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Cooper pair splitter in a photonic cavity: Detection of Andreev scatterings
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We simulated the radiative response of the cavity quantum electrodynamics (QED) coupled to the double
quantum dot Cooper pair splitter and analyzed its spectral dependence to get insight into dynamics of the Cooper
pair transfers. The model is confined to the energy subspace where two entangled electrons are transferred to two
normal electrodes through the interdot singlet state on two proximitized quantum dots. Our research is focused
on the Andreev scatterings in the subgap regime, for which the local charge susceptibility �(ωp) is derived,
by means of Keldysh Green functions, in a whole bias voltage range. In particular, in the large voltage limit,
the spectrum of �(ωp) is expressed by a simple analytical formula, which shows various dissipation processes
related with photon-induced transitions between the Andreev bound states.
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I. INTRODUCTION

In recent decades, circuit QED techniques have been suc-
cessfully applied to study hybrid mesoscopic systems strongly
interacting with microwave photons in resonators [1–4]. This
approach enables us to manipulate and probe electronic de-
grees of freedom such as single charges and spins (in single
defects and quantum dots) as well as other quantum degrees
of freedom, such as phonons (in a nanomechanical oscilla-
tor) and magnons (in a ferromagnetic spin-wave resonator).
There is great interest in electronic mesoscopic circuits in
cavity quantum electrodynamics (QED), such as semiconduc-
tor quantum dots, nanowires, and carbon nanotubes, where
the quantum coherence of single charges and spins are
detectable. One can get insight into their dynamics and relax-
ation processes with normal metal reservoirs, ferromagnets,
or superconductors. The circuit QED technique enables us
to characterize exotic condensed matter states, such as the
Kondo resonance or Majorana bound states (see Refs. [1,3]
and references therein). One can also perform coherent ma-
nipulation and single-shot readout of the Andreev quantum
dot [5], which is a new kind of superconducting qubit [6–8]
with the states corresponding to microscopic degrees of free-
dom of the superconducting condensate.

A Cooper pair splitter (CPS), with a central supercon-
ducting electrode (as a reservoir of Cooper pairs) and two
outer normal metal electrodes [9–13], was proposed the solid-
state setup for quantum information processing [14], which
allows us to test Bell inequalities by means of current-
current correlations and to show their violation as evidence
of entanglement of electrons [15–17]. High efficiency of spa-
tial entangled electrons was demonstrated experimentally for
a double-quantum-dot CPS (DQD-CPS) [18–22], also with
two graphene quantum dots [23] and two topologically non-
trivial semiconducting nanowires [24]. All of these studies
have been focused on the average currents and the zero
frequency current correlations. However, to probe dynam-
ics of the Cooper pair splitting, one needs to use circuit
QED techniques. Such research was performed in the past

decade on carbon-nanotube-based DQD-CPS (CNT-DQD-
CPS) [25–28], whose modeling, besides the Cooper pair
coherent splitting term, included spin-orbit interactions, in-
terorbital transitions, and direct interdot electron hopping. It
was assumed that the cavity electric field interacts with local
electric dipoles as well as induces interorbital transitions and
spin flips due to spin-orbit interaction. The model describes
various photon-induced excitations: singlet and triplet Cooper
pairs, transitions between them (due to spin-orbit coupling), as
well as single-electron transitions. The recent experiment on
CNT-DQD-CPS [28] used the cavity QED as a spectroscopic
probe and demonstrated Cooper-pair-assisted cotunneling be-
tween the quantum dots, in equilibrium conditions.

We want to revisit the DQD-CPS model in its simplified
form, where two entangled electrons are transferred through
the interdot singlet state on two proximized QDs into two
normal electrodes. Using the Keldysh Green function tech-
nique, we can get insight into quantum coherence processes in
electronic transport and dynamics of the Cooper pair transfers
through various Andreev bound states (ABS) in nonequilib-
rium conditions, for a whole bias voltage range [29,30]. These
features will be analyzed quantitatively, studying the radiative
response of a microwave cavity, in terms of the local charge
susceptibility of the DQD-CPS for realistic model parameters
(close to recent experiments). Different dissipation processes
of split Cooper pairs will be extracted by means of spectral
decomposition of the charge susceptibility.

II. MODEL DESCRIPTION AND DERIVATION
OF CAVITY RESPONSE

We assume that our mesoscopic system is embedded
in a microcavity and their interaction is described in the
framework a semiclassical linear response approach, the
input-output theory [1,3,31,32]. For the single-sided resonator
the reflection coefficient can be derived as [33]

S11 ≡ aout

ain
= −ωp − ωr + ı(κint − κext )/2 − �(ωp)

ωp − ωr + ı(κint + κext )/2 − �(ωp)
, (1)
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where ωr − ωp is the detuning of the resonator frequency
from the probe frequency ωp (the cavity drive frequency)
and κint and κext denote internal and external resonator dis-
sipation rates. Here, a key quantity of interest is �(ωp) =∑

i, j gig jχi, j (ωp), the Fourier transform of the charge suscep-
tibility: �(t − t ′) = −ıθ (t − t ′)

∑
i, j gig j〈[ni(t ), n j (t ′)]〉g=0,

with the average performed over the electronic system decou-
pled from the cavity. We have assumed that the light-matter
interaction is well approximated by dipolar coupling with a
local charge, described by Hcav-dip = ∑

i gini(a† + a), where
a† denotes the cavity photon creation operator, ni is the local
charge operator, and gi is the local coupling strength [1,34].
The mutual capacitive coupling between the two dots is disre-
garded. The two-particle averages are decoupled by means of
Wick’s theorem to products of single-particle averages, which
are then expressed by the Keldysh Green functions. The result
is [1,32,35]

χ∗
i, j (ωp) = −ı

∫
dE

2π
Tr{[τiG

r (E + h̄ωp)τ j

+ τ jG
a(E − h̄ωp)τi]G

<(E )}, (2)

where Gr,a,< denote the retarded, the advanced, and the lesser
Green functions, and τi = diag(1,−1) is the matrix describ-
ing the structure of the photon-particle coupling in the Nambu
(electron-hole) space. This approach takes into account co-
herent processes inside the nanosystem as well as coherent
coupling with electrodes. It works very well for a single
quantum dot system [32] and recovers the susceptibility in
double dots derived within the master equation approach when
dissipation is due sequential tunneling [1].

Let us specify our Cooper pair splitter; it consists two
quantum dots (DQD), where each QD is coupled to the normal
L or R electrode and both are coupled the superconductor S;
see Fig. 1. The corresponding Hamiltonian is

HCPS =
∑
α,k



†
αk (εαkσz + 
ασx )
αk +

∑
i

d†
i εiσzdi

+
∑
α,k,i

(
†
αktαiσzdi + H.c.), (3)

where the first term describes the electrodes {α = L, R, S} in
Nambu notation 


†
αk = (c†

αk↑, cαk̄↓), k̄ = −k, σz, σx are the
Pauli matrices, and εαk and 
α denote the electron energy
and the superconducting gap, with 
L,R = 0 for the normal
electrodes. The second term corresponds to the QDs, {i =
1, 2}, with a single level εi, where d†

i = (c†
i↑, ci↓) is a spinor

in Nambu notation for the local QD operator. The last term
describes coupling of DQD with the electrodes, where tαi

denotes the electron hopping between the α electrode and the
ith QD (as shown in Fig. 1).

In the DQD system, many-electron states with different
charge and spin configurations can occur. For the proxi-
mized system with two electrons, the lowest state is the
interdot singlet pairing, whereas the intradot pairing is much

FIG. 1. Schematic presentation of the Cooper pair splitter (CPS),
with two quantum dots (1,2) coupled to the normal (L, R) electrodes
and strongly coupled to the superconductor (S) as a reservoir of
Cooper pairs. Charge transport in CPS is due to perfect crossed
Andreev reflections (CAR) when an electron (e) is injected to the
normal electrode and a hole (h) with an opposite spin is simul-
taneously ejected from the second metallic electrode. We assume
that CPS is coupled to a SQUID array resonator and a microwave
detection system for reflectance measurements (adapted from
Refs. [33,36–38]).

higher in an energy scale due to a large intradot Coulomb
repulsion. For sufficiently low probe signals, one can con-
fine considerations to the lowest subspace with the interdot
singlet, 〈c†

1↑c†
2↓ − c†

1↓c†
2↑〉 	= 0. To calculate the charge den-

sity response, χ∗
i, j (ωp), we use the Keldysh Green function

method, following Refs. [29] and [30]. Since our interest is in
the Andreev scatterings, the calculations are performed in the
subgap regime |E | < 
S and the limit 
S → ∞, in which the
Green function has the self-energy [29,30]

�̂S = γS

2

⎡
⎢⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎦, (4)

where γS = πρStS1tS2 is the interdot exchange electron-hole
coupling, which describes the Cooper pair coherent splitting,
and ρS denotes the density of states in the S electrode in the
normal state. In this way, the S electrode is integrated out and
the system consists of two proximized QDs (with the interdot
singlet) coupled to two normal electrodes. The Keldysh Green
function matrix is expressed as a product of two components

ĜL2QDR = Ĝe↑,h↓ ⊗ Ĝh↓,e↑, (5)

where

Ĝe↑,h↓ ≡

⎡
⎢⎢⎣

ĜLe↑,Le↑ ĜLe↑,1e↑ ĜLe↑,2h↓ ĜLe↑,Rh↓
Ĝ1e↑,Le↑ Ĝ1e↑,1e↑ Ĝ1e↑,2h↓ Ĝ1e↑,Rh↓
Ĝ2h↓,Le↑ Ĝ2h↓,1e↑ Ĝ2h↓,2h↓ Ĝ2h↓,Rh↓
ĜRh↓,Le↑ ĜRh↓,1e↑ ĜRh↓,2h↓ ĜRh↓,Rh↓

⎤
⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w−−
L,11 w−+

L,11 tL1 0 0 0 0 0

w+−
L,11 w++

L,11 0 −tL1 0 0 0 0
tL1 0 z1e 0 γS/2 0 0 0
0 −tL1 0 −z1e 0 −γS/2 0 0
0 0 γS/2 0 z2h 0 −tR2 0
0 0 0 −γS/2 0 −z2h 0 tR1

0 0 0 0 −tR2 0 w−−
R,22 w−+

R,22

0 0 0 0 0 tR2 w+−
R,22 w++

R,22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (6)

Here, the Keldysh notation is used for the Green functions. The inverse elements of the Green function ĜLe↑,Le↑ (for electrons
(e) in the L electrode) and ĜRh↓,Rh↓ (for holes (h) in the R electrode) are w−−

L,11 = w++
L,11 = −2ıρL( fLe − 1/2), w−+

L,11 = 2ıρL fLe,
w+−

L,11 = −2ıρL(1 − fLe) and w−−
R,22 = w++

R,22 = −2ıρR( fRh − 1/2), w−+
R,22 = 2ıρR fRh, w+−

R,22 = −2ıρR(1 − fRh). fαe = {exp[(E −
μα )/kBT ] + 1}−1 and fαh = {exp[(E + μα )/kBT ] + 1}−1 are the Fermi distribution functions for electrons and holes in the α

electrode with the chemical potential μα , at the temperature T , with kB as the Boltzmann constant. The chemical potential in the
superconductor is taken to be μS = 0. We also denoted z1e = E − ε1 and z2h = E + ε2.

The retarded, the advanced, and the lesser Green functions are derived using the relations Gr = G−− − G−+, Ga = G−− −
G+−, and G< = G−+. In the next step, these functions are inserted into Eq. (2) and the local charge susceptibility is expressed
as

χ∗
1e,1e(ωp) =

∫
dE

2π

8
[

fLeγL
(
4z2

2h + γ 2
R

) + fRhγRγ 2
S

]
[
(2z1e + ıγL )(2z2h + ıγR) − γ 2

S

][
(2z1e − iγL )(2z2h − ıγR) − γ 2

S

]

×
[

2z+
2h + ıγR

(2z+
1e + iγL )(2z+

2h + ıγR) − γ 2
S

+ 2z−
2h − iγR

(2z−
1e − iγL )(2z−

2h − ıγR) − γ 2
S

]
, (7)

where z±
1e = E ± h̄ωp − ε1, z±

2h = E ± h̄ωp + ε2, h̄ωp is the
energy of a photon (with h̄ = h/2π , h being the Planck
constant), γL = πρLt2

L1, and γR = πρRt2
R2. The poles of the

integrand show positions of the pair of the ABS: Eeh
± =

(δ ± �)/2, where � =
√

ε2 + γ 2
S is the separation between

the ABS, ε = (ε1 + ε2)/2, and δ = (ε1 − ε2)/2 denotes the
level detuning. Similarly, one gets the charge susceptibility
for holes at the first QD, χ∗

1h,1h(ωp), exchanging the electron
and hole channels {e ↔ h} in Eq. (7). In this case, the ABS
are at Ehe

± = (−δ ± �)/2.
The integral in Eq. (7) can be calculated numerically or an-

alytically (using partial fraction decomposition of the spectral
functions). In general, the analytical results are rather lengthy
for presentation, and therefore we will present and discuss
plots instead.

III. THE RESULTS

Let us now analyze the charge susceptibility and how its
features can be seen in a reflectance measurement. Figure 2
shows simulation of the resonator reflectance spectrum |S11|
as a function of the probe frequency ωp and the position ε,
with respect to μS = 0. The calculations have been performed
at temperature T = 0, for a bias voltage applied in the split-
ter configuration, μL = μR = −|e|V � 0, and a strong and
asymmetric charge-photon coupling, g1/h = 0.4, g2 = 0. In
our analysis, we follow the experimental papers [33,36–38]
and express all of the system parameters in units of GHz.
The resonator parameters are taken as ωr/2π = 1.2, κint/2π

= 0.014, κext/2π = 0.001 (close to the recent experiment [33])
and the Cooper pair coherent splitting parameter as γS/h = 0.5
(close to γ

exp
S /h = 0.4 determined on CNT-DQD-CPS [28]).

As can be seen, the cavity photons and DQD-CPS qubit are

at resonance when h̄ωr =
√

ε2 + γ 2
S . For the chosen parame-

ters, such resonant value of ε happens for εr/h = ±1.09087.
Notice that |S11| > 1 in some regions (in red) corresponding
to photon gain (a similar feature was observed in CNT-DQD-
CPS [28]). The shape of the resonance depends on the voltage
applied to the normal electrodes. At V = 0, the reflectance
|S11| is symmetric, but with an increase of the voltage it
becomes asymmetric, because electron transport changes dis-
sipation in the system. Our main purpose is to show that the
cavity spectroscopy can be used to studies charge dynamics
and related dissipation processes in the mesoscopic system.
Let us consider this issue in greater detail.

In the large voltage limit, V → ∞, one can get simple ana-
lytical results, integrating (7) by means of the residue theorem.
For the symmetric coupling to the electrodes, γL = γR = γ ,
the charge susceptibility can be expressed as

χ∗
1e1e(ωp) = ε(h̄ωp + 2ıγ )γ 2

S

2(γ 2 + �2)(h̄ωp + iγ )[(h̄ωp + iγ )2 − �2]

= − iεγ 2
S

2�2(γ 2 + �2)(h̄ωp + iγ )

+ εγ 2
S (� + iγ )

4�2(γ 2 + �2)(h̄ωp − � + iγ )

+ εγ 2
S (−� + iγ )

4�2(γ 2 + �2)(h̄ωp + � + iγ )
. (8)

This quantity describes local electron fluctuations at the first
QD caused only by hole transfers through the R electrode
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FIG. 2. Resonator reflectance |S11| plotted as a function of
(ε, ωp) for a bias voltage |e|V/h = 0, 0.4, ∞, calculated at
temperature T = 0 and the level detuning δ = 0. All quantities
and the parameters are in units of GHz: ωr/2π = 1.2, κint/2π

= 0.014, κext/2π = 0.001, g1/h = 0.4, g2 = 0, γS/h = 0.5,
and a symmetric QD coupling with the electrodes γL/2π =
γR/2π = γ /2π = 0.01. The green dashed curve presents
the dispersion relation of the DQD-CPS qubit: h̄ωp = � ≡√

ε2 + γ 2
S .

(the electron transfers from the L electrode are prohibited).
Similarly, one can derive the susceptibility for holes, which
is χ∗

1h,1h(ωp) = χ∗
1e,1e(ωp). Notice that in this limit χ1e,1e is

independent of the level detuning δ, because both of the
ABS equally participate in transport and the current I∞

L =
(e/2h̄)γ γ 2

S /[(γ 2 + �2)] is independent of δ as well. Above,
we have performed also spectral decomposition of χ∗

1e,1e(ωp)
to find relaxators which describe dissipation processes in the
CPS system. Its first term [the second row in Eq. (8)] corre-
sponds to intralevel charge fluctuations, whereas the second
and third terms correspond interlevel fluctuations with ab-
sorption and emission of photons, respectively. The relaxation
rate is 1/τrelax = γ , the same for all dissipation processes.
These features are seen in Fig. 2(c), quite pronounced at the
resonances, εr/h = ±1.09087, and a small fold at the center,
ε = 0. Similar charge dynamics was seen in the cross and the
autocurrent correlations, with two resonant side dips related
with absorption and emission of photons (see Eqs. (32) and
(33) in Ref. [30]).

FIG. 3. Left column: Plots for the frequency shift 
ν ≡
Re[�(ωr )]/h (the blue curve and the left vertical axis) and the
broadening 
κ ≡ Im[�(ωr )]/h (the red dashed curve and the right
vertical axis) as a function of ε for the resonant frequency ωr/2π =
ωp/2π = 1.2 and various |e|V/h = 0, 0.4, ∞. Right column: Plots
of 
ν and 
κ as a function of |e|V/h for various ε/h = 0.9, 1.0908,
1.3. The other parameters are the same as in Fig. 2.

Let us study charge dynamics for a finite bias voltage.
The left column in Fig. 3 presents a cavity frequency shift,

ν = Re[�(ωr )]/h, and the linewidth broadening, 
κ ≡
Im[�(ωr )]/h, as a function of ε/h. In the top panel, the cavity
response for the nanocircuit at equilibrium is presented, and
its modifications caused by electron transport are shown in
the two subsequent panels. At a low bias voltage, the current
is small because the ABS lie outside the transport window.

For a larger voltage, |eV | > �/2 =
√

ε2 + γ 2
S /2, the central

ABS states become participate in transport. For the considered
case (with |e|V/h = 0.4), the active transport window is for
|ε| < 0.6245. Large charge fluctuations are seen close to the
resonance points εr/h = ±1.09087.

The right column in Fig. 3 presents the voltage dependence
of 
ν and 
κ , for ε close to the resonance value εr . Notice
the different scales of the axes in the middle panel, when large
charge fluctuations are present. The curves for 
κ show steps
at |e|V1 = �/2, |e|V2 = h̄ωr − �/2, and |e|V3 = h̄ωr + �/2,
which are related with activation of dissipation processes
(without and with photons through the ABS). One can see also
small kinks in 
ν at these voltages.

Our consideration concerned so far the case δ = 0, i.e.,
when the dot levels ε1 = ε2 = ε. It is known that the level
detuning δ destroys entanglement of split Cooper pairs and
lowers correlations between the split electron currents [29,39].
We have performed calculations to see a role of the detuning
on the cavity response. The resonator reflectance spectrum
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FIG. 4. Resonator reflectance |S11| plotted as a function of
(ε, ωp) for δ/h = 0.6 and for bias voltages |e|V/h = 0 (top) and 0.4
(bottom). The other parameters are the same as in Fig. 2.

|S11| is presented in Fig. 4 for |e|V/h = 0 and 0.4, for the
voltage range where one can expect a pronounced influ-
ence. At equilibrium, the charge susceptibility �(ωp) ≈ 0 (in
the window |ε| < 0.332), which is related to the spectrum of
the ABS. There is a pair of the ABS at Eeh

± = (δ ± �)/2 for
the (e ↑, h ↓) channel and another one Ehe

± = (−δ ± �)/2 for
the (h ↓, e ↑) channel. In the presented case, both pairs of the

ABS are beyond the transport window for |ε| <

√
δ2 − γ 2

S =
0.332; therefore, �(ωp) is exponentially small and the cavity
is not disturbed by the nanosystem. For the bias |e|V/h = 0.4,
|S11| exhibits pronounced changes around the resonance at
εr/h = 1.09087 [see the resonance at the right-hand side in
Fig. 4(b)]. In this region, �(ωp) is a complicated function
governed by various transitions between the ABS. For the
large bias, V → ∞, one gets the simple analytical form of
the charge susceptibility, Eq. (8), and the cavity spectrum,
Fig. 2(c).

IV. SUMMARY AND FINAL REMARKS

In summary, we have simulated the response of the cavity
QED coupled to the DQD-CPS and analyzed the spectrum
of the local charge susceptibility �(ωp), which exhibits
dynamics of the photon-induced coherent electron-hole re-
combination processes related with transfers between the
ABS. The spectrum of �(ωp) shows strong fluctuations at
the resonant point, h̄ωr = ±�; it is symmetric at equilib-
rium and becomes asymmetric around h̄ωr = � when the
bias voltage increases. In the limit V → ∞, one gets a
simple exact analytical formula, Eq. (8), which shows dis-
sipation processes related with intralevel charge fluctuations
as well as photon-induced transitions between the ABS.

The conditions to observe these features are optimal for the
level detuning δ = 0, when the response can be analyzed
as a function of ε = (ε1 + ε2)/2. For a large δ, the re-
sponse spectrum becomes very complex and some effects are
spoiled.

We have considered the simple model of DQD-CPS re-
stricted the Hilbert space to the sector comprising the DQD
in the interdot singlet pairing, to get a simple picture of the
Andreev bound states in the subgap region. A key feature
of the model is the factorization of the Green functions,
Eq. (5), which corresponds to perfect entanglement of the
split Cooper pairs and the separation of the crossed An-
dreev reflections (CAR) for an electron-hole (e ↑, h ↓) and
a hole-electron (h ↓, e ↑) scattering channels. If direct in-
terdot electron hopping is relevant (as for CNT-DQD-CPS
in Refs. [28] and [29]), the condition (5) is broken, both
scattering channels are correlated, and the splitter efficiency
is reduced.

The superconducting proximity effect is fundamental for
the formation of ABS and the operation of CPS. This effect
is quantified by parameter γS , which in our calculations has
been taken as γS/h = 0.5 GHz. In the experiment on CNT-
DQD-CPS [28] this parameter was estimated as 0.4 GHz, and
it was treated as a small expansion parameter in comparison
to interdot electron hopping tb/h = 6.3 GHz. The other exper-
iment [40], on a single proximized CNT quantum dot, showed
that the coupling can be γS/h = 28 ÷ 42 GHZ (or even much
larger). The strong proximity effect was observed in many
other quantum dot systems, for example, in InAS quantum
dots in the recent experiment [41] (where γS/h = 35 GHz).

In our research, the strong cavity coupling has been as-
sumed (� ≈ g2/γS � κ) to mimic the experimental setup
where the analysis of internal dynamics of the nanosystem
would be possible. The coupling parameter has been set to
g/h = 0.4 GHz close to the experimental value for a triple
quantum dot qubit [33]. We have considered the single-sided
cavity configuration and analyzed the reflectance spectrum
|S11|; however, one can get easily the cavity transmission for
the two-sided resonator configuration with symmetric mir-
rors [1,31]

S12 ≡ bt

bin
= −ıκext

ωp − ωr − ı(κint + 2κext )/2 − �(ωp)
. (9)

We have also assumed that the resonator is coupled only to
the first QD; however, both QDs could be coupled to photons,
as for example in Ref. [28]. In such a case, an interdot charge
susceptibility should be taken into account. In the limit V →
∞, we get χ1e2h(ωp) = −χ1e1e(ωp), which means that for a
symmetric coupling, g1 = g2, the total charge susceptibility
�(ωp) = 0 (as one could expect from the current conservation
rule). This resembles the situation for the DQD with normal
metallic contacts, where an asymmetric coupling of two dots
to the cavity is required [1,3]. For a finite bias, �(ωp) becomes
finite but small, due to displacement currents which should be
taken into account.

We hope that the paper will inspire experimentalists to
perform a direct studies into the spectrum of the Andreev
bound states using microwave cavity spectroscopy.
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