
the process of generating the configurations, although there
are some differences in the APP set error between these four
testing datasets, they are close in order of magnitude. To fur-
ther explore the differences, we characterized the four testing
datasets from the two aspects of potential energy per atom
and WCP, and the results are shown in Figs. 4(b) and 4(c),
respectively. What should be noted, for the convenience of
comparison, is that the abscissa of Fig. 4(b) is set as the serial
number of the configuration, which is arranged in ascending
order according to the potential energy corresponding to the
configuration in each testing dataset, regardless of the gen-
eration order. From Fig. 4(b), the potential energies of the
configurations in Testing 1, 3, and 4 are close and generally
high, while those for testing 2 are much lower, indicating
that testing 2 is fundamentally different from the other three
testing datasets. Comparing testing 1, 3, and 4, there is a
sudden increase in potential energy for testing 1 and 3, but
not for testing 4, with the result that almost half of the config-
urations in testing 1 and 3 have relatively low energies close
to those in testing 4, while the others have higher energies.
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FIG. 5. Comparison of the potential energy per atom for each configuration in the training and testing datasets calculated by DFT and MS
with MLPs developed using training datasets constructed based on different strategies: (a) MCL, (b) Random, and (c) SQS. Numbers in the
legend indicate the MAEs of corresponding datasets.

Figure 4(c) shows the WCP ranges of different element pairs
for all configurations in each testing dataset, where the inner
and outer boundaries represent the corresponding minimum
and maximum values, respectively. It can be observed that the
patterns of testing 1 and 3 are basically the same, which is con-
sistent with the potential-energy results presented in Fig. 4(b).
In contrast, testing 2 and 4 are quite different from them in
pattern. Therefore, according to the results of various aspects,
it can be inferred that testing 1 and 3 should be close, while
testing 2 and 4 should be relatively unique. In conclusion,
the rMCL strategy can be used to generate configurations
that have a large difference from the initial one in element
distribution, and the four testing datasets constructed in the
present work have more or fewer differences from each other.

C. Evaluation of the machine learning potential

After constructing the three training datasets based on
different strategies, namely MCL, Random, and SQS, the cor-
responding MLPs for NbTiZrHf HEA were developed using
DeepMD as the framework, respectively. To test the accuracy
and prediction performance of these MLPs and further evalu-
ate these strategies used for generating the training datasets,
the three training datasets and the four testing datasets
constructed based on the rMCL strategy were employed.
Specifically, the potential energies for each configuration in
these datasets were calculated using both MS simulations with
the three developed MLPs and DFT calculations. All results
are plotted in Fig. 5, where Figs. 5(a)–5(c) correspond to the
MCL strategy, the Random strategy, and the SQS strategy,
respectively. To facilitate quantitative comparisons, the mean
absolute error (MAE) relative to the DFT results was calcu-
lated for each dataset and presented after the corresponding
legend in Fig. 5. The analysis of Fig. 5 is given below.

First, from the relative positions of the samples correspond-
ing to the training dataset and the testing datasets in each
subfigure of Fig. 5, it can be found that almost all testing sam-
ples are within the range of the training samples constructed
based on the MCL strategy. In contrast, for the training sam-
ples constructed based on the Random strategy and the SQS
strategy, almost all samples in testing 4, a part of samples in
testing 1 and 3, and a few samples in testing 2 are within the

range of corresponding training samples. Therefore, it can be
concluded again that the training dataset constructed based on
the MCL strategy has better dispersion than those based on the
Random strategy and the SQS strategy. Second, it can be seen
from Fig. 5 that the training samples (gray dots) constructed
based on different strategies basically lie around the 45 ° line
(blue line) representing the good agreement between the DFT
and MS results. Quantitatively, the MAE of each training
dataset is about 0.002 eV per atom, which is a very low value,
indicating that the MLP developed based on each training
dataset has good reproduction accuracy. It can also be found
that the MAE of the training dataset constructed based on
the MCL strategy is slightly larger than those based on the
Random strategy and the SQS strategy, mainly because the
training dataset constructed based on the MCL strategy has a
wider distribution of potential energy [as seen from Fig. 3(d)],
which may reduce the corresponding convergence accuracy
to some extent. Fourth, from Fig. 5(a), the MAEs of the four
testing datasets are all very close to that of the training dataset,
demonstrating that the MLP developed based on the MCL
strategy has good prediction performance and can accurately
calculate the potential energy of configurations not in the
training dataset. Fifth, the same four testing datasets have
different levels of MAE when using MLPs developed based
on the Random strategy and the SQS strategy, as shown in
Figs. 5(b) and 5(c). Specifically, the MAEs of testing 1, 3, and
4 are relatively small, while that of testing 2 is relatively large,
almost 5 to 10 times larger than the others, which can also be
seen in Figs. 5(b) and 5(c), where the samples of testing 2
(orange dots) deviate severely from the 45 ° line. For testing 4
(green dots), the samples are basically within the ranges of the
training datasets, so it is to be expected that the corresponding
potential energies can be accurately calculated. For testing 1
(red dots) and testing 3 (navy blue dots), there are quite a few
samples with higher potential energies that are outside the cor-
responding training datasets, but their potential energies are
still calculated accurately, reflecting the prediction ability of
corresponding MLPs. For testing 2, the samples are basically
with lower potential energies than the training datasets, and
their potential energies cannot be calculated accurately com-
pared to the DFT results. From these results, it appears that the
MLPs constructed based on the Random strategy and the SQS
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FIG. 6. (a) Evolution of the potential energy per atom with the iteration step for NbTiZrHf HEA. The inset shows the snapshot of the
configuration at the end of the MS/MC simulation. (b) WCPs of different element pairs for the final configuration of NbTiZrHf HEA, where
the red and green bars correspond to the WCPs considering the first- and second-nearest neighbors, respectively.

strategy method have better predictive ability when computing
configurations with higher potential energies than the training
samples, and less ideal for configurations with lower energies.
In summary, the MLP developed based on the MCL strategy
exhibits better predictive ability than those developed based
on the Random strategy and the SQS strategy, mainly due to
the wider energy coverage of the training dataset constructed
based on the MCL strategy.

D. Application of the machine learning potential

To further verify the reliability of the developed MLP
based on the MCL strategy, we performed a hybrid MS/MC
simulation to optimize the element distribution of equimolar
NbTiZrHf HEA. Specifically, a 10a × 10a × 10a supercell of
NbTiZrHf HEA with randomly distributed elements was first
built as the initial configuration, where the lattice constant a
was equal to that of the configuration in the training dataset.
Then, the hybrid MS/MC simulation was performed on the
initial configuration, which can be briefly described as (1)
calculate the potential energy per atom of the initial config-
uration using MS simulation with the developed MCL-based
MLP, denoted as Ei; (2) swap two atoms of different types
in the initial configuration to generate another configuration;
(3) calculate the potential energy per atom of the new config-
uration, denoted as Ei+1; (4) decide whether to continue the
process: if the energy drop Ei − Ei+1 is less than 1 × 10−5 eV
per atom, the process will stop; otherwise, the process will
continue; and (5) update the configuration using the classical
MC strategy: if the potential energy Ei+1 is less than Ei,
the current configuration is accepted for the next iteration;
otherwise, the current configuration is accepted with a certain
probability. Finally, a total of about 600 000 MC steps were
performed.

Figure 6(a) plots the potential energy per atom of
NbTiZrHf HEA as a function of iteration steps during the
MS/MC process. As can be seen from the figure, the potential
energy drops sharply in the first tens of thousands of steps
and then decreases slowly until it approaches an equilibrium

state, resulting in an energetically favorable configuration.
To gain an intuitive understanding of the resulting element
distribution, we visualized the final configuration according
to element type, as shown in the inset of Fig. 6(a). It can
be observed clearly that some elements in the configuration
tend to form segregation, such as Hf-Hf (pink), while some
element pairs tend to form SROs, such as Ti-Zr (blue-yellow).
To quantitatively understand the aggregation tendency of dif-
ferent element pairs in the final configuration, we computed
the corresponding WCPs of different element pairs. Since the
value of WCP can be affected by the cutoff distance used, we
set two different cutoff distances, 3 and 4 Å, which correspond
to the WCPs considering the first- and second-nearest neigh-
bors, respectively, and the results are displayed in Fig. 6(b).
From the WCPs for the first-nearest neighbors (red bars), the
same element pairs of Nb-Nb and Hf-Hf and different element
pairs of Ti-Zr and Ti-Hf all have negative WCPs, suggesting
that they tend to aggregate together and appear in each other’s
first-nearest neighbors. In contrast, the element pairs Ti-Ti,
Zr-Zr, Nb-Ti, and Zr-Hf have positive WCPs, demonstrating
that they tend to separate from each other and have less
chance of appearing in each other’s first-nearest neighbors. By
comparing with the WCPs for the second-nearest neighbors
(green bars), a decrease in the absolute value of the negative
WCP of the Ti-Zr pair can be observed, indicating that Ti
atoms and Zr atoms have less probability of appearing in
each other’s second-nearest neighbors, while the WCP of the
Ti-Ti pair changes from positive to negative, and that of the
Zr-Zr pair decreases significantly, demonstrating that both Ti
atoms and Zr atoms tend to appear in their own second-nearest
neighbors. Combining these analyses, it can be inferred that
the Ti-Zr pair has a strong tendency to form ordered arrange-
ments, which can also be observed from the inset of Fig. 6(a),
where Ti atoms and Zr atoms form SROs with a B2 structure,
as shown in the navy blue wireframe. A similar result appears
for the Ti-Hf pair, as displayed by the orange wireframe. For
the Hf-Hf pair, the corresponding WCP for the second-nearest
neighbors becomes more negative, indicating that Hf atoms
are likely to appear in their own second-nearest neighbors.
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Therefore, Hf atoms tend to form segregation, as shown by the
green wireframe. A similar result can be seen for the Nb-Nb
pair. In fact, some of these results obtained by performing
the hybrid MS/MC simulation with the developed MCL-based
MLP can be confirmed experimentally. Bu et al. [9] used in
situ transmission electron microscopy to observe the element
distribution in the as-cast NbTiZrHf HEA and found both
Ti-rich clusters enriched with Zr atoms and Hf-rich clusters,
which is in good agreement with the results predicted in the
present work.

In summary, the developed MCL-based MLP has good
accuracy and prediction performance, so the MCL strategy
proposed in the present work is effective to construct training
datasets used for developing MLPs of HEAs. It should be
noted that the MCL strategy here only considers the ele-
ment distribution of atomic configuration when constructing
the training dataset, and does not consider the corresponding
atomic positions, which is also very important when devel-
oping practical MLPs, especially for research on mechanical
properties. Therefore, when constructing an MLP for a spe-
cific HEA, a suggested scheme is to use our proposed MCL
strategy to account for its element distribution, and use dif-
ferent modes of deformation operation, such as stretching,
shearing, etc., or ab initio MD simulations, to account for the
displacement of atoms.

IV. SUMMARY

In this work, we proposed an MCL strategy to construct
training datasets for developing MLPs of alloys, especially
for HEAs. Specifically, we first defined a parameter called
APP to describe the element distribution of an atomic config-
uration. As a result, an atomic configuration with a specific
element distribution can be represented by a set of APPs.
Then, we discretized the APP set within its value range to
achieve uniform sampling of the element distribution space.
After that, we targeted each discretized APP set to construct
configurations with specific element distributions using an
MCL method. As an example, we constructed the training
dataset of equimolar NbTiZrHf HEA, and further developed

the corresponding MLP based on the framework of DeePMD.
To illustrate the characteristics of the MCL strategy, we
also constructed two more training datasets based on the
traditional Random strategy and SQS strategy and developed
the corresponding MLPs. To test these developed MLPs, we
also proposed a strategy called rMCL, which can be regarded
as a reverse version of the MCL strategy, to construct four test-
ing datasets of NbTiZrHf HEA. We then evaluated the three
training datasets using two metrics, WCP and potential energy
per atom, and found that the training dataset constructed based
on the MCL strategy had greater dispersion. Four testing
datasets were also evaluated similarly, validating the effec-
tiveness of the rMCL strategy. Further, we employed the four
testing datasets to evaluate the accuracy and prediction per-
formance of the MLPs developed based on different strategies
and found that the MCL-based MLP had the best prediction
performance, which can be attributed to the high dispersion of
the corresponding training datasets. Finally, we investigated
the optimized elemental distribution of NbTiZrHf HEA by
performing a hybrid MS/MD simulation with the MCL-based
MLP. Through visualization and WCP analysis of the final
configuration, we found that the Ti-Zr pair tends to form
SROs with a B2 structure, while the Hf-Hf pair tends to form
segregation, which is consistent with the results observed in
the experiments. In conclusion, our proposed MCL strategy
can be used to consider the element distribution when con-
structing training datasets for developing MLPs. Besides, our
proposed APP can be used to describe the element distribution
of atomic configurations for alloys, especially for HEAs, and
our proposed rMCL strategy can be used to construct testing
datasets with high dispersion.
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