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Nonlinear optical properties and Kerr nonlinearity of Rydberg excitons in Cu2O quantum wells
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The quantum confinement of Rydberg excitons (REs) in quantum structures opens the way towards consider-
ing nonlinear interactions in such systems. We present a theoretical calculation of optical functions in the case of
a nonlinear coupling between REs in a quantum well with an electromagnetic wave. Using the real density matrix
approach (RDMA), the analytical expressions for a linear and nonlinear absorption are derived and numerical
calculations for Cu2O quantum wells are performed. The results indicate the conditions in which quantum well
confinement states can be observed in linear and nonlinear optical spectra. The Kerr nonlinearity and self-phase
modulation in such a system are studied. The effect of the Rydberg blockade and the associated optical bleaching
are also discussed and confronted with available experimental data.
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I. INTRODUCTION

Rydberg physics in semiconductors started in 2014 with
an observation of highly excited excitonic states with prin-
cipal quantum numbers as high as n = 25 in cuprous oxide,
the material of a very large exciton binding energy [1]. This
experiment revealed a plethora of Rydberg excitons’ unusual
properties such as extraordinary large dimensions up to 1 μm,
long lifetimes on the order of a nanosecond, vulnerability
to interactions with external fields, and restrictions of their
coupling arising from the Rydberg blockade, which precludes
a simultaneous excitation of two Rydberg excitons that are
separated by less then a blockade radius rb. Many papers have
been devoted to studies of spectroscopic characteristics of REs
in natural and synthetic bulk systems of Cu2O [2–4] (see more
references therein). Simultaneously, the explorations of RE
in the field of quantum optics have begun by demonstration
of a generation and control of strong excitonic interactions
with the help of a two-color pump-probe technique [5],
Rydberg exciton-assisted coupling between microwave and
optical fields [6], and the experimental verification of the
strong coupling of REs to cavity photons [7]. Moreover, some
efforts have been made to investigate nonlinear interactions of
REs with electromagnetic fields [8,9]. The recent one-photon
experiment has shown a giant nonlinear optical index in a
bulk Cu2O crystal, caused by sharp Rydberg resonances and
revealed a Kerr phase shift much larger than in typical nonlin-
ear crystals [10]. Interesting, giant microscopic dimensions of
Rydberg excitons together with an intrinsic Rydberg blockade
effect in cuprous oxide cause enhanced nonlinearities at much
smaller densities compared with other semiconductors [1,11].

Those results indicate that Rydberg excitons are a unique
platform for obtaining strong interactions in solid systems
and allow one to hope for a realization, in a close future, of
solid state masers [12,13] and few-photon devices. The first
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step to achieve a scalable solid-state platform characterized by
controlled interactions between Rydberg excitons and photons
is to realize such technologically demanding miniaturized
systems, consisting of an investigation of REs’ properties in
strongly confined systems such as quantum dots, wires, or
wells [14–17]. The experiment, which has verified a change
of oscillator strength due to quantum confinement of REs in a
nanoscale system [17], is an important step towards exploiting
their large nonlinearities for quantum applications. The re-
cent progress in fabricating synthetic cuprous oxide elements
has shown an enormous progress of their quality manifested
by observations of high excitonic states [4,18,19] and now
the natural direction of subsequent explorations seems to be
the study of a nonlinear interaction between confined REs
and light. A great challenge in quantum optics is an accom-
plishment of the gigantic Kerr nonlinearities in solid-state
low-dimensional media. This phenomenon was realized in
semiconductor quantum wells mostly under the conditions of
the electromagnetically induced transparency [20–22] or in
ultrathin gold films [23]. In our paper we propose a realization
of the Kerr nonlinearity in the Cu2O quantum well with REs,
taking advantage of the fact that confinement effects result in
a significant optical Kerr susceptibility.

The theoretical tool which we use to calculate the op-
tical functions for nonlinear interaction of electromagnetic
radiation with Rydberg excitons in a quantum well is a meso-
scopic method, called real density matrix approach [24–26].
This method can be understood as a generalization of the
well-known Maxwell-Bloch theory of atoms interacting with
resonant radiation. In the following we treat electromagnetic
processes in a two-band model where the semiconductor is
considered as a collection of two level “atoms” with level
spacing h̄ωg and with the additional possibility of intraband
motion, given by the band dispersion. The basic equations of
RDMA, the so-called constitutive equations, describing the
dynamics of the two-band system, provide a rather general
framework for the simultaneous treatment of interband and in-
traband processes in a semiconductor, including their mutual
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interaction. The RDMA has been applied to the optical exci-
tation spectra of semiconductor bulk crystals, semiconductor
superlattices, some low dimensional structures, and recently
in the theory of optical properties of Rydberg excitons in
nanostructures (for example, see [27] and references therein).
The advantage of RDMA with respect to the quantum-
mechanical standard calculation of the optical properties is
that all coherence effects are automatically included, since
we consider the probability amplitude rather than its absolute
value. The detailed description of RDMA as well as a presen-
tation of the iteration procedure, which allows one to obtain
a nonlinear susceptibility for Rydberg excitons confined in a
quantum well, is presented in Secs. II and III. The effect of
the Rydberg blockade is also included in our treatment and
is considered in Sec. IV. Phase-sensitive Kerr nonlinearity
appearing in the discussed system is examined in Sec. V.
Section VI contains the presentation of numerical results and
their discussion, while the summary and conclusions of our
paper are presented in Sec. VII.

II. REAL DENSITY MATRIX APPROACH

A. Basic equations

Our discussion follows the scheme of Refs. [8,10] adapted
for the case of a quantum well. In the RDMA approach
that nonlinear response will be described by a set of three
coupled constitutive equations: for the coherent amplitude
Y (r1, r2) representing the exciton density, for the density
matrix C(r1, r2) for electrons (assuming a nondegenerate
conduction band), and for the density matrix for the holes
D(r1, r2) in the valence band. Denoting Y (r1, r2) = Y12, the
constitutive equations take the following form [16]:

(i) for the coherent amplitude

ih̄∂tY12 − HQWY12 = −ME(R12) + E1M0C12

+ E2M0D12 + ih̄

(
∂Y12

∂t

)
irrev

, (1)

(ii) for the conduction band

ih̄∂tC12 + HeeC12 = M0(E1Y12 − E2Y
∗

21) + ih̄

(
∂C12

∂t

)
irrev

,

(2)

(iii) for the valence band

ih̄∂t D21 − HhhD21 = M0(E2Y12 − E1Y
∗

21) + ih̄

(
∂D21

∂t

)
irrev

,

(3)

where the operator HQW is the quantum well Hamiltonian,
which includes the terms Ve,Vh related to the electron and hole
confinement and the mutual Coulomb interaction Veh,

HQW = Eg − h̄2

2me
∂2

ze
− h̄2

2mh
∂2

zh
− h̄2

2Mtot
∇2

R‖

− h̄2

2μ
∇2

ρ + Ve(ze) + Vh(zh) + Veh, (4)

with the separation of the center-of-mass coordinate R‖ from
the relative coordinate ρ on the plane (x, y), e.g., ρ = (r1 −

FIG. 1. Schematic representation of the considered QW system.

r2)‖ and

Hee = − h̄2

2me

(∇2
1 − ∇2

2

)
,

(5)

Hhh = − h̄2

2mh

(∇2
1 − ∇2

2

)
,

and E1 = E(r1), E2 = E(r2). In the case of a quantum well
with thickness that is significantly smaller than the light
wavelength, one can assume uniform field E1 = E2 = E. The
center of the mass coordinate is

R = R12 = mhr1 + mer2

mh + me
. (6)

In the above formulas me, mh are the electron and the hole
effective masses (the effective mass tensors in general), Mtot

is the total exciton mass, and μ the reduced mass of electron-
hole pair. The smeared-out transition dipole density M(r) is
related to the bilocality of the amplitude Y12 and describes
the quantum coherence between the macroscopic electromag-
netic field and the interband transitions (see, for example,
Refs. [24,25]); the detailed derivation of M(r) is described
in Ref. [28]. We consider the response of the quantum well
with surfaces located at z = ±L/2, to a normally incident
electromagnetic wave, linearly polarized in the x direction.
The schematic of the system is shown in Fig. 1. We assume
that the carrier motion in the z direction is governed by the
no-escape boundary conditions. With this assumptions, the
QW Hamiltonian has the form

H QW = Eg + p2
ze

2me
+ p2

zh

2mh
+ V (ze) + V (zh) + H (2D)

Coul (ρ),

(7)

where

V (ze,h) = 0 for 0 � z � L,
(8)

V (ze,h) = ∞ for z < 0, z > L,

H (2D)
Coul is the two-dimensional Coulomb Hamiltonian

H (2D)
Coul (ρ) = p2

‖
2μ‖

− e2

4πε0εbρ
. (9)

We consider here the strong confinement regime, where the
confinement energy exceeds the Coulomb energy. The result-
ing coherent amplitude Y12 determines the excitonic part of the

085431-2



NONLINEAR OPTICAL PROPERTIES AND KERR … PHYSICAL REVIEW B 106, 085431 (2022)

polarization of the medium

P(R, t ) = 2
∫

d3r M∗(r)Re Y12(R, r, t )

=
∫

d3rM∗(r)[Y12(R, r, t ) + c.c], (10)

where r = r1 − r2 is the electron-hole relative coordinate.
The linear optical functions are obtained by solving the inter-
band equation (1) together with the corresponding Maxwell
equation, where the polarization (10) acts as a source. Using
the entire set of constitutive equations (1)–(3) one can com-
pute the nonlinear optical functions. While a general solution
of this problem seems to be inaccessible, in some specific
situations such a solution can be found, i.e., if one assumes
that the matrices Y , C, and D can be expanded in powers of
the electric field E, an iteration scheme can be used.

The relevant expansion of the polarization in powers of the
field has the form

P(k, ω) = ε0E (k, ω)[χ (1) + χ (3)(ω,−ω,ω)

× |E (k, ω)|2 + · · ·], (11)

where χ (1) and χ (3) are the linear and the nonlinear parts
of the susceptibility. Although the above equations appar-
ently resemble those describing the nonlinear case of the bulk
crystal with Rydberg excitons [8], we present a full theo-
retical approach for the sake of completeness and it should
be stressed that taking into account the confinement interac-
tion significantly changes the results. It should be stressed
that in our two-dimensional exciton model, the electron and
the hole move in the xy plane upon the action of the two-
dimensional Coulomb potential, and are confined in the z
direction. Thus the confinement and the exciton states are
separated and the confinement does not depend on the main
quantum number. Such a simplification is justified by the
fact that the exciton energies for higher exciton states, in
the two-dimensional simplification, are practically equal to
the corresponding three-dimensional exciton states. A further
discussion of the transition between two and three dimensions,
in the framework of the RDMA, is given in [15].

B. Iteration

We calculate the QW optical functions iteratively from the
constitutive equations (1)–(3). The first step in the iteration
consists of solving Eq. (1) (skipping the second and third
terms on its right-hand side) which we take in the form

ih̄∂tY
(1)

12 − HQWY (1)
12 = −ME + ih̄

(
∂Y (1)

12

∂t

)
irrev

. (12)

It should be mentioned that we use the long-wave approxima-
tion, which allows us to neglect the spatial distribution of the
electromagnetic wave inside the quantum well.

For the irreversible part, assuming a relaxation time ap-
proximation, one gets(

∂Y (1)
12

∂t

)
irrev

= − 1

T2
Y12 = −�

h̄
Y12. (13)

with Γ = h̄/T2 being a dissipation constant. Considering non-
linear effects, the nonresonant parts of the coherent amplitude

Y have to be taken into account; so for the electric field E in
the medium of the form

E = E(R, t ) + E∗(R, t ) = E0ei(kR−ωt ) + E0e−i(kR−ωt ),

(14)

Eq. (12) generates two equations: one for an amplitude Y (1)
− ∝

exp(−iωt ), and the second for the nonresonant part Y (1)
+ ∝

exp(iωt ),

ih̄

(
iω + 1

T2

)
Y (1)

12+ − HehY (1)
12+ = −ME∗(R, t ),

ih̄

(
−iω + 1

T2

)
Y (1)

12− − HQWY (1)
12− = −ME(R, t ). (15)

In what follows we consider only one component of both E
and M. Similarly, as in Ref. [8], we look for the solution in
terms of eigenfunctions of the Hamiltonian HQW, which now
contains the confinement terms, so these eigenfunctions have
the following form:


 jmNeNh (r, φ, ze, zh) = ψ jm(r, φ)ψ (1D)
L,Ne

(ze)ψ (1D)
L,Nh

(zh), (16)

where r = (r, φ) is the two-dimensional space vector, ψ jm

are the normalized eigenfunctions of the two-dimensional
Coulomb Hamiltonian,

ψ jm(r, φ) = Rjm(r)
eimφ

√
2π

,

Rjm = Cjm

(
4κ

r

a∗

)m

e−2κ jmr/a∗

× M

(
− j, 2|m| + 1, 4κ jm

r

a∗

)
,

κ jm = 1

1 + 2( j + |m|) ,

Cjm = 1

a∗ 4κ
3/2
jm

1

(2m)!

[( j + 2m)!]1/2

[ j!]1/2
, (17)

with the Kummer function [29] M(a, b, z) (the confluent hy-
pergeometric function), and ψ

(1D)
α,N (z) (N = 0, 1, . . . ) are the

quantum oscillator eigenfunctions of the Hamiltonian (8)

ψ
(1D)
L,Ne

(ze) =
√

2

L
cos

[
(2Ne − 1)π

ze

L

]
,

ψ
(1D)
L,Nh

(zh) =
√

2

L
cos

[
(2Nh − 1)π

zh

L

]
.

The role of the amplitude Y (1)
12 obtained in such a way is

twofold. First, substituting into Eq. (10) gives the linear exci-
tonic polarization P(1) and from the relation P(1) = ε0χ

(1)E
we can calculate the mean effective linear susceptibility,
which is given by the following expression:

χ (1)(ω) = χ
(1)
0

(
a∗

L

) Nmax∑
0

J∑
j=0

f (2D)
j ET jN

E2
T jN − (h̄ω + iΓ j )2

, (18)

where the summation is over the confinement state number
N and excitonic state number j, where j = 0 is the lowest
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excitonic state. The oscillator strengths f (2D)
j are given by

f (2D)
j = 48

( j + 1)( j + 2)

( j + 3/2)5

1

(1 + 2κ jρ0)8

×
[

F

(
− j, 4; 3;

4κ jρ0

1 + 2κ jρ0

)]2

,

κ j = 1

2 j + 3
, (19)

and the energy terms, including exciton binding energy Ej and
quantum well contribution WN are as follows:

ET jN = Eg + WN + Ej,

WN =
(

Nπa∗

L

)2

R∗, N = 1, 2, . . . , (20)

Ej = − 1

( j + 1 − δ)2
R∗, j = 0, 1, 2, . . .

a∗ is the effective exciton Bohr radius, R∗ is the exciton
Rydberg energy, ρ0 = r0/a∗ defines the coherence radius, and
F (a, b; c, z) is the hypergeometric series [29]. The coherence
radius r0 = [(2μ/h̄2)Eg]−1/2, Eg is the fundamental gap, and
μ is reduced effective mass of the electron-hole pair. The
δ = 0.2 is the so-called quantum defect [1]; it should be
mentioned that while the most common value of δ is used
here, smaller ones provide a better fit to many experimental
results, especially at elevated temperatures [30]. The constant
factor χ

(1)
0 has the form

χ
(1)
0 = εbe−4ρ0�LT . (21)

For simplicity we can use only one confinement state number
by considering only the largest contribution from Ne = Nh =
N . Due to the long-wave approximation, the validity of our
considerations is limited regarding the quantum well width L,
which in turn entails the restriction of the highest observable
confinement states Nmax. Specifically, in the case of a thin
quantum well, the considerable confinement energy WN means
that for higher N and j, the total energy ET jN approaches
the band gap, where higher absorption precludes the obser-
vation of confinement states. Regardless of the possibility of
observing the confinement states on the absorbing background
of band gap, another upper limit on Nmax ∼ 10 is provided
if we assume that confinement energy cannot exceed exciton
binding energy.

III. ITERATION PROCEDURE: SECOND STEP

Again, in order to present the detailed derivation of nonlin-
ear susceptibility for a quantum well with Rydberg excitons,
we recall the procedure in general similar to that presented
in [8], but considering here the low dimensional systems
significantly changes the final results. Let us first consider
a wave linearly polarized in the x direction. Then Y (1)

± (15)
are inserted into the source terms of the conduction-band and
valence-band equations (2) and (3). Solving for stationary
solutions and making the long-wave approximation, we obtain

for both source terms

JC = M0ρ0
(
E1Y

(1)
12 − E2Y

(1)∗
21

)
= 2iM0ρ0E2

0

h̄
[ Im g(−ω, r) + Im g(ω, r)] = JV , (22)

where

g(±ω, r) =
∑

j

c jmNeNh� jmNeNh (r)

� jmNeNh ∓ ω − i/T2 jm
. (23)

If irreversible terms are well defined, Eqs. (3) can be solved
and their solutions are then used in the saturating terms on the
right-hand side (r.h.s.) of Eq. (1). Again, as in the previous
section, we will use a relaxation time approximation and the
equations for the matrices C and D are as follows:(

∂C

∂t

)
irrev

= − 1

τ
[C(X, r, t )

− f0e(r)C(X, r = r0, t )] − C(r0)

T1
,

(
∂D

∂t

)
irrev

= − 1

τ
[D(X, r, t )

− f0h(r)D(X, r = r0, t )] − D(r0)

T1
, (24)

where

X = 1
2 (re + rh), (25)

and f0e, f0h are normalized Boltzmann distributions for elec-
trons and holes, respectively. The relaxation parameter T1 is
due to interband recombination [31] and τ = 1/� j 	 T1 is
the lifetime corresponding to radiative recombination. The
functions C, D must have the same p symmetry as the am-
plitudes Y . Thus we use the transport current density

jn(r) = ih̄

2me
(∇1 − ∇2)| r1=r2=r, (26)

and take the x component, which leads to the following ex-
pression for the modified distribution for electrons:

f̃0e(r) =
∫

d3q qx f0e(q) e−iqr, (27)

with

f0e(q) =
√

2π

(
h̄2

2πkBT

)2

exp

(
− h̄2q2

2mekBT

)
, (28)

where T is the temperature and kB is the Boltzmann constant.
The integral (27) can be evaluated analytically yielding

f̃0e(r) = ˜f0e(ρ, ze, zh, φ)

=
√

π

2

r

λ th e
[�1(φ) + �−1(φ)]

× exp

(
− r2 + (ze − zh)2

2

mekBT
h̄2

)

= f̃ ⊥
0e (ze, zh) f̃ ‖

0e(r, φ),

f̃ ⊥
0e (ze, zh) = exp

(
− (ze − zh)2

2

mekBT
h̄2

)
,
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f̃ ‖
0e(r, φ) =

√
π

2

r

λ th e
exp

(
− r2

2

mekBT
h̄2

)
× [�1(φ) + �−1(φ)],

r =
√

x2 + y2, (29)

where

�m(φ) = eimφ

√
2π

(30)

and

λth e =
(

h̄2

mekBT

)1/2

=
√

2μ

me

√
R∗

kBT
a∗ (31)

is the so-called thermal length (here for electrons). Similarly,
for the hole equilibrium distribution we have

f̃0h(r) = ˜f0h(ρ, ze, zh, φ)

=
√

π

2

r

λ th h
[�1(φ) + �−1(φ)] exp

×
(

− r2 + (ze − zh)2

2

mhkBT
h̄2

)

= f̃ ⊥
0h(ze, zh) f̃ ‖

0h(r, φ),

f̃ ⊥
0h(ze, zh) = exp

(
− (ze − zh)2

2

mhkBT
h̄2

)
,

f̃ ‖
0h(r, φ) =

√
π

2

r

λ th h
exp

(
− r2

2

mhkBT
h̄2

)
× [�1(φ) + �−1(φ)], (32)

with the hole thermal length

λth h =
(

h̄2

mhkBT

)1/2

=
√

2μ

mh

√
R∗

kBT
a∗.

The matrices C and D are temperature dependent, so they
also can be used as an additional contribution for interpre-
tation of temperature variations of excitonic optical spectra.
However, the temperature dependence of relaxation constants
�n remains a dominant mechanism influencing the spectra.
Furthermore, we will assume that our medium is excited ho-
mogeneously in X space. For p excitons the matrices C and
D relax to their values at r = r0. In Cu2O, the dipole density

can be approximated by M(r) ∝ rδ(r − r0) [24], which leads
to the following expressions for the matrices C, D:

C(r) = − i

h̄
[τJC (r) − τJC (r0) + T1 f0e(r)JC (r0)],

D(r) = − i

h̄
[τJV (r) − τJV (r0) + T1 f0hH (r)JV (r0)]. (33)

With the above expression the equation for the third-order
coherent amplitude Y (3)

12 takes the form

h̄

(
ω + i

T2

)
Y (3)

12− − HQWY (3)
12−

= M0ρ0(E1C12 + E2D21) = E (R, t )J̃−,

h̄

(
−ω + i

T2

)
Y (3)

12+ − HQWY (3)
12+

= M0ρ0(E∗
1 C12 + E∗

2 D21) = E∗(R, t )J̃+. (34)

To define the source terms J̃± we use the fact that for most
semiconductors T1 � τ . Therefore we retain only the terms
proportional to T1, obtaining

J̃− = − i

h̄
T1M0ρ0{JC (r0) f̃0e(r) + JV (r0) f̃0h(r)},

J̃+ = − i

h̄
M0ρ0T1{JC (r0) f̃0e(r + JV (r0) f̃0h(r)}. (35)

From Y (3) one finds the third-order polarization according to

P(3)(R) = 2
∫

d3rRe M(r)Y (3)(R, r)

=
∫

d3r M(r)
(
Y (3)

12− + Y (3∗)
12+

)
. (36)

As in the case of linear amplitudes Y (1), we expand the non-
linear amplitudes in terms of the eigenfunctions 
�mNeNh (r).

The next application of the amplitude Y (1)
12 is related to the

iteration process. Inserting Y (1)
12 into the source terms on the

r.h.s. of Eqs. (2) and (3) and using appropriate expressions
for the irreversible terms, one obtains the matrices C(2), D(2),
where the superscript indicates the order with respect to the
electric field strength E . Substituting the matrices into the
saturating terms on the r.h.s. of Eq. (1) one obtains the equa-
tion for the nonlinear amplitude Y (3) which, with respect to
Eq. (10), defines the nonlinear susceptibility χ (3). We obtain
the following expression:

χ (3)(ω) = −
(

a∗

L

)
χ

(3)
0

∑
j,�,N

Γ jF j�N ET �N

[(ET jN − h̄ω)2 + Γ j
2][E2

T �N − (E + iΓ�)2]
, (37)

where � = 0, 1, 2, . . . . The nonlinear oscillator strengths can be written as

F j�N = M(− j, 3, 4κ jρ0) M(−�, 3, 4κ�ρ0)

(1 + 2κ�ρ0)4(1 + 2κ jρ0)4
F

(
− j, 4; 3;

4κ jρ0

1 + 2κ jρ0

)
F

(
−�, 4; 3;

4κ�1ρ0

1 + 2κ�ρ0

)

× ( j + 1)( j + 2)

(2 j + 3)5

(� + 1)(� + 2)

(2� + 3)2

[
A

(
2

2� + 3

)β

V (e)
NN + B

(
2

2� + 3

)γ

V (h)
NN

]
,

κ j = 1

2 j + 3
, κ� = 1

2� + 3
, (38)
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where

χ
(3)
0 = ε0(εb�LT )2a∗3e−4ρ0

(
1

Γ1

)
(39)

and the derivation of constants A, B is presented in Appendix A. The potentials VNeNh are given by

V (e)
NeNh

=
∫ 1

−1
dx

∫ 1

−1
dy cos

[
(2Ne − 1)π

2
x

]
cos

[
(2Nh − 1)π

2
y

]
exp

[
−

(
L2

8a∗2λ̃2
th e

)
(x − y)2

]
,

V (h)
NeNh

=
∫ 1

−1
dx

∫ 1

−1
dy cos

[
(2Ne − 1)π

2
x

]
cos

[
(2Nh − 1)π

2
y

]
exp

[
−

(
L2

8a∗2λ̃2
th h

)
(x − y)2

]
, (40)

with the thermal lengths λ̃th e,h defined above in Eq. (31).

More detailed calculations of χ (3) are presented in Ap-
pendix B and the table of material parameters is included in
Appendix C. The long-wave approximation we have used in
the above calculations limits our results, which are appropriate
for quantum wells thicknesses L significantly bellow 1 μm.

IV. RYDBERG BLOCKADE

One of the important characteristics of the theoretical ap-
proach described above is the fact that it is derived under the
assumption of a relatively low power level, when the medium
is not saturated with excitons. Thus, the so-called Rydberg
blockade [1] is not inherently present in the calculations and
its effects have to be taken into account in a separate step. This
has been done in Refs. [10,13] and the description outlined
below is an extension of the approaches presented in the cited
works.

For an exciton with principal quantum number ( j + 1), the
blockade volume is given by [1]

VB = 3 × 10−7( j + 1)7 μm3. (41)

Similarly to the recent experiments [10], we assume that the
laser beam illuminating the sample has a circular beam spot
of area S of 0.1 mm2 and the sample length is L; the volume,
where the light can be absorbed and an exciton created is
V = LS. Within this volume, a new exciton can be formed
only when its location is outside of the blockade volume of
existing excitons. Thus, assuming that the blockade volume
is spherical, the upper limit of exciton density is the perfect
sphere packing, where approximately 74% of the volume is
occupied, e.g., for the number of excitons Ne, Ne

VB
V ≈ 0.74.

However, the positions of the excitons formed within the
laser beam are random and thus highly unlikely to form a
perfect sphere packing. To estimate the practical upper limit
of exciton density imposed by the Rydberg blockade, a Monte
Carlo simulation has been performed; within given volume
V , excitons with their associated blockade volumes are added
at random positions, and the number of attempts to place an
exciton in a free space (not occupied by blockade volume)
is counted. Then, the probability of excitation (inverse of the
number of attempts) is calculated. The results are shown in
Fig. 2. One can see that the system is effectively saturated
when the fraction of occupied volume approaches 0.2. An
exponential function can be fitted to the data (dashed line),
providing a simple model of saturation; the probability of

excitation is

pe ≈ exp

(
−23.8

[
NeVB

V

]1.29)
. (42)

When calculating the susceptibility from Eqs. (18) and (37),
one has to multiply the oscillator strengths F by the above
probability. This is a similar approach to that one used in
[10,13], where also an exponential function exp(−ANeVB/V )
with one fitted constant A was used.

Finally, to calculate the number of excitons (and thus the
blocked volume), one can consider the power to sustain a
single exciton

P1 = Ej

τ j
, (43)

where Ej and τ j are the energy and lifetime of excitonic state.
The number of excitons Ne is

Ne = PA

P1
, (44)

where PA is the absorbed laser power; for a sufficiently thick
sample, it is equal to the total laser power.

As a first verification of the presented theoretical descrip-
tion, one can examine the results obtained in the asymptotic
limit of a very large thickness, e.g., a bulk crystal. The results

FIG. 2. The probability of excitation as a function of the volume
occupied by the Rydberg blockade.
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FIG. 3. (a) Calculated optical density, compared to experimental
results in bulk crystal [10]. (b) Absorption spectrum compared to the
data from [1].

of such a comparison are presented in Fig. 3. Specifically,
Fig. 3(a) depicts the calculated optical density spectrum in
the region of j = 6–11 excitonic states, for two illumination
powers. One can notice a quick decrease of absorption in the
high power regime, approximately proportional to blockade
volume ∼ j7. This is the so-called optical bleaching [1]. The
same result can be seen in Fig. 3(b), where calculations are
compared to the experimental data from [1]. A very good
agreement obtained in a wide range of powers and across
multiple excitonic states indicates that the saturation model
in Eq. (42) is sufficiently precise. However, due to this broad
range of states and powers, it is difficult to precisely estimate
the model accuracy. For example, the simulation assumes
that excitons are static; in reality, their thermal motion can
affect their packing (e.g., the fraction of volume taken when
saturation occurs). Likewise, the power distribution within the
laser beam and its gradual absorption along the propagation
distance will have an impact on the blockade effect.

V. SELF-KERR NONLINEARITY

In the self-Kerr effect the refractive index is changed due to
the response of the incoming field itself, in other words it con-
sists of the change of the refractive index of the medium with
a variation of the propagating light intensity. The third-order
nonlinear susceptibility is the basis of theoretical description

of this phenomenon. The nonlinear optical response is con-
veniently described in terms of a field-dependent index n(E )
defined as

n2(E ) = 1 + χ = εb + χ (1) + χ (3)|E |2 + · · · . (45)

The real part of the nonlinear susceptibility defines the nonlin-
ear index of refraction, which characterizes the so-called Kerr
media, n2 = Reχ (3)

cε0n2
0

, with n2
0 = 1 + χ (1).

The self-Kerr interaction is an optical nonlinearity that
produces a phase shift proportional to the square of the field
intensity (or a number of photons in the field). In the Kerr
medium the phase of an electromagnetic wave propagating
at the distance L increases and the increment in phase due
to an intensity-dependent term is proportional to the distance
and to the square of the electric field strength, which is called
self-phase modulation. The phase shift is calculated from

�� = ωL

c
[n(|E |2) − n(0)]. (46)

The considerable nonlinear susceptibility of the Rydberg ex-
citonic system, further amplified in a thin quantum well, is
expected to cause a noticeable phase shift even for small
L ∼ 100 nm. The confinement states, even when not directly
visible, still contribute to the total height of the excitonic line,
increasing χ (3) and phase shift.

VI. RESULTS

Due to the limited amount of experimental data regarding
nonlinear properties of Cu2O quantum wells, as a first step we
verify our calculations with a comparison to a bulk medium. It
should be stressed that while the calculated spectra approach
the bulk ones as L → ∞, the presented method is derived
under the assumptions of strong confinement and long-wave
approximation, so it yields fully correct results only for the
well thickness comparable to exciton radius, which for an
average value of j ∼ 3 implies well thickness significantly
below 1 μm. In contrast to [14], where weak confinement
regime is studied, the confinement affects the relative motion
of the electron-hole pair.

As mentioned above, one can make a rough comparison
with experimental results in bulk medium by assuming a
large value of L, skipping the wide quantum well regime
at moderate L ∼ 1 μm. The linear and nonlinear parts of
susceptibility have been calculated from Eqs. (18) and (37)
in a wide range of laser powers and for a thick crystal
L = 50 μm. The results are shown in Fig. 4. The calculated
spectra are in the range from j = 2 exciton resonance
(2.161 meV) to the band gap (2.172 meV). The effect of the
Rydberg blockade is included in calculations by multiplying
the obtained susceptibility by the factor pe [Eq. (42)]; as the
power increases, the density of excitons reaches saturation
and pe → 0. In such a way one is able to control whether one
is still in the regime, in which additional effects due to the
Rydberg blockade preventing the transmission are absent, and
do not influence the excitons-light interaction. One can see
that the overall amplitude of the linear susceptibility changes
on the order of 10−4 and the nonlinear part is approximately
3 orders of magnitude lower. As expected, the number of
observed resonances is strongly dependent on the power
P = 1

2 cSbε|E |2, where Sb = 0.1 mm2 is the beam area; for
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FIG. 4. Imaginary parts of linear χ (1) and nonlinear χ (3) suscep-
tibility in a bulk crystal (L = 50 μm), for selected laser powers.

P = 1 W, the bleaching is considerable even for j = 3. The
results are consistent with our previous calculations in a bulk
medium [8,10], as well as experimental observations [32] and
indicate that the model in Eq. (42) is correct.

As the next step, let us consider a thin L = 100 nm quan-
tum well. In such a system, one can expect that the absorption
spectrum will contain multiple confinement states correspond-
ing to the quantum number N = 1, 2, 3, . . . . One can expect
to observe these states for strongly confined excitons, e.g.,
when the exciton diameter approaches the well thickness. This
is the case shown in Fig. 5. Although there is no strict upper
limit on the confinement state number Nmax, in practice only a
few lowest confinement states are observable and thus in cal-
culations one can assume Nmax = 10. For clarity, the energy
range between the third excitonic state ( j = 2) and the band
gap is chosen; lower excitonic states do not meet the criterion
for strong confinement and thus no confinement states are
visible. The linear part of susceptibility is consistent with
the results presented in [15] for the case of a quantum well.
Specifically, one can see a series of secondary peaks originat-
ing from every excitonic line, which shift towards high energy
as L becomes very small. It should be stressed that these
lines corresponding to confinement states are only detectable

FIG. 5. Imaginary parts of linear χ (1) and nonlinear χ (3) suscep-
tibility in L = 100 nm quantum well, for selected laser powers.

in the case of a very thin quantum well; in the micrometer-
sized nanoparticles, the energy spacing between these lines is
small enough that they completely overlap, forming a single,
broadened excitonic line [17]. Moreover, in this size range,
one cannot observe oscillations of the absorption coefficient
caused by the spatial matching between the center-of-mass
exciton motion and light waves [18]. Naturally, a very small
absorption of a thin sample makes a direct observation of
confinement states challenging. Moreover, just like in the case
of large quantum dots [17], the oscillator strength of excitonic
states decreases faster than j−3; this is also consistent with the
observations in [14]. This effect, in addition to the broadening
and chaotic “background” formed by multiple confinement
lines, puts an upper limit on the maximum principal number
of the observable state.

The nonlinear susceptibility shown in Fig. 5(b) is appar-
ently similar to the bulk case in Fig. 4. The influence of
the confinement on the nonlinear part χ (3) is complex. One
can see from Eq. (40) that oscillating terms of VNe,Nh inter-
play with slowly varying factors λth e,h, describing plasma
effects, resulting in an absorption attenuation. Namely, the
confinement lines are much less pronounced and only the
N = 1 line is readily visible. This effect follows from Eq. (38).
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FIG. 6. Imaginary parts of linear χ (1) and nonlinear χ (3) sus-
ceptibility for selected values of quantum well thickness, for
P = 0.1 mW.

For low-dimensional systems the nonlinear optical effects
depend strongly on the shape of the confinement potentials.
For the above-used no-escape boundary conditions we ob-
tained the expressions VNe,Nh decaying as N−1. The physics
behind this is that the rapid motion of electrons and holes
in the confinement in z direction, especially for states with
higher N , hinders the creation of plasma which is responsible
for the reduction of the absorption while the linear absorp-
tion does not depend on N . For low dimensional systems the
nonlinear optical effects depend strongly on the shape of the
confinement potentials. In the considered quantum well with
no-escape boundary conditions, the overall amplitude of the
nonlinear part of the susceptibility is enhanced as compared to
bulk system. The influence of the confinement on the nonlin-
ear part of χ (3) is more complex. One can see that oscillating
functions VNeNh , characteristic for low dimensional confined
systems, interplay with relatively slowly varying exponential
functions due to plasmonic terms, which results in increasing
of the nonlinear absorption.

Next, Fig. 6 shows the susceptibility spectra calculated
for low laser power and various values of thickness. One
can see that both confinement lines and the main excitonic

FIG. 7. Schematic representation of excitonic (black) and con-
finement (blue) energy levels.

lines are blueshifted in the limit of small L; as noted in [14],
the confined exciton gains additional energy and this energy
shift is most pronounced for L < 4aB, which is approximately
100 nm for n = 10 excitons. On the other hand, it is known
that excitons cannot form in quantum dots when the dot size
r < 0.4aB [14] which indicates the lower limit of applicability
of our theoretical description. As before, the lines corre-
sponding to the confinement states are mostly invisible in the
nonlinear susceptibility spectrum. In the linear part, one can
see that peaks due to those states, located closely to those due
to main excitonic states at L = 100 nm, shift quickly towards
higher energy for smaller L because of the changing propor-
tion between confinement energy and excitonic state energy.
Due to this divergence, a considerable mixing of states occurs
and also many lines can be visible in the energy region above
the band gap. As mentioned before, the nonlinear part of
susceptibility is enhanced in a thin quantum well; in Fig. 6(b)
one can observe that absorption peaks become higher as L
decreases. The confinement of electrons and holes in a QW
results in, illustratively speaking, “squeezing” of excitons,
which increases the binding energy and the oscillator strength
of excitons, thus leading to an enhancement of the absorption.

Figure 7 shows a schematic representation of energy levels
in the above-discussed system (low power, L = 100 nm). For
completeness, the energy of the lowest 1S exciton ( j = 0) is
included; however, in this work we only consider P excitons.
One can see that the mixing of states occurs already for j = 3.

Finally, we can explore the real part of susceptibility
and the associated Kerr shift. Naturally, as follows from the
Kramers-Kronig relations, each peak in the absorption spec-
trum corresponds to a region of anomalous dispersion, where
Re χ and thus also phase shift changes sign. This is visible
in Fig. 8(a). As mentioned before, the confinement states
are barely visible in the nonlinear part of susceptibility and
thus the spectrum is dominated by lines corresponding to
excitonic states j = 0, 1, 2. . . . . Again, we see a divergence
towards higher energy as L decreases and also a reduction of
phase shift in the limit of small L due to the reduced optical
length nL in Eq. (46). Even for a relatively low thickness
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FIG. 8. The self-Kerr shift as a function of (a) quantum well
thickness and (b) light power.

L < 100 nm, one can observe a phase shift on the order of
50 mrad. The dependence of phase shift on the laser power is
shown in Fig. 8(b). Overall, the lower excitonic states provide
a larger phase shift due to their larger oscillator strengths. The
shift increases with power but is limited by optical bleach-
ing caused by the Rydberg blockade; one can see that the
influence of higher states vanishes at high power. On the
other hand, in the relatively lower power regime, the stronger
nonlinear properties of upper states result in a considerable
phase shift. A useful measure of the nonlinearity is the max-
imum phase shift that can be obtained throughout the whole
spectrum. The results calculated for a range of input powers
are shown in Fig. 9(a). As expected, the power dependence
is linear due to the |E |2 ∼ P factor in Eq. (46). However,
the dependence on thickness, shown in Fig. 9(b), is more
complicated. Initially, as L increases, the phase shift is also
rapidly increasing, starting from ��(L → 0) = 0. However,
at some point, the increase of the optical length is compen-
sated by the decrease of χ (3), which is enhanced in very

FIG. 9. The maximum value of self-Kerr phase shift as a function
of (a) light power and (b) quantum well thickness.

thin wells. Thus, the phase shift reaches a local maximum
and then starts decreasing with increasing L. Eventually, in
the region of L ∼ 300 nm, the value of χ (3) stabilizes on
the same level as in bulk medium and the phase shift again
becomes linearly dependent on optical length. One can also
notice slight oscillations in Fig. 9(b) in the region L ∼ 100
nm. In this regime, the confinement states are mostly vis-
ible; the thickness-dependent overlapping of multiple states
slightly affects the maximum value of the susceptibility, and
thus the phase shift. In conclusion, the choice of quantum well
thickness, input power, and specific excitonic state to realize
a self-Kerr shift is highly nontrivial, with multiple trade-offs
influenced by amplification of nonlinear properties, overlap of
confinement states, and the Rydberg blockade.

VII. CONCLUSIONS

In summary, we have studied the nonlinear interaction
between an electromagnetic wave and Rydberg excitons in a
Cu2O quantum well using the real density matrix approach,
incorporating the control of the Rydberg blockade. Our
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theoretical, analytical results for linear and nonlinear absorp-
tion are illustrated by numerical calculations and indicate the
potential experimental conditions for the best observation of
confinement states in linear and nonlinear optical spectra. We
show that a clear separation of confinement states and an am-
plification of nonlinear properties of the system are possible in
sufficiently thin (L < 100 nm) quantum wells. The interplay
between nonlinearity enhancement and optical length of the
system is discussed. We theoretically demonstrate that the
Kerr nonlinearity and significant self-phase modulation are
accomplished in a semiconductor quantum well with REs.

In short, our work provides insights into the nonlinear
interactions of RE with photons in quantum-confined systems,
opening interesting opportunities to explore Rydberg excitons
for future optoelectronic nanoscale applications. We hope that

our results might be useful for future direct integration of
Rydberg confined states with nanophotonic devices.

APPENDIX A: COEFFICIENTS A AND B

Denoting by f̃0e and f̃0h the modified Boltzmann dis-
tributions f0e and f)h for electron and holes, respectively,
projections of f0e,h on the eigenfunctions 
�1NeNh are given
by the following expressions:

〈
�NeNh | f̃0e(r)〉 = A�NeNh ,

〈
�NeNh | f̃0h(r)〉 = B�NeNh ,

which can be used to calculate the constants

A�NeNh = 〈ψ j (r, φ)| f̃ ‖
0e(r, φ)〉〈
NeNh | f̃ ⊥

0e (ze, zh)〉

=
√

π

2

1

κ
1/2
�

A (2κ�)β M(−�, 3, 4κ�1ρ0)
√

(� + 1)(� + 2) I (e)
NeNh

,

B�NeNh = 〈ψ j (r, φ)| f̃ ‖
0h(r, φ)〉〈
NeNh | f̃ ⊥

0h(ze, zh)〉

=
√

π

2

1

κ
1/2
�

B (2κ�)γ M(−�, 3, 4κ�ρ0)
√

(� + 1)(� + 2) I (h)
NeNh

,

where the following approximation has been used:

〈ψ j (r, φ)| f̃ ‖
0e(r, φ)〉 =

∫ ∞

0
ρ dρ R�1(ρ)

√
π

2

ρ

λ̃ th e
exp

[
− ρ2

2λ̃2
th e

]

=
∫ ∞

0
ρ dρ

√
π

2

ρ

λ̃ th e
exp

[
− ρ2

2λ̃2
th e

]
C�(4κ�ρ)e−2κ�ρM(−�, 3, 4κ�ρ)

≈ 4κ�

λ̃th e

√
π

2
C�M(−�, 3, 4κ�ρ0)

∫ ∞

0
ρ3 dρ e

−2κ�ρ− ρ2

2λ̃2
th e

= 1

4κ3
� λ̃the

√
π

2
C�M(−�, 3, 4κ�ρ0) exp[ f (x, z)]

= 1

2κ
3/2
� λ̃th e

√
π

2

√
(� + 1)(� + 2)M(−�, 3, 4κ�ρ0) exp[ f (x, z)],

f (x, z) = 4 ln z(e)
� + 3 ln x(e)

� + ln
[
σ

(e)
�

√
2π

] − 1

2
x(e)2
� − z(e)

� x(e)
� ,

and the integral is evaluated as follows:

∫ ∞

0
ρ3 dρ e

−2κ�ρ− ρ2

2λ̃2
th e = 1

(2κ�)4
(z(e)

� )4�(4)e(z(e)
�

)2/4D−4(z(e)
� ),

z(e)
� = 2κ�λ̃th e = 2λ̃th e

2� + 3
.

The D−4[z(e)
� ] is the parabolic cylinder function [29] and

z(e)
� = 2κ�λ̃th e = 2λ̃th e

2� + 3
, λ̃th e = λ th e

a∗ .
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The term containing function Dν can be approximated as follows:

z(e)4
� �(4)ez(e)2

� /4D−4
[
z(e)
�

] ≈ z(e)4
� σ

(e)
�

√
2π exp

{
f
[
x(e)
�

]}
,

x(e)
� =

√
12 + z(e)2

� − z(e)
�

2
,

σ
(e)
� =

(
1 + 3

x(e)2
�

)−1/2

,

f
[
x(e)
�

] = 3 ln x(e)
� − 1

2
x(e)2
� − z(e)

� x(e)
� .

APPENDIX B: CALCULATION OF χ(3)

Equation (37) can be written in the form

χ (3)(ω) = −ε0(εb�LT )2a∗3e−4ρ0

(
1

Γ01

) ∑
jnenh

Γ j〈
NeNh〉L

 jnenh (r0)

√
f j

(ET jnenh − h̄ω)2 + Γ j
2

∑
�NeNh

√
f�ET 1�NeNh (A�NeNh + B�NeNh )

E2
T �NeNh

− (h̄ω + iΓ�NeNh )2
,

where


�NeNh = ψ�(r, φ)ψ (1D)
L,Ne

(ze)ψ (1D)
L,Nh

(zh),

ψ�m(r, φ) = R�m
eimφ

√
2π

= 1

a∗
eimφ

√
2π

e−2κ�mr/a∗(
4κ�m

r

a∗
)m

4κ
3/2
�m

1

(2m)!

[(� + 2m)!]1/2

[�!]1/2
M

(
−�, 2|m| + 1, 4κ�m

r

a∗
)

= �m(φ)C�m

(
4κ�m

r

a∗
)m

e−2κ�mr/a∗
M

(
−�, 2|m| + 1, 4κ�m

r

a∗
)
,

κ�m = 1

1 + 2(� + |m|) ,

C�m = 1

a∗ 4κ
3/2
�m

1

(2m)!

[(� + 2m)!]1/2

[�!]1/2
,

ψ
(1D)
L,Ne

(ze) =
√

2

L
cos

[
(2Ne − 1)π

ze

L

]
,

ψ
(1D)
L,Nh

(zh) =
√

2

L
cos

[
(2Nh − 1)π

zh

L

]
,

A�NeNh = 〈
�NeNh | f̃0e(r)〉,
A�NeNh = 〈ψ�(r, φ)| f̃ ‖

0e(r, φ)〉〈
NeNh | f̃ ⊥
0e (ze, zh)〉,

B�NeNh = 〈ψ�(r, φ)| f̃ ‖
0h(r, φ)〉〈
NeNh | f̃ ⊥

0h(ze, zh)〉,

NeNh = ψ

(1D)
L,Ne

(ze)ψ (1D)
L,Nh

(zh),

f̃0e(r) = ˜f0e(ρ, ze, zh, φ) =
√

π

2

r

λ th e
[�1(φ) + �−1(φ)] exp

(
− r2 + (ze − zh)2

2

mekBT
h̄2

)

= f̃ ⊥
0e (ze, zh) f̃ ‖

0e(r, φ),

f̃ ⊥
0e (ze, zh) = exp

(
− (ze − zh)2

2

mekBT
h̄2

)
,

f̃ ‖
0e(r, φ) =

√
π

2

r

λ th e
exp

(
− r2

2

mekBT
h̄2

)
[�1(φ) + �−1(φ)],

r =
√

x2 + y2, (B1)
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and

�m(φ) = eimφ

√
2π

,

λth e =
(

h̄2

mekBT

)1/2

=
√

2μ

me

√
R∗

kBT
a∗

is the so-called thermal length (here for electrons).
Similarly, for the hole equilibrium distribution, we have

f̃0h(r) = ˜f0h(ρ, ze, zh, φ)

=
√

π

2

r

λ th h
[�1(φ) + �−1(φ)]

× exp

(
− r2 + (ze − zh)2

2

mhkBT
h̄2

)

= f̃ ⊥
0h(ze, zh) f̃ ‖

0h(r, φ),

f̃ ⊥
0h(ze, zh) = exp

(
− (ze − zh)2

2

mhkBT
h̄2

)
,

f̃ ‖
0h(r, φ) =

√
π

2

r

λ th h
exp

(
− r2

2

mhkBT
h̄2

)
× [�1(φ) + �−1(φ)], (B2)

TABLE I. Band parameter values for Cu2O, masses in free elec-
tron mass m0.

Parameter Value Unit Reference

Eg 2172.08 meV [1]
R∗ 87.78 meV [33]
�LT 1.25 × 10−3 meV [34]
me 0.99 m0 [35]
mh 0.58 m0 [35]
μ 0.363 m0

μ′ −2.33 m0

Mtot 1.56 m0

a∗ 1.1 nm [33]
r0 0.22 nm [28]
εb 7.5 [1]
T1 500 ns

with the hole thermal length

λth h =
(

h̄2

mhkBT

)1/2

=
√

2μ

mh

√
R∗

kBT
a∗,

with the radial part ψ j (r, φ)| f̃ ‖
0e(r, φ)〉 defined in Appendix A.

APPENDIX C: TABLE OF PARAMETERS

All the relevant parameters used in calculations, along with
their literature sources, are summarized in Table I
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