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Direction reversal of non-Hermitian skin effect via coherent coupling
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Absolute negative mobility (ANM) in nonequilibrium systems depicts the possibility of particles propagating
toward the opposite direction of an external force. We uncover in this work a phenomenon analogous to ANM
regarding eigenstate localization and particle transport in non-Hermitian systems under the influence of the non-
Hermitian skin effect (NHSE). A coherent coupling between two non-Hermitian chains individually possessing
the same preferred direction of NHSE is shown to cause a direction reversal of NHSE for all eigenmodes.
This concept is further investigated in terms of time evolution dynamics using a non-Hermitian quantum walk
platform within reach of current experiments. Our findings are explained both qualitatively and quantitatively.
The possible direction reversal of NHSE can potentially lead to interesting applications.
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Introduction. Non-Hermitian Hamiltonians provide an
effective description of open quantum systems or wave
systems with gain and loss [1–5]. One main feature of
non-Hermitian lattice systems with nonreciprocity is the sem-
inal non-Hermitian skin effect (NHSE) under open boundary
conditions [6,7]. NHSE causes directional accumulation of
eigenmodes at the system’s boundaries and has a rather
deep connection with the point-gap topology of the com-
plex spectrum of non-Hermitian systems [6–20]. NHSE has
spurred considerable interest in condensed matter physics
research because it challenged our conventional thinking of
bulk-edge correspondence [21–23] and has motivated the
so-called non-Bloch band theory [7,9,10]. Much attention
has also been paid to the interplay between the NHSE and
other important physical effects, such as external electro-
magnetic fields [24–26], disorders and defects [27–35], and
its hybridization [15,16,36–38] or competition [39–41] with
topological localization.

Nonreciprocal hopping on a one-dimensional (1D) lattice
defines a preferred direction analogous to a physical direction
of an external force. The preferred boundary for bulk state
localization as NHSE is thus intuitive, so does the preferred
direction favoring particle transport [11,16,19,42–46]. For ex-
ample, if the strength of intercell hopping to the left is always
larger than that to the right, then NHSE is expected to localize
all states at the left boundary. On the other hand, we must take
note of one remarkable dynamical phenomenon in systems far
from equilibrium, namely, absolute negative mobility (ANM),
where particles propagate toward the opposite direction of an
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external force [47–59]. Recognizing non-Hermitian systems
as nonequilibrium systems, it is necessary to address the pos-
sibility of population accumulation or particle transport in
a direction against the preferred direction indicated by the
nonreciprocal hopping. This issue is not only of theoretical
interest, but may offer versatile control knobs to manipulate
NHSE for various applications, such as light funneling [60]
and directional signal amplification [42,43,61].

In this work, we unveil a general scheme to induce 1D
NHSE in a direction precisely opposite to the favored di-
rection of nonreciprocal hopping, as sketched in Fig. 1. As
shown below, this exotic phenomenon can be obtained at both
the eigenstate level and the dynamics level. There can be
multiple interpretations of why a direction reversal of NHSE
occurs. Among them, a simple physical picture adopted be-
low is based on the interference between multiple hopping
pathways. Specifically, if two non-Hermitian lattices with
the same preferred nonreciprocal direction are coupled, then
multiple hopping pathways become available. The result-
ing interference between the multiple hopping pathways can
counterintuitively and drastically alter the effective strengths
of hopping towards two directions and hence one must reex-
amine the true physically favored direction of NHSE.

The direction reversal of NHSE by coherent coupling is
in principle observable in a variety of quantum and classical
platforms realizing NHSE [44–46,60,62–67]. In particular, re-
versed NHSE at the eigenstate level is already within the reach
of classical platforms, such as circuits. However, how reversed
NHSE is manifested at the dynamics level is less straightfor-
ward. We hence propose a nonunitary quantum walk setting
directly addressing non-Hermitian dynamics [44–46], with
the essential addition being an interchain hopping for the
quantum walker along two chains. As elaborated below, even
though the preferred direction of NHSE is no longer obvi-
ous in the quantum walk dynamics, the multiple propagation
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(a)

(b)

non-reciprocal pumping direction

FIG. 1. Schematic of two coupled chains with nonreciprocal
hoppings. In either lattice, the amplitude of hopping to the left
direction is tseαs (s = a, b), apparently with a magnitude larger than
that to the right direction tse−αs . t⊥ introduces coupling between the
two chains and hence multiple hopping pathways from one lattice
site to its neighboring site.

pathways induced by the interchain hopping can still lead to a
direction reversal of particle transport.

Direction reversal of eigenstate population accumulation.
Our starting point is a minimal model depicting two coupled
non-Hermitian chains [68] with different on-site potentials, as
shown in Fig. 1. The real-space Hamiltonian reads

Ĥ =
L∑

x=1

∑
s=a,b

[tse
αs ŝ†

x ŝx+1 + tse
−αs ŝ†

x ŝx−1

+ t⊥(â†
x b̂x + b̂†

xâx ) + μaâ†
x âx + μbb̂†

xb̂x, ], (1)

with ts and αs > 0 determining the asymmetric hopping am-
plitudes on the two chains labeled by s = a, b. Referring to
Fig. 1, the preferred direction of the nonreciprocal hopping
here is apparently to the left for both chains. The on-site
potential is set to be μa = −μb = μ, with all other choices
being equivalent upon shifting their eigenenergies. The two
chains are completely decoupled if t⊥ = 0, each displaying
NHSE localization at the left edge, with an inverse localiza-
tion length κa,b = αa,b [7,10,15]. An example depicting such
a decoupling limit is illustrated in Fig. 2(a).

Upon switching on the interchain coupling (t⊥ �= 0), both
the complex spectrum and eigenstate localization of the cou-
pled system start to differ from that of the uncoupled case, no
matter how small t⊥ is [17,69,70]. To allow for many hopping
pathways from one site to its neighboring site, such as ax →
ax+1 and ax → bx → bx+1 → ax+1, to interfere significantly,
here we investigate a strong coupling regime with sufficiently
large t⊥. It is then found that all eigenmodes can now localize
at the opposite edge as compared with that in the uncoupled
case. This is clearly seen in Figs. 2(a)–2(c) as the interchain
coupling strength t⊥ increases from 0 to 6 and to 15.

To characterize the above-observed direction reversal of
NHSE, we consider averages of the standard and directional
inverse participation ratios (IPR and dIPR), defined as

Ī = 1

2L

∑
m

L∑
x=1

(|ψa
x,m|4 + |ψb

x,m|4), (2)

Īd = 1

2L

∑
m

L∑
x=1

[x − (L + 1)/2](|ψa
x,m|4 + |ψb

x,m|4)

(L − 1)/2
, (3)

with ψ s
x,m the wave amplitude of the mth normalized right

eigenmode at site x of sublattice s. Representative results are

FIG. 2. (a)–(c) Distribution of all eigenmodes on the two chains,
with different interchain coupling t⊥ = 0, 6, 15, respectively. Insets
show the corresponding spectra under PBC (red and blue for the two
bands) and OBC (gray). Clockwise and counterclockwise winding
directions of the PBC spectra versus the quasimomentum k, as indi-
cated by the black arrows, correspond to OBC skin modes localized
on the left and right, respectively [12–14]. Note that, in (b) and (c),
we have omitted a large spacing in Re[E ] between the two energy
bands (red and blue), represented by the double slash in the axis.
Other parameters are ta = 0.75, tb = −1, αa = 0.5, αb = 0.2, and
μa = −μb = 0.5. (d) Ī , Īd , and δ̄ρ defined in Eqs. (2), (3), and (4)
versus the interchain coupling t⊥, with the same parameters as in
(a)–(c). (e) Phase diagram regarding the directional IPR Īd at t⊥ = 30
with other parameters the same as (a)–(c). Black lines are obtained
from the perturbation results of Eq. (8).

presented in Fig. 2(d). It is seen that the IPR (and the absolute
value of dIPR) gets larger either for weaker or stronger t⊥, in-
dicating a stronger boundary accumulation of the eigenmodes,
but with opposite accumulating directions, as evidenced by
the signs of the dIPR. A reversal of the NHSE direction starts
to occur when Īd = 0, which is at t⊥ ≈ 6.3 in the shown ex-
ample. In the neighborhood of the transition point Īd = 0 (see
Fig. 2), the eigenmodes can possibly localize at both bound-
aries in a balanced manner as the bipolar NHSE [66,71]. More
importantly, away from the transition point, all eigenmodes
are now localized at the opposite boundary as compared with
the uncoupled case. Meanwhile, the difference between the
average distribution on the two lattices, defined as

δ̄ρ = 1

2L

∑
m

∣∣∣∣∣
L∑

x=1

(|ψa
x,m|2 − |ψb

x,m|2)
∣∣∣∣∣, (4)

is seen to decrease with increasing t⊥, indicating a stronger
hybridization between the two chains at larger t⊥. We note
that the NHSE and its direction reversal are protected by
a point-gap topology characterized by the spectral winding
number [13,14] and are thus robust to disorder [72].

Physics of reversed NHSE. To confirm that the main physics
behind reversed NHSE is the interference between multiple
hopping pathways, we consider a straightforward first-order
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perturbation theory by treating Ĥ⊥ = t⊥
∑

x(â†
x b̂x + b̂†

xâx ) as
the unperturbed Hamiltonian. The unperturbed eigenmodes at
site x are simply given by local hybridized adiabatic modes of
the coupled system, i.e.,

|u±,x〉 = û†
±,x|0〉 = (â†

x ± b̂†
x )|0〉/

√
2, E±,x = ±t⊥, (5)

with |0〉 the vacuum and E±,x the corresponding unperturbed
eigenenergies due to the coherent coupling. By taking all the
rest terms as a perturbation, we rewrite the nonreciprocal
hopping Hamiltonian in the local adiabatic representation,
yielding

Ĥ ′
± =

∑
x

(taeαa + tbeαb )û†
±,xû±,x+1 + (tae−αa + tbe−αb )

× û†
±,x+1û±,x + (μa ± μb)û†

±,xû±,x. (6)

Interestingly, other than the local on-site energy being expect-
edly different, the “+” and “−” hybridized lattice sites have
the same nonreciprocal hopping strengths—(taeαa + tbeαb ) to
the left and (tae−αa + tbe−αb ) to the right. That is, the effective
hopping amplitudes are seen to be a sum of two individ-
ual hopping amplitudes taeαa and tbeαb or tae−αa and tbe−αb ,
thus clearly indicating an interference mechanism. Most im-
portantly, if ta and tb are of different signs, then there is a
destructive interference between the two favored amplitudes.
This can then lead to

|tae−αa + tbe−αb | > |taeαa + tbeαb |, (7)

meaning that NHSE here should accumulate/localize popula-
tion to the right for all the eigenmodes, opposite to the NHSE
direction on the uncoupled chains. Inequality (7) also suggests
that reversed NHSE occurs within the following parameter
regime:

ta
−tb

∈
(

eαb − e−αb

eαa − e−αa
,

eαb + e−αb

eαa + e−αa

)
, (8)

as shown by the solid lines in Fig. 2(e). The transition lines ob-
tained this way match well with the numerical results based on
the sign of the average directional IPR Īd . A momentum space
perturbation theory together with the so-called generalized
Brillouin zone [7,9] yields the same prediction in theory, as
detailed in the Supplemental Material [72]. Note also that the
role of the on-site potential difference μ is not seen here due
to our first-order treatment or the strong coupling assumption.
The actual threshold value t⊥ to enter the reversed NHSE
regime gradually increases with μ.

As elaborated above, the destructive interference between
the two chains requires hopping amplitudes along them to
have different signs, which is nontrivial, but implementable
in various experimental platforms realizing the NHSE. For
example, effective couplings with opposite signs can be gen-
erated by inductors and capacitors in RLC circuit lattices as
a result of their opposite quarter-period phase shifts [74],
or by linking acoustic cavities with different connectiv-
ity according to the field morphologies of resonators in
acoustic lattices [75]. Noticing that negative couplings here
can be associated with an effective π flux within each
unit cell, it is convenient to exploit a gauge transforma-
tion b̂†

x → (−1)x−1b̂†
x, so as to avoid possible experimental

difficulty to have negative values and non-Hermiticity simul-
taneously [72]. On the other hand, reversed NHSE may also
be obtained under tatb > 0, if we introduce multiple hopping
pathways in other manners, such as allowing for off-diagonal
couplings between the two chains. These details can be found
in the Supplemental Material [72].

Reversed particle transport in non-Hermitian quantum
walk. So far, the reversed NHSE is investigated on the eigen-
state level via population accumulation against the preferred
direction of nonreciprocal hopping. To make a closer anal-
ogy to ANM, it is necessary to explore how this leads to
particle transport along a reversed direction. To motivate ex-
perimental interest, we use an available and fruitful platform,
namely, a discrete-time nonunitary quantum walk model re-
alizing the NHSE through single-photon dynamics in a 1D
chain [44–46]. We now propose a quantum walker along two
chains, plus a local interchain exchange depending on the spin
state. Such a structure allows different propagation pathways
to acquire different phases from the Floquet dynamics itself,
thus avoiding the prerequisite to engineer a negative coupling
on the lattice.

Specifically, we consider the following two Floquet opera-
tors governing the quantum walk:

U0 = R(θ1)S2R(θ2 + θ3)MR(θ2 + θ3)S1R(θ1), (9)

U = R(θ1)S2R(θ2)S4R(θ3)MR(θ3)S3R(θ2)S1R(θ1). (10)

Here R(θ ) rotates the spin by θ about the y axis, with R(θ ) =∑N
x=−N

∑
s=a,b |s, x〉〈s, x| ⊗ e−iλsθσy/2, s = a, b denoting the

two chains, x the site index, and λa = 1 and λb = −1. The
shift operators S1 and S2 are standard quantum walk opera-
tions, as they shift the walker to the left and right along either
chain, if and only if the spin is up and down, respectively.
Nonunitarity/non-Hermiticity is introduced through the oper-
ator M, with

M =
N∑

x=−N

∑
s=a,b

|s, x〉〈s, x| ⊗ (|↓〉〈↓| + e−αs |↑〉〈↑|)

describing the (quasi)particle loss only for the spin-up com-
ponent. U0 thus defined above yields exactly two copies of the
quantum walk model realizing the NHSE in Refs. [44–46],
but with opposite spin rotation angles through the parameter
λs. The M operator alone seems to suggest that the spin-down
channel is favored. This effect further interplays with the spin
rotation operator R(θ ) and the shift operators S1,2 to yield non-
reciprocal particle transport, with the preferred direction no
longer obvious. Despite the difference in λs between the two
quantum walk copies, their preferred direction of transport is
found to be always the same.

We now couple the two chains accommodating U0, thus
defining our quantum walk model U . U is obtained by insert-
ing S3 and S4 into U0. S3 and S4 are almost the same operations
as S1 and S2 except that the walker is instructed to hop onto
the other chain (of the same lattice index) when the spin state
is up and down, respectively. Detailed definitions of these
operations are shown in the Supplemental Material [72]. S3

and S4 are expected to hybridize the two chains and induce
interference between multiple hopping pathways. We aim to
show that even though the two individual chains have the
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FIG. 3. (a),(b) Spatial distributions of the quantum walks for an
initial state prepared in the middle of the system, governed by U0 and
U , the two quantum walks without and with the interchain hopping,
respectively. (c),(d) Average position of the final for the two quantum
walks at T = 40 versus the two angles θ2 and θ3. Yellow and blue
(bright and dark) regimes indicate nonreciprocal pumping toward
the directions of x = N and x = −N , respectively. The red points in
(c),(d) represent the two cases of (a),(c), with θ2 = θ3 = 0.4π . Other
parameters are αa = αb = 3, θ1 = 0.2π , and N = 10.

same preferred walk direction, their coupling can reverse the
direction of transport, thus demonstrating direction reversal of
NHSE via time evolution dynamics.

We consider an initial state prepared in the middle of the
system, �ini = 1√

2
(|a, 0〉 ⊗ |↑〉 + |b, 0〉 ⊗ |↑〉). In Figs. 3(a)

and 3(b), we show the spatial distribution ρ0(x) of the nor-
malized final state �0,fin = U T

0 �ini and ρ(x) of �fin = U T �ini

for the quantum walk governed by U0 and U , respectively.
Here T represents the number of steps of the quantum walk
and the normalized spatial distribution is defined as ρ(x) =∑

s=a,b,σ=↑,↓ |ψ̃x,s,σ
fin |2, with ψ̃x,s,σ

fin the wave amplitude of the
normalized final state,

ψ̃x,s,σ
fin = ψx,s,σ

fin |s, x〉 ⊗ |σ 〉√∑
x,s=a,b,σ=↑,↓ |ψx,s,σ

fin |2
,

obtained from �fin = ∑
x,s=a,b,σ=↑,↓ ψx,s,σ

fin |s, x〉 ⊗ |σ 〉. It is
clearly seen from Figs. 3(a) and 3(b) that introducing
the interchain hopping reverses the propagation direction
of the walker. In Figs. 3(c) and 3(d), we further exam-
ine the average position of the final state, defined as x̄ =∑

x,s=a,b,σ=↑,↓ x |ψx,s,σ
fin |2. Note that this average is over both

chains. Without the interchain hopping operators S3,4, the
quantum walk governed by U0 exhibits the NHSE, of which
the direction of nonreciprocal population accumulation is de-
termined by the two rotation angles θ1 and θ2 + θ3 in Eq. (9).
As seen in Figs. 3(c) and 3(d), the interchain hopping can
reverse the direction of particle transport. That is, when the
color in Fig. 3(c) mismatches that in Fig. 3(d), reversed par-
ticle transport, as compared with the decoupled case, occurs.
Combining the results in Figs. 3(c) and 3(d), we obtain the
parameter regime in Fig. 4(a) on the θ3 − θ2 plane, where
reversed particle transport is observed.
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FIG. 4. (a) Phase diagram obtained from Figs. 3(c) and 3(d); re-
versed nonreciprocal accumulation occurs for the parameters falling
in the gray areas. (b)–(f) The quasienergy spectra of Uk with different
parameters, corresponding to the five red dots along the black dash
line with θ2 + θ3 = 0.8π in panel (a). Different colors mark the four
bands of the spectra (blue, red, cyan, and pink). Black arrows indicate
the winding direction of the quasienergies with k varying from 0 to
2π . The parameters are θ2 = 0.2π , 0.3π , 0.4π , 0.5π , and 0.6π from
(b) to (f), with αa = αb = 3 and θ1 = 0.2 for all panels.

To further digest the direction reversal of NHSE, one may
also investigate the winding behavior of the quasienergy εk ,
obtained from Uk�k = e−iεk �k, with Uk being the Fourier
transform of U , �k the eigenvectors of Uk , and k the Bloch
momentum reflecting the translational invariance of the quan-
tum walk model. The winding of the quasienergy spectrum as
k increases from 0 to 2π is shown in Figs. 4(b) to 4(f). The
direction of the winding is seen to change when the system
parameters (θ2, θ3) move across the phase boundary identified
in Fig. 4(a). There is hence a jump of the spectral winding
number between ±1 and 0, as we go from case (b) to case
(f). In particular, as shown in Figs. 4(c) and 4(e), along the
phase boundary, the quasispectrum in the k space does not
enclose any area, corresponding to a trivial spectral winding
and the absence of NHSE. These results further verify that the
above observed reversal of particle transport direction is due
to reversed NHSE.

To conclude, we note that particle transport with a reversed
direction, as illustrated in Figs. 3(a) and 3(b), can be observed
within very few quantum walk steps. The required lattice
size can also be small since there is no need to distinguish
between bulk sites and edge sites. In the Supplemental Ma-
terial [72], we even add an example where reversed NHSE in
our quantum walk system can be observed using only two unit
cells.

Summary. We have shown that a coherent coupling be-
tween two 1D non-Hermitian chains can lead to direction
reversal of NHSE for all the eigenmodes. This concept is
demonstrated using both the spatial profile of stationary so-
lutions, as well as time evolution dynamics on a quantum
walk platform within reach of current experiments. In our
first model, the common and individual direction of NHSE
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is obvious, as observed from the nonreciprocal hopping on
the two individual chains, yet a coupling between them yields
a population accumulation along the reversed direction for
every eigenmode of the system. This intriguing phenomenon
is interpreted in terms of the interference between multi-
ple hopping pathways and explained quantitatively via an
adiabatic/hybridized representation. The simplicity of this
two-chain model and the clear physics behind the anomalous
direction reversal of NHSE indicate the general relevance
of our findings in various non-Hermitian systems realizing
the NHSE. One example is given by our second working
model aiming at an experimental proposal to observe reversed
NHSE on the dynamics level, where two individual chains
hosting a quantum walker have the same preferred direction
of particle transport, yet an interchain hopping can again
reverse the direction of particle transport. In both models,

we have witnessed how a physical phenomenon analogous to
ANM may emerge in contexts or experimental platforms of
non-Hermitian physics. Our findings should also offer useful
schemes to manipulate the NHSE by tuning the coherent cou-
pling between individual subsystems. It should be stimulating
to extend our findings to higher dimensions, where NHSE be-
comes a rather universal property of non-Hermitian systems,
with the boundary localization behavior of bulk eigenmodes
strongly dependent on the system’s geometry [76].
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