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Magnetoelectric polarizability and optical activity: Spin and frequency dependence
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We extend a microscopic theory of polarization and magnetization to include the spin degree of freedom of the
electrons, introducing a general spin-orbit coupling and Zeeman interaction term in the Hamiltonian. At finite
frequencies and including spin, the magnetoelectric polarizability tensor is replaced by two separate tensors, one
that relates the polarization P to the magnetic field B and a separate tensor that relates the magnetization M to the
electric field E. When combined with other relevant response tensors a third-rank tensor that relates the induced
current density to gradients in the electric field can be introduced; it is gauge invariant, in a form suitable for
numerical calculations, and describes optical activity—including spin effects—even in materials that may lack
time-reversal symmetry.
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I. INTRODUCTION

In considering the linear response of an insulator to static
and uniform electric and magnetic fields, one usually focuses
on the response of the polarization P to the electric field, and
perhaps on that of the magnetization M to the magnetic field.
However, one can also ask under what circumstances there
can be a response of P to B and of M to E, where B and
E are respectively the Maxwell magnetic and electric fields.
These responses are governed by the same “magnetoelectric
polarizability” tensor αil [1–6],

Pi = αil Bl ,

Mi = αliE l . (1)

The definitive expression of the magnetoelectric polarizabil-
ity tensor for an insulating crystal with spinless electrons in
the independent particle approximation, and where the set
of occupied bands is topologically trivial, was derived using
the “modern theory of polarization and magnetization” [7,8].
Here polarization and magnetization fields are introduced
from a macroscopic perspective, and at most adiabatic vari-
ations to the Hamiltonian through the application of uniform
fields are considered. The tensor αil consists of two terms, a
Chern-Simons contribution that does not lead to any bulk in-
duced charge or current density from the induced polarization
and magnetization of 1, and a “cross-gap” term that vanishes
unless both time-reversal and inversion symmetry are broken.
A later extension dealt with the inclusion of contributions to
αil from the spin of electrons [9].

More recently, a microscopic approach to defining polar-
ization and magnetization was introduced, where spatially
varying and time-dependent fields can be considered [10].
Finite frequency analogs of (1) could be derived,

Pi(ω) = αil
P (ω)Bl (ω),

Mi(ω) = αli
M(ω)El (ω),

(2)
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but now

αil
P (ω) �= αil

M(ω). (3)

This result is not surprising, as the equality of the polariza-
tion and magnetization response only holds in the absence of
dissipation and dispersion [5]. The thermodynamic arguments
leading to the equality are only valid in equilibrium, so at
arbitrary frequency the equality is broken [11]. Further, if
terms such as (2) are included in the optical response, where
the right-hand side of the first of (2) is associated with the
dipole moment per unit volume, other contributions to the
induced current density must also be included. With these
identified, the linear response of the full macroscopic current
density Ji(q, ω), where q indicates the wavevector, takes the
form

Ji(q, ω) = σ il (ω)El (ω) + σ il j (ω)El (ω)q j + · · · (4)

where, since the linear response of M to B is usually negligi-
ble in the optical regime, σ il (ω) only contains contributions
from the frequency-dependent dielectric tensor, while σ il j (ω)
contains contributions from the magnetoelectric polarizability
tensors αil

P (ω) and αil
M(ω), as well as from the tensor char-

acterizing the response of the quadrupole moment per unit
volume to the Maxwell electric field, and from the tensor
characterizing the response of the dipole moment per unit
volume to the symmetrized derivative of the Maxwell electric
field. The full third-rank tensor σ il j (ω) describes the “optical
activity” of the crystal, both its optical rotary dispersion and
its circular dichroism [11].

But these calculations were done for spinless electrons
[12,13]. In this paper we generalize that work to include
the contributions to both σ il (ω) and σ il j (ω) due to the spin
dynamics. Since we allow for broken time-reversal symmetry
in the unperturbed crystal, σ il (ω) need not be symmetric,
reflecting a kind of “internal Faraday effect,” and there are
contributions to σ il j (ω) above and beyond those that are re-
sponsible for “natural optical activity,” a term used to describe
optical activity in a medium with time-reversal symmetry.
As found in the earlier spinless electron calculations, there
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is a “gauge invariance” in the expressions for σ il (ω) and
σ il j (ω) that reflects the insensitivity of the results to the
choice of the phases of the Bloch functions, and the approach
we use avoids the appearance of any “artificial divergences”
that can arise in more standard minimal coupling calcula-
tions, and which need to be eliminated by the use of sum
rules not always easy to identify [14]. Further, we show that
our results for σ il j (ω) [as well as those for σ il (ω)] involve
only the off-diagonal components of the non-Abelian Berry
connection, and hence are particularly suitable for numerical
calculations.

In Sec. II we begin by introducing the Hamiltonian and its
associated charge and current density operators. We make the
frozen ion approximation for the nuclei, and the independent
particle approximation for the electrons. The second of these
involves the neglect of interactions between the electrons,
except as they can be included by employing an effective
potential due to the nuclei, and by understanding the “applied”
electromagnetic field we introduce to be the macroscopic
Maxwell electromagnetic field [15]. Then in calculating the
dynamical response to such an electromagnetic field we can
rely on the equal-time, single particle Green’s function. We
use a generalized Peierls substitution to introduce a “global
Green’s function,” in which no special point has been in-
troduced; if it were appropriate to identify stable units and
special points, we would recover the Power-Zienau-Woolley
(PZW) transformation [16,17]. Expanding the Green’s func-
tion in a basis of Wannier functions with orbital type and
lattice site labels, we can then associate quantities such as
polarization, magnetization, charge density, and current den-
sity with the vectors R identifying the lattice sites. These sites
act as natural expansion points when developing a multipole
expansion. In this paper we focus on zero temperature insu-
lators for which exponentially localized Wannier functions
can be constructed, and outline how the site quantities are
constructed, highlighting the modifications that must be made
from an earlier paper [10] in which the spin-full nature of the
particles was neglected.

In Sec. III, to prepare for spatial averaging of the mi-
croscopic quantities we expand the site polarization fields
up to the electric quadrupole moment contribution, and the
magnetization fields to the dipole moment contribution. We
also give the ground-state expressions for the three forms of
magnetization identified in this formalism: “atomic,” “itiner-
ant,” and “spin.” We highlight two explicit changes due to
the presence of spin: The first is due to a modification of the
current density by spin-orbit coupling, and the second is to
include the intrinsic spin magnetic moment.

In Sec. IV a perturbative expansion of the response of
the electric and magnetic dipole moments to applied fields
is determined, generalizing earlier work where spin was
neglected [12,13]. We outline how from these we can ob-
tain the macroscopic response tensors, and how the various
contributions combine to obtain the optical conductivity ten-
sors. We then show the new spin-dependent response of
the polarization to an applied magnetic field, and of the
spin magnetization to an applied electric field. In the zero-
frequency limit these responses are described by the same
tensor and are part of the total magnetoelectric polarizability
tensor (MP).

In Sec. V we discuss how the MP tensor consists of the
orbital magnetoelectric polarizability tensor (OMP) [2–6],
which can be divided into the usual Chern-Simons and
cross-gap contributions, and an explicitly spin-dependent con-
tribution, all now generalized to arbitrary frequency. We find
the symmetry of the response obtained from the polarization
response to a magnetic field and the magnetization to an elec-
tric field is lost at finite frequencies. Additionally, the response
does not necessarily vanish for time-reversal symmetric
systems.

In Sec. VI we combine our results with that of an earlier
paper [12] to obtain expressions for the optical conductivity
tensors σ il (ω) and σ il j (ω). We have found that while the
expressions that went into creating σ il j (ω) involve diagonal
matrix elements of the Berry connection there is cancellation
between the different contributions, and so have written out
the tensor in such a way as to make this explicit.

In Sec. VII we summarize the modifications to the formal-
ism to include the spin degree of freedom, the added contribu-
tion to the frequency dependent magneto-polarizability.

We relegate some technical details to Appendices A–D.

II. MICROSCOPIC FORMALISM

A. Hamiltonian

The electronic response of a crystalline insulator is a
consequence of the evolution of the fermionic electron field
operator, ψ̂ (x, t ). In the Heisenberg picture the dynamics are
governed by

ih̄
∂ψ̂ (x, t )

∂t
= H(x, t )ψ̂ (x, t ), (5)

where ψ̂ (x, t ) is a two-component Pauli spinor operator. We
make the frozen ion and independent particle approximations,
and begin by taking the electrons to be subject to an effective
potential energy term V(x) that has the same periodicity as the
crystal lattice, V(x) = V(x + R) for all Bravais lattice vectors
R. We can then include relativistic corrections that involve the
spin by taking the differential operator for the Hamiltonian to
be

H0
T RS (x) = − h̄2

2m
∇2 + V(x) + H0

SOC (x). (6)

H0
SOC is the spin-orbit coupling term [18–21], which we write

in a general form as

H0
SOC (x) = − ih̄2

4m2c2
σ · ∇V(x) × ∇, (7)

where σ is the vector of Pauli matrices that act on spinor wave-
functions. Other relativistic corrections, such as the Darwin
and mass-velocity terms [19], are neglected.

We use the subscript T RS to indicate that H0
T RS (x) satis-

fies time-reversal symmetry. Even before any electromagnetic
fields are applied, we can allow for this symmetry to be bro-
ken by introducing a possible “internal”, static, cell-periodic
vector potential Astatic(x), where Astatic(x) = Astatic(x + R).
While the presence of Astatic(x) breaks time-reversal symme-
try, its inclusion does not break the translational symmetry
of the Hamiltonian, and thus Bloch’s theorem can still be
applied. The introduction of such an Astatic(x) is a common

085413-2



MAGNETOELECTRIC POLARIZABILITY AND OPTICAL … PHYSICAL REVIEW B 106, 085413 (2022)

approach to including the effects of broken time-reversal sym-
metry within a basic independent particle approximation [22].

We also consider the system to be perturbed by an ap-
plied electromagnetic field characterized by a scalar potential
φ(x, t ) and a vector potential A(x, t ). We treat the applied
electromagnetic field and the internal magnetic field classi-
cally, and adjust the Hamiltonian for their inclusion following
the standard minimal coupling prescription, as well as adding
in the magnetic dipole energy term due to the spin. Defining

p(x) = −ih̄∇ − e

c
Astatic(x), (8)

where we take the charge of the electron to be e = −|e|, the
full differential operator H(x, t ) is then given by

H(x, t ) =
(
p(x) − e

c A(x, t )
)2

2m
+ V(x) + eφ(x, t )

− eh̄

2mc
σ · B(x, t ) − eh̄

2mc
σ · Bstatic(x)

+ h̄

4m2c2
σ · ∇V(x) ×

(
p(x) − e

c
A(x, t )

)
, (9)

where the applied magnetic field is B(x, t ) = ∇ × A(x, t ) and
Bstatic(x) = ∇ × Astatic(x). This independent particle treat-
ment, where the breaking of time-reversal symmetry is
described only by the introduction of Astatic(x), could be ex-
tended by including another Zeeman term involving a Beff(x),
nonuniform but with the periodicity of the lattice, that would
capture a mean-field description of exchange effects; see, e.g.,
Kohn and Sham [23], and Ogata [24]. We do not explicitly im-
plement that approach here, because we want to simplify the
comparison of our results with earlier calculations that were
done with the more basic independent particle approximation
where such exchange effects are neglected. We plan to turn to
such an extension in a later communication. We assume that
the gradient of V(x) is much larger than the applied electric
field, in regions of space where that gradient is important,
and therefore the spin-orbit interaction is not modified by the
applied electric field at our level of approximation. At times
when the applied electromagnetic field vanishes, the expres-
sion for H(x, t ) reduces to H0(x), where the latter is obtained
from the former by setting φ(x, t ) and A(x, t ) equal to zero.
H0(x) is thus the “unperturbed Hamiltonian”, with Astatic(x)
and Bstatic(x) included to allow for more interesting ground
state Bloch functions that may break time-reversal symmetry.

The full Hamiltonian is then given by

Ĥ (t ) =
∫

ψ̂†(x, t )H(x, t )ψ̂ (x, t )dx, (10)

where H(x, t ) is a 2 × 2 matrix with in general four nonzero
components. In the usual spin-z basis we can denote the ma-
trix elements by two spin-arrow labels; however, in general we
introduce sans-serif subscripts to indicate spinor components,
Hij(x, t ).

B. Charge and current densities

The equations for the charge and current densities are ob-
tained [25] via

ρ̂(x, t ) = δĤ (t )

δφ(x, t )
+ ρ ion(x), (11)

and

ĵ(x, t ) = −c
δĤ (t )

δA(x, t )
, (12)

where to the electronic charge density in (11) we have added
a charge density for the (assumed fixed) ions so that ρ̂(x, t )
is the full charge density. Here the ion charge density ρ ion(x)
can be written as

ρ ion(x) =
∑

R

ρ ion
R (x), (13)

where ρ ion
R (x) is the ion density associated with lattice site R.

If the ions are approximated as point charges, we have

ρ ion
R (x) =

∑
N

qNδ(x − R − dN ), (14)

where we assume that in each unit cell there are N ions with
charges qN located at R + dN .

The charge and current densities [(11) and (12)] satisfy the
continuity equation, and are given by

ρ̂(x, t ) = eψ̂†(x, t )ψ̂ (x, t ) + ρ ion(x), (15)

and

ĵ(x, t ) = e

2m

(
ψ̂†(x, t )

(
p(x) − e

c
A(x, t )

)
ψ̂ (x, t )

+
[

(p(x) − e

c
A(x, t ))ψ̂ (x, t )

]†

ψ̂ (x, t )

)

+ ĵm(x, t ) + eh̄

4m2c2
ψ̂†(x, t )(σ × ∇V(x))ψ̂ (x, t ).

(16)

The first line on the right-hand side of (16) is the stan-
dard current density that one would expect from a minimal
coupling Hamiltonian. The second line has two additional
contributions that are associated with spin: The first, ĵm(x, t ),
is the magnetization current that would be present even for a
free electron gas [26]; it is given by

ĵm(x, t ) = c∇ × m̂σ (x, t ), (17)

where

m̂σ (x, t ) = eh̄

2mc
ψ̂†(x, t )σψ̂ (x, t ). (18)

The remaining contribution to the charge current density in
(16) is transverse to the spin magnetization of the system
and to the electric field Elattice = −e−1∇V created by the
crystal environment. It arises because the spin-orbit coupling
introduces a correction to the relation between the velocity
and momentum of an electron [27–30]. Physically, this can be
understood as a consequence of the effective electric dipole
moment μ = c−1v × ν [31] in the laboratory frame of a mag-
netic dipole moment ν moving with velocity v [32].
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C. Wannier functions

Our approach employs a Wannier function basis for calcu-
lations [6,33]. There are various basis transformations that are
made in this section, so we begin by giving a motivation for
the steps we are about to perform.

The first “natural” basis for a crystal would be the Bloch
eigenstate solutions |nk〉 of the unperturbed Hamiltonian in-
troduced in Sec. II that, within a phase factor, satisfy discrete
translational invariance. However, many matrix elements,
such as position and angular momentum, must be treated with
care in the Bloch basis [6,34]. In using a Wannier function ba-
sis these matrix elements are well defined and not plagued by
complications involving derivatives of Dirac delta functions,
and the like.

There is much freedom in the choice of Wannier func-
tions. This arises not only from the phase indeterminacy of
the Bloch functions that then enter in the construction of the
Wannier functions, but also because one can apply a general
unitary transformation and “mix” the occupied bands involved
in constructing the Wannier functions associated with the
ground state. This unitary transformation is leveraged in the
construction of “maximally localized Wannier functions” that
have well-behaved localization properties [35,36]. Thus we
will introduce a modified Bloch basis |αk〉, where the states
are not eigenstates of the Hamiltonian. This basis will be an
important intermediate step in considering the transformation
between matrix elements in the Wannier and original Bloch
basis.

To treat a general applied magnetic field we also intro-
duce an “adjusted” Wannier basis. While the construction and
implementation is an added complication it allows for the sys-
tematic inclusion of the wavefunction modifications induced
by the magnetic field. This is crucial in magnetic response
formulas such as that determining the magnetic susceptibility
[37].

Working toward the construction of the “adjusted” Wan-
nier function basis we begin with the two component spinor
wavefunctions

ψnk(x) ≡ 〈x|ψnk〉 = 1

(2π )
3
2

eik·x
[

unk,↑(x)
unk,↓(x)

]
, (19)

which are the Bloch eigenfunctions of the unperturbed
Hamiltonian H0(x) introduced after Eq. (9). The Bloch eigen-
functions are normalized over the infinite crystal such that
〈ψmk′ |ψnk〉 = δnmδ(k − k′); when sans-serif spinor compo-
nent indices are omitted the object is understood to be the full
two-component spinor. Associated with each Bloch eigenvec-
tor is an energy Enk and a cell-periodic spinor function unk(x).
The n are band indices and h̄k the crystal momentum. The
cell-periodic functions unk(x) ≡ 〈x|nk〉 satisfy the orthogo-
nality condition (mk|nk) = δnm, where we adopt the notation
that

(g|h) ≡ 1

�uc

∫
�uc

g∗
i (x)hi(x)dx, (20)

where �uc is the unit-cell volume. Repeated spinor indices are
implicitly summed over.

It is useful to introduce sets of Wannier functions, where
the Wannier functions in a particular set are associated with a

particular set of “isolated bands” that may intersect amongst
themselves, but where no band from the set intersects with
bands from different sets. For the Wannier functions associ-
ated with a particular set of isolated bands, the prescription
for doing that is

|αR〉 =
√

�uc

(2π )3

∫
BZ

dke−ik·R ∑
n

Unα (k)|ψnk〉, (21)

where the unitary matrix U(k) and the Bloch eigenvectors
|ψnk〉 are chosen to be periodic over the first Brillouin zone.
The sum over band indices in (21) is only over the relevant set
of isolated bands, and each Wannier function |αR〉 is labeled
by a type index α and a lattice site R with which it is identified.

As a first example, in this paper we consider an insulator,
and so we can introduce two sets of isolated bands: One
consists of the valence bands, and the other of the conduction
bands. In studies of insulators involving scalar wavefunctions,
if the band structure is “topologically trivial” then one can
construct one set of exponentially localized Wannier functions
(ELWF) [35,36,38–40] from the valence bands, and another
set from the conduction bands. For the scalar case the re-
striction is to insulators where the set of bands chosen has
net zero Chern invariant; and work has been done to develop
a procedure for constructing Wannier functions for Z2 insu-
lators [38,41]. In the generalization to spinor wavefunctions
developed here we consider the analogous scenario, assuming
that we can associate a set of spinor ELWF with the valence
bands and another set with the conduction bands.

Even with the restriction to ELWFs, the Wannier functions
are not uniquely defined, due to the freedom in choosing
the unitary transformations U(k). Thus there is an unavoid-
able “gauge freedom”—to be distinguished from the gauge
freedom in choosing the scalar and vector potentials that iden-
tify the electromagnetic field—when identifying the Wannier
functions. In this paper we refer to quantities as being gauge-
dependent, in this sense, if they depend on the matrices U(k)
or their derivatives. This gauge freedom does not extend to
physical quantities such as the charge and current densities.

The expression (21) for the Wannier functions provides a
mapping from the set of filled energy eigenstates to the set
of filled ELWFs; likewise, we can map the unoccupied states
to unoccupied ELWFs. At zero temperature the ground state
filling factors fn for the bands are either 0 or 1. Likewise the
orbital filling factors fα are either 0 or 1, and if Unα �= 0 then
fn = fα .

The Wannier functions WαR(x) ≡ 〈x|αR〉 form an orthog-
onal set, ∫

W ∗
βR′,i(x)W

αR,i(x)dx = δβαδR′R. (22)

Again following the strategy for spinless particles, we intro-
duce a new set of kets {|αk〉}, with coordinate representations
that are cell-periodic, and that are linked to Wannier functions
of type α,

|αk〉 = Unα (k)|nk〉. (23)

In the case of a multiband unitary transformation relating
the original set of Bloch functions {|nk〉} to the new set
{|αk〉}, the set {|αk〉} are not identified with eigenstates of the
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Hamiltonian. Matrix elements of the position operator be-
tween Wannier functions can be related to the non-Abelian
Berry connection [34] associated with this new set of cell-
periodic functions∫

W ∗
βR,i(x)xaWα0,i(x)dx = �uc

(2π )3

∫
BZ

dkeik·R ξ̃ a
βα (k), (24)

where

ξ̃ a
βα (k) ≡ i(βk|∂aαk), (25)

and ∂a indicates a partial derivative with respect to the
Cartesian component a of k. One could instead view the
components of the non-Abelian Berry connection as a 2 × 2
matrix, with rows and columns indicating the spinor compo-
nent of the bra or the ket state respectively. Then Eq. (25)
is the trace over this matrix, since we implicitly sum over
spinor components. The non-Abelian Berry connection asso-
ciated with the set {|αk〉} is related to the non-Abelian Berry
connection associated with the set {|nk〉} via∑

αβ

Umβ ξ̃ a
βαU †

αn = ξ a
mn + Wa

mn, (26)

where

Wa
mn = i

∑
α

(∂aUmα )U †
αn. (27)

We now turn to new terms that explicitly involve the elec-
tron spin. Just as there is a relation (24) between the position
matrix elements of the Wannier functions and the non-Abelian
Berry connection, there is a relation between the spin matrix
elements in the Wannier function basis and the k-dependent
spin matrix elements in the Bloch cell-periodic basis. This
relationship follows from Eqs. (19)–(21), and dividing the
integral over all space into a sum of integrals over unit cells,
we have

h̄

2

∫
dxW ∗

αR,i(x)σ a
ijWβ0,j(x) = �uc

(2π )3

∫
BZ

dkeik·RS̃a
αβ (k),

(28)

where

S̃a
αβ (k) ≡ h̄

2
(αk|σ aβk). (29)

The spin matrix elements in the basis of the cell-periodic
Bloch functions and the new Wannier cell-periodic functions
are related by the unitary transformation

Sa
mn(k) =

∑
αβ

Umα S̃a
αβ (k)U †

βn. (30)

Other terms explicitly involving the electron spin are the
matrix elements of the velocity operator,∫

ψ
†
n′k′ (x)

(
pa(x) + εabc h̄

4mc2
σ b ∂V (x)

∂xc

)
ψnk(x)dx

= mva
n′n(k)δ(k − k′). (31)

However, as we confirm in Appendix A, the velocity matrix
elements satisfy the same relation that holds for velocity ma-
trix elements if spin is not included [10],

va
n′n(k) = δn′n

h̄
∂aEnk + i

h̄
(En′k − Enk )ξ a

n′n(k), (32)

where of course in the spin-full case the Bloch functions used
in calculating all the terms in (32) include the effects of spin-
orbit coupling. We refer to that fact that (32) holds whether
the calculation is made for spin-full or spinless electrons as
the “velocity matrix equivalence” (VME). Because it holds,
many of the contributions to the optical response tensors,
when written in the Bloch state basis, take the same form in
the spin-full calculation as in the spinless calculation. We will
identify these equivalences as they arise below.

If a vector potential is applied, Wannier functions multi-
plied by a generalized Peierls phase factor arise, and these
modified Wannier functions are in general neither orthonor-
mal nor gauge invariant in the electromagnetic sense. We
use Lowdin’s method of symmetric orthogonalization [42] to
construct an orthonormal set of functions {W̄αR(x, t )}, the
“adjusted Wannier functions”. These can be written as

W̄αR(x, t ) = ei�(x,R;t )χαR(x, t ), (33)

where the set of functions {χαR} are gauge-invariant in the
electromagnetic sense, and the phase factor involves the gen-
eralized Peierls phase �(x, R; t ), a line integral of the vector
potential over an arbitrary path from R to x,

�(x, R; t ) ≡ e

h̄c

∫
si(w; x, R)Ai(w, t )dw, (34)

where the function s(w;x,R) is a so-called “relator” [10], and
is defined as

si(w; x, R) =
∫

C(x,R)
dziδ(w − z), (35)

where C(x, R) specifies a path from R to x. In a perturbation
expansion for the functions {χαR}, in powers of the magnetic
field, the first two terms are given by

χ
αR,i(x, t ) =W

αR,i(x) − i

2

∑
βR′,j

W
βR′,i

∫
W ∗

βR′,j(z)

× �(R′, z, R; t )W
αR,j(z) + · · · (36)

Here the function �(x, y, z; t ) is �(z, x; t ) + �(x, y; t ) +
�(y, z; t ), which is simply a closed line integral of the vec-
tor potential. By Stokes’ theorem this is an integral of the
magnetic flux passing through the surface identified by the
paths connecting x, y, and z. Both �(x, R; t ) and �(x, y, z)
have been discussed earlier [10]. Indeed, the strategy here
follows what has been done there for spinless particles, with
the change that quantities such as χ

αR,i(x, t ) and W
αR,i(x)

carry spinor indices.

D. Global Green’s function

We now turn to establishing Green’s function expressions
in a form that will allow us to focus on individual lattice site
quantities. We begin by expanding our field operators in the
Heisenberg picture in a basis formed by the “adjusted Wannier
functions” (33),

ψ̂ (x, t ) =
∑
α,R

âαR(t )

[
W̄αR,↑(x, t )
W̄αR,↓(x, t )

]
=

[
ψ̂↑(x, t )
ψ̂↓(x, t )

]
, (37)
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where from the anticommutation relations that the field oper-
ators satisfy it follows that

{âαR(t ), âβR′ (t )} = 0,

{âαR(t ), â†
βR′ (t )} = δαβδRR′ . (38)

The lesser, equal time single-particle Green’s function matrix
then has the spin components

Gmc
ij (x, y; t ) = i〈ψ̂†

j (y, t )ψ̂i(x, t )〉. (39)

Here “mc” denotes “minimal coupling,” and the dynamics
of the field operators are governed by the Hamiltonian (9).
To move to a Green function matrix that is gauge invariant
with respect to the electromagnetic potentials, we introduce a
global Green’s function according to

Ggl (x, y; t ) = e−i�(x,y;t )Gmc(x, y; t ). (40)

Following manipulations used in the spinless problem [10],
the dynamics of Ggl are found to be governed by

ih̄
∂Ggl

ij (x, y; t )

∂t

= Kik(x, y; t )Ggl
kj (x, y; t ) − Ggl

ik (x, y; t )
←−K kj(y, x; t )

− e�0
y(x, t )Ggl

ij (x, y; t ), (41)

where the modified Hamiltonian differential operator matrix
elements are

Kij(x, y, t ) = (p(x) − e
c �y(x, t ))2

2m
δij + V(x)δij

− eh̄

2mc
σ ij · B(x, t ) − eh̄

2mc
σ ij · Bstatic(x)

+ h̄

4m2c2
σ ij ·

(
∇V(x) ×

(
p(x) − e

c
�y(x, t )

))
,

(42)

and where the matrix
←−K (x, t ) is identical to K(x, t ), except

that in the matrix elements of
←−K ij(x, t ) the momentum op-

erator is complex conjugated and taken as acting to the left.
Where once there was the applied vector potential accompa-
nying the momentum, there is now the new quantity �y(x, t ),
and the applied scalar potential term has been replaced by
one involving �0

y(x, t ). These quantities depend only on the
electromagnetic fields and not the potentials, and are given by

�0
y(x, t ) ≡

∫
si(w; x, y)Ei(w, t )dw, (43)

�k
y(x, t ) ≡

∫
αlk (w; x, y)Bl (w, t )dw, (44)

where we have employed another “relator” α jk (w; x, y) [43],
defined as

α jk (w; x, y) = ε jmn
∫

C(x,y)
dzm ∂zn

∂xk
δ(w − z). (45)

The quantities �y(x, t ), which are dependent on the magnetic
field, and �0

y(x, t ), which are dependent on the electric field,
have been discussed earlier [10]. In moving from Gmc

ij (x, y; t )

to Ggl
ij (x, y; t ), the gauge freedom of the electromagnetic po-

tentials has been replaced by a freedom in choosing the path
C(x,y) involved in the definitions of the relators [44].

E. Site quantities

To move to the introduction of site quantities, we begin
with expressions for the full charge and current densities,

〈ρ̂(x, t )〉 = −ie
[
Ggl

ii (x, y; t )
]

y→x + ρ ion(x), (46)

and

〈ĵ(x, t )〉 = −ie
[
J gl

ij (x, y; t )Ggl
ji (x, y; t )

]
y→x

. (47)

Here we have introduced a differential operator for the global
charge current,

J gl
ij (x, y; t ) = Jgl

ij (x,p(x, y; t )) + Jgl
ij (y,p∗(y, x; t )), (48)

with

Jgl
ij (x,p(x, y; t )) = e

2m
p(x, y; t )δij + êcεabc

eh̄

2m
σ b

ij
∂

∂xa

+ êcεabc
eh̄

8m2c2
σ a

ij (∇V (x))b. (49)

and where we have defined a modified momentum operator by

p(x, y; t ) = p(x) − e

c
�y(x, t ). (50)

Expanding the minimal coupling Green’s function in the
adjusted Wannier function basis, we have

Ggl
ij (x, y; t ) = ie−i�(x,y;t )

∑
α,β,R,R′

〈â†
βR′ (t )âαR(t )〉

× W̄ ∗
βR′;j(y, t )W̄αR;i(x, t ), (51)

and we define the components of a single particle density
matrix as

ηαR;βR′ (t ) ≡ 〈â†
βR′ (t )âαR(t )〉ei�(R′,R;t ), (52)

with the phase factor chosen to ensure that the dynamics of
the single particle density matrix is gauge invariant in the
electromagnetic sense, as was done in the introduction of
the global Green’s function. The dynamical equations for the
ηαR;βR′ (t ) were derived earlier [10] for systems where the spin
degree of freedom is neglected. Here the derivation follows
along those lines, but with the use of K(x, t ) as the differential
operator for the Hamiltonian, and the use of spinor states in
the construction of the Green’s function. For completeness we
give the result in Appendix B.

We can then decompose the global Green’s function into
site specific Green’s functions labeled by a lattice site R,

Ggl
ij (x, y; t ) =

∑
R

e−i�(x,y,R;t )GR
ij (x, y; t ), (53)

where

GR
ij (x, y; t ) = i

2

∑
α,β,R′

ηαR;βR′ (t )ei�(R′,y,R;t )

× χ∗
βR′;j(y, t )χαR;i(x, t )
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+ i

2

∑
α,β,R′

ηβR′;αR(t )ei�(R,x,R′;t )

× χ∗
αR;j(y, t )χβR′;i(x, t ), (54)

and we can then write

〈ρ̂(x, t )〉 =
∑

R

ρR(x, t ),

〈ĵ(x, t )〉 =
∑

R

jR(x, t ). (55)

Site quantities such as jR(x, t ) in general involve differential
operators acting on the site Green’s functions GR(x, y; t ).
Expressions for the site charge and current density are found
in Appendix B. Again, their derivation largely follows what
was done earlier for spinless systems [10].

And again as in the spinless case, we must also identify a
free charge density ρF (x, t ) and a free charge current density
jF (x, t ) [10]. “Free” charges at each site are constructed by
placing all the charge associated with a site R at that site.
Since the total charge associated with each site is not neces-
sarily constant in time, link currents are identified, and from
these we identify the free current density. The expressions for
these quantities follow those for spinless systems, and can be
found in Appendix B.

The charge density ρR(x, t ) associated with each site can
be considered as the sum of the total charge associated
with site R localized at that lattice site (B19), and contribu-
tions from a microscopic polarization field associated with
the site that captures the multipole moments of the charge
distribution,

pR(x, t ) ≡
∫

s(x; y, R)ρR(y, t )dy. (56)

We also introduce magnetization fields associated with each
site, which are further split into three contributions,

mR(x, t ) ≡ m̄R(x, t ) + m̃R(x, t ) + m̆R(x, t ). (57)

These are the “atomic,” “itinerant,” and “spin” contributions
respectively. The atomic magnetization is related to the site
current density jR(x, t ) in the way that the magnetization in
an isolated atom would be related to its current density. The
itinerant magnetization arises because there are corrections
to this in a solid, since the sites are not isolated [45,46];
this is discussed in Appendix B. For brevity we omit these
expressions in the main body of the text, since their derivation
follows what was done earlier [10], with the understanding
that operators such as the charge current and the Hamiltonian
matrix elements now involve spin-orbit coupling effects, and
the Wannier functions are now spinors. The spin contribution
to the magnetization, however, is a new term here and arises
due to including the spin degree of freedom. It is given by

m̆R(x, t ) = eh̄

4mc

∑
α,β,R′,R′′

(δRR′ + δRR′′ )ei�(R′,x,R′′ )

× χ∗
βR′;j(x, t )σ jiχαR′′;i(x, t )ηαR′′;βR′ (t ). (58)

The total microscopic polarization and magnetization fields
are simply the sum over their respective site quantities,

p(x, t ) =
∑

R

pR(x, t ),

m(x, t ) =
∑

R

mR(x, t ). (59)

We can write the expectation value of the total charge
density and current density in terms of the polarization, mag-
netization, and free charge and current,

〈ρ̂(x, t )〉 = −∇ · p(x, t ) + ρF (x, t ),

〈ĵ(x, t )〉 = ∂p(x, t )

∂t
+ c∇ × m(x, t ) + jF (x, t ). (60)

The expressions for all the aforementioned site quantities, and
for the free charge and current densities, can be found in
Appendix B.

III. MULTIPOLE EXPANSION

At this point, spatial averaging can be employed to con-
struct the macroscopic version of the expressions (60) for
the microscopic charge and current densities; the treatment of
light propagating through the crystal, taking into account its
variation over a unit cell if necessary, can then be addressed
[12].

To treat the linear response including spatially varying
fields the microscopic polarization is expanded to include the
quadrupole moment

pi
R(x, t ) = μi

R(t )δ(x − R) − qi j
R (t )

∂δ(x − R)

∂x j
+ · · · , (61)

where the electric dipole moment is

μi
R(t ) ≡

∫
dy(yi − Ri )ρR(y, t ), (62)

and the electric quadrupole moment is

qi j
R (t ) ≡ 1

2

∫
dy(yi − Ri )(y j − R j )ρR(y, t ), (63)

each associated with lattice site R. This is accomplished by
expanding the relator s(x; y, R) appearing in Eq. (56) for
the site polarization. For the moment we only consider the
magnetic dipole moment and neglect higher-order moments,
so the microscopic magnetization fields are written as

mi
R(x, t ) = ν i

R(t )δ(x − R) + · · · , (64)

where the magnetic dipole moment is

ν i
R(t ) ≡

∫
dx

(
m̄i

R(x, t ) + m̃i
R(x, t ) + m̆i

R(x, t )
)
. (65)

Before any fields are applied we can obtain expressions
for the ground-state dipole moments. If inversion symmetry is
broken there is the possibility for a spontaneous polarization,
and if time-reversal symmetry is broken before the application
of any fields, a spontaneous magnetization is possible.

The expression for the ground-state polarization (see, e.g.,
Mahon and Sipe [12]) is unchanged upon including spin-
orbit coupling in this formalism, although of course spinor
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Wannier functions that capture the effects of spin-orbit cou-
pling must be used in its calculation. However, beyond the
effects of spin-orbit coupling the magnetization gains an ex-
plicitly spin-dependent contribution, and so we turn now to
the contributions to the magnetization.

The total magnetic dipole moment of a site is the sum of
the atomic, itinerant, and spin contributions (57). We evaluate
the ground-state expressions by setting the applied fields to
zero in (65). The real space-expressions for the “atomic”
and “itinerant” ground-state magnetization are different from
the previous treatment [10] of spinless systems, because the
Wannier functions are now spinors, and because there are
spin-orbit contributions to the velocity operator. The expres-
sion for the atomic magnetization that follows from the atomic
contribution to the magnetic dipole moment is

M̄i(0) = εiab

�uc

1

c

∑
α

fα

∫
dx(xa − Ra)W ∗

αR(x)

×
(

e

2m
pb(x) + εblm eh̄

8m2c2
σ l∇mV(x)

)
WαR(x),

(66)

and the corresponding expression for the itinerant magnetiza-
tion is

M̃i(0) = e

2h̄c

εiab

�uc

∑
αμR′

fαIm

{ ∫
dxR′axb

× W ∗
μR′ (x)Wα0(x)H (0)

α0;μR′

}
, (67)

where the zero-order Hamiltonian matrix elements are

H (0)
αR;βR′ =

∫
W ∗

αR(x)H0(x)WβR′ (x)dx. (68)

These expressions can then be converted to k-space integrals
[10]. Despite the appearance of the spin-orbit contribution in
(66), the k-space expression for M̄(0) is formally the same as
if there were no spin, because of VME.

The contribution to the site magnetic dipole moment due
to the spin degree of freedom is just as one would expect,

ν̆
(0)
R = eh̄

2mc

∑
α

fα

∫
dxW ∗

αR(x)σWαR(x), (69)

and using Eqs. (28) and (30) we find the spin contribution to
the magnetization is

M̆(0) = e

mc

∑
n

fn

∫
dk

(2π )3
Snn(k), (70)

which is gauge invariant in the sense of how one constructs
the Wannier functions.

IV. LINEAR RESPONSE

To consider the linear response we begin by expanding
time-dependent quantities in a Fourier series

g(t ) =
∑

ω

e−iωt g(ω), (71)

and find that the relevant terms to the linear response are

μi
R(t ) = μ

i(0)
R + �uc

∑
ω

e−iωt
(
χ il

E (ω)El (R, ω)

+ γ i jl (ω)F jl (R, ω) + αil
P (ω)Bl (R, ω) + · · · ),

qi j
R (t ) = qi j(0)

R + �uc

∑
ω

e−iωtχ
i jl
Q (ω)El (R, ω) + · · · ,

ν i
R(t ) = ν

i(0)
R + �uc

∑
ω

e−iωtαli
M(ω)El (R, ω) + · · · ,

(72)

where

F jl (x, ω) = 1

2

(
∂E j (x, ω)

∂xl
+ ∂El (x, ω)

∂x j

)
(73)

is the symmetric derivative of the electric field.
Implementing the macroscopic averaging technique dis-

cussed in Mahon et al. [12] the macroscopic polarization and
magnetization can be written as

Pi(x, t ) = μ
i(0)
R

�uc
+

∑
ω

e−iωt

(
χ il

E (ω)El (x, ω)

+ γ i jl (ω)F jl (x, ω) + β il
P (ω)Bl (x, ω)

− χ
i jl
Q (ω)

∂El (x, ω)

∂x j
+ · · ·

)
,

Mi(x, t ) = ν
i(0)
R

�uc
+

∑
ω

e−iωtαli
M(ω)El (x, ω) + · · · (74)

These expressions for the macroscopic polarization and mag-
netization can then be implemented in the macroscopic
version of (60) to obtain

Ji(x, ω) = −iωPi(x, ω) + cεi jk ∂Mk (x, ω)

∂x j

= σ il (ω)El (x, ω) − iσ il j (ω)
∂El (x, ω)

∂x j
+ · · · (75)

In going to the second line the response of the polarization to
a magnetic field can be included in the tensor σ il j (ω) due to
Faraday’s law. The conductivity tensors can then be expressed
as

σ il (ω) = −iωχ il
E (ω),

σ il j (ω) = ωγ i jl (ω) − icαia
P (ω)εa jl − ωχ

i jl
Q (ω)

+ icεi jaαla
M(ω), (76)

where a detailed discussion of the various contributions to the
optical conductivity tensor are discussed in an earlier paper
[12]. In that earlier paper the αil

P/M(ω) only included terms
that vanish as the frequency vanishes; the Chern-Simons and
cross-gap contributions, which survive at all frequencies, were
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tabulated separately. Here we include them in αil
P/M(ω), so

that the expressions (2) capture the full response of P(ω) to
B(ω) and M(ω) to E(ω). In Sec. VI we give the full expres-
sions for σ il (ω) and σ il j (ω), including the spin contribution.

A. First-order response

Linear response of the polarization, magnetization, or
quadrupolarization can arise because the single particle den-
sity matrix responds to the external electromagnetic field, and
also because the matrix elements involved in the quantity
being calculated can depend on the electromagnetic field.
We refer to these contributions as “dynamical” and “compo-
sitional” respectively [10], and label the contributions to a
polarization, magnetization, or quadrupolarization by I and
II respectively. We begin by collecting the responses of the
single particle density matrix to the electromagnetic field,
using (E ), (B), and (F ) to indicate a response to the elec-
tric, magnetic, or symmetrized derivatives of the electric field
respectively.

The first-order response of the single particle density ma-
trix to an applied electric field at arbitrary frequency is

η
(E )
αR;βR′ (ω) = eEl (Ra; ω)�uc

∑
mn

fnm

×
∫

BZ

dk
(2π )3

eik·(R−R′ )U †
αmξ l

mnUnβ

�mn(k) − h̄(ω + i0+)
, (77)

where fnm = fn − fm, and �mn(k) = Emk − Enk. The elec-
tromagnetic fields and their derivatives are evaluated at an
arbitrary lattice site Ra, which when implemented in the ex-
pressions for site quantities associated with a lattice site R
provides a natural choice Ra = R.

The first-order response of the single particle density ma-
trix to an arbitrary frequency magnetic field is given by the
expression found in Mahon et al. [12] and an added spin-
dependent contribution. The total result is

η
(B)
αR′′;βR′ (ω) = e�uc

4h̄c
εlabBl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmBab

mn(k, ω)Unβ

+ e�uc

4h̄c
εlabBl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )�mn(k)ξ b
mn

�mn(k) − h̄(ω + i0+)
[(∂aU

†
αmUnβ − U †

αm(∂aUnβ )]

− iωe�uc

4c
εlabBl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmξ a

mnUnβ

�mn(k) − h̄(ω + i0+)
[(R′′b − Rb

a) + (R′b − Rb
a)]

+ e�uc

mc
Bl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmSl

mnUnβ

�mn(k) − h̄(ω + i0+)
, (78)

where

Bab
mn(k, ω) = i

∑
s

[
�sn(k)

�mn(k) − h̄(ω + i0+)
ξ a

msξ
b
sn + �sm(k)

�mn(k) − h̄(ω + i0+)
ξ a

msξ
b
sn

]

−
(

2 + h̄ω

�mn(k) − h̄(ω + i0+)

)
∂a(Emk + Enk )

�mn(k) − h̄(ω + i0+)
ξ b

mn. (79)

The last line of Eq. (78) arises due to the added magnetic dipole energy term in the Hamiltonian. We additionally have the
response of the single particle density matrix to the symmetric derivatives of the electric field, which can be written as the same
BZ integral as seen previously [12],

η
(F )
αR′′;βR′ (ω) = e�uc

2
F jl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmF jl

mn(k, ω)Unβ

+ ie�uc

2
F jl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )ξ l
mn

�mn(k) − h̄(ω + i0+)

[
U †

αm∂ jUnβ − ∂ jU
†
αmUnβ

]

+ e�uc

2
F jl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmξ l

mnUnβ

�mn(k) − h̄(ω + i0+)

[(
R′′ j − R j

a

) + (
R′ j − R j

a

)]
, (80)

with

F jl
mn(k, ω) =

∑
s

ξ
j

msξ
l
sn

�mn(k) − h̄(ω + i0+)
+ i

∂ j (Emk + Enk )

(�mn(k) − h̄(ω + i0+))2 ξ l
mn. (81)
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1. Polarization response to B

In the spinless calculation there is both a dynamical
and a compositional modification of the polarization due
to an applied uniform magnetic field, P(B)(ω) = P(B,I )(ω) +
P(B,II )(ω) [12]. These retain their same form here, with the
Bloch functions involved in the matrix elements now under-
stood to be spinors. In addition, there is a new spin-dependent
dynamical contribution,

Pi,(B;σ )(ω) = e2

mc
Bl (ω)

∑
mn

fnm

∫
dk

(2π )3

× ξ i
nmSl

mn

�mn(k) − h̄(ω + i0+)
. (82)

2. Spin magnetization response to E

In general we can expect atomic, itinerant, and spin contri-
butions to the response of the magnetization to an electric field
M(E ) = M̄(E ) + M̃(E ) + M̆(E ). All three involve dynamical
modifications, and there is also a compositional modification
of the itinerant contribution. The frequency-dependent spin
magnetization response to an electric field is

M̆i(E ,I )(ω) = e2

mc
El (ω, R)

∑
mn

fnm

∫
BZ

dk
(2π )3

× Si
nmξ l

mn

�mn(k) − h̄(ω + i0+)
, (83)

which is gauge independent.
The remaining responses outlined in Eq. (72) can be found

in a previous paper [12], where inner products are now un-
derstood as involving spinors, and the band structure and real
space velocity operator are altered by spin-orbit coupling.
However, when expressed as a single integral over the BZ
the functional form is the same due to VME; hence we omit
repeating those results here.

V. FREQUENCY DEPENDENT MAGNETOELECTRIC
POLARIZABILITY

We consider first the limit of uniform and static applied
fields. The magnetoelectric polarizability tensor is defined as

αil = ∂Pi

∂Bl

∣∣∣∣
E=0
B=0

= ∂Ml

∂Ei

∣∣∣∣
E=0
B=0

. (84)

The orbital contributions to the MP tensor are usually written
as the sum of an isotropic Chern-Simons contribution αil

CS and
a “cross gap contribution,” αil

G. In Sec. IV of Mahon et al. [13],
where spinless electrons were considered, the splitting of the
orbital contributions to the MP tensor derived there into αil

CS
and αil

G is performed. That strategy is valid here as well, and so
we can split the full MP tensor into the familiar Chern Simons
contribution, the cross gap contribution, and a new explicitly
spin-dependent contribution αil

S ,

αil = αil
CS + αil

G + αil
S , (85)

where the Zeeman interaction leads to the new contribution
αS . But it does not alter the functional form of αil

CS + αil
G;

the first two terms on the right-hand side of Eq. (85), when

expressed as integrals over the BZ involving the non-Abelian
Berry connection matrix elements and the band dispersion,
take the same form for spin-full electrons as they did for spin-
less electrons [13], due to VME. As in the spinless electron
problem, the Chern-Simons contribution is gauge dependent,
and can take on values that are integer multiples of e2

h̄ ; it does
not lead to any net charge or current density associated with
P and M, but is linked to a quantized surface Hall conduc-
tance [2,5]. The cross-gap contribution vanishes unless both
time-reversal and inversion symmetry are broken. The new
contribution αil

S , which appears as a dynamical modification
of the polarization if the response of the polarization to the
magnetic field is calculated, or as a dynamical modification to
the magnetization due to the presence of �0

R in the Hamilto-
nian matrix elements (B2) if the response of the magnetization
to the electric field is calculated, is given by

αil
S = e2

mc

∑
mn

fnm

∫
BZ

dk
(2π )3

ξ i
nmSl

mn

�mn(k)
. (86)

It vanishes unless both inversion symmetry and time-reversal
symmetry are broken; the expression is gauge-invariant so
there is no ambiguity in its value.

As expected, in the static limit the expressions for αil
CS and

αil
G are in exact agreement with those of the “modern theory,”

which are based on adiabatic and thermodynamic arguments
[5–7,9]. Adding spin-orbit coupling and a Zeeman-type cou-
pling can have the effect of breaking degeneracies, opening
a gap, or changing the character of the bands. These produce
“implicit changes” to the orbital magnetoelectric polarizabil-
ity αil

G + αil
CS that are hard to quantify without specifying a

model and employing the resulting energy band dispersions
and Bloch functions in the expressions.

Beyond the “implicit” effects on the orbital contribution
αil

G + αil
CS there is an “explicit” contribution to the MP, αil

S , due
to the inclusion of spin. The properties of the Bloch spinors
when the system obeys time-reversal or inversion symmetry
are generally such that αil

S must vanish, as must αil
G. There

are however, additional requirements. For αil
G to survive, the

occupied valence bands must not all have the same energy,
the conduction bands must not all have the same energy,
and the conduction band energies must not be the negative of
the valence band energies [5]. Similarly, for αil

S to survive the
energies of the electrons in the ground state must not be the
same for opposite spins at all k points.

Turning now to the responses at finite frequency, the
Zeeman interaction contribution to the response of the polar-
ization to the magnetic field and that of the magnetization to
the electric field differ. They are given respectively by

αil
S;P (ω) = e2

mc

∑
mn

fnm

∫
BZ

dk
(2π )3

ξ i
nmSl

mn

�mn(k) − h̄(ω + i0+)
,

(87)
and

αil
S;M(ω) = e2

mc

∑
mn

fnm

∫
BZ

dk
(2π )3

Sl
nmξ i

mn

�mn(k) − h̄(ω + i0+)
,

(88)
where however αil

S;P (0) = αil
S;M(0) = αil

S , in agreement with
a result found from adiabatic variation of the Hamiltonian
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[9]. The symmetry constraints on the frequency dependent
αil

S;P (ω) and αil
S;M(ω) are such that in general only inversion

symmetry need be broken to lead to nonvanishing compo-
nents. However, if the treatment of the Hamiltonian is limited
to a model of two “scalar” copies of each Bloch function at all
k—and with the restriction to an insulator such that each copy
has the same filling factor—the αil

S;P/M(ω) can be shown to
vanish even if inversion symmetry is broken. Thus the inclu-
sion of spin-orbit coupling, while not breaking time-reversal
symmetry, necessitates a more careful spinor treatment that

can lead to a nonzero αil
S;P/M(ω). The symmetry arguments

are laid out in more detail in Appendix D.
The orbital contributions to the generalizations of the

magneto-polarizability at finite frequency are also different,
depending on whether one considers the response of the po-
larization to the magnetic field or that of the magnetization
to the electric field. They were given earlier by Mahon et al.
[12] for spinless electrons, and can be carried over here due
to VME. In all, then, the αil

P (ω) and αli
M(ω) of (2) are

given by

αli
M(ω) = αli

CS + αli
G + αli

S;M(ω) + e2

4c
εiab

∑
mn

fnm

∫
BZ

dk
(2π )3

ω

�mn(k) − h̄(ω + i0+)

[
2
∂b(Emk + Enk )

�mn(k)
ξ a

nmξ l
mn

+ i
∑

s

�sm(k)

�mn(k)
ξ a

nsξ
b
smξ l

mn + i
∑

s

�ns(k)

�mn(k)
ξ b

nsξ
a
smξ l

mn − iξ l
mn

∑
s

(
Wa

nsξ
b
sm + ξ b

nsWa
sm

)]
, (89)

and

αil
P (ω) = αil

CS + αil
G + αil

S;P (ω) + e2

4c
εlab

∑
mn

fnm

∫
BZ

dk
(2π )3

ω

�mn(k) − h̄(ω + i0+)

[
i
∑

s

�sn(k)

�mn(k)
ξ a

msξ
b
snξ

i
nm

+ i
∑

s

�sm(k)

�mn(k)
ξ a

msξ
b
snξ

i
nm + iξ b

mn

∑
s

(
ξ i

nsWa
sm + Wa

nsξ
i
sm

) −
(

3 + h̄ω

�mn(k) − h̄(ω + i0+)

)
∂a(Emk + Enk )

�mn(k)
ξ b

mnξ
i
nm

]
.

(90)

Interestingly, the finite frequency generalizations of the orbital magnetoelectric polarizability tensor are not gauge invariant;
however, when combined with other response tensors to form the optical conductivity tensor the gauge dependence is canceled,
as we see below.

VI. OPTICAL CONDUCTIVITY TENSOR

With αil
P (ω) and αli

M(ω) identified, from (76) we see that to obtain σ il (ω) and σ il j (ω) we require expressions for χ il
E (ω),

γ i jl (ω), and χ
i jl
Q (ω). These last three tensors have no explicit spin contributions, and follow from earlier work [12] with the

wavefunctions in the matrix elements understood to be spinors. We find

σ il (ω) = −iωe2
∑
nm

fnm

∫
BZ

dk
(2π )3

ξ i
nmξ l

mn

�mn(k) − h̄(ω + i0+)
, (91)

and

σ il j (ω) = − icαia
G εa jl + icεi jbαlb

G − icαia
S;P (ω)εa jl + icεi jbαlb

S;M(ω)

+ ωe2

4

∑
mns′

fnm

∫
BZ

dk
(2π )3

1

�mn(k) − h̄(ω + i0+)

(
ξ i

nmξ j
msξ

l
sn − ξ i

nsξ
j

smξ l
mn

)[
1 + �sn(k) − �ms(k)

�mn(k)

]

+ ωe2

4

∑
mns′

fnm

∫
BZ

dk
(2π )3

1

�mn(k) − h̄(ω + i0+)

(
ξ i

nmξ l
msξ

j
sn − ξ i

smξ l
mnξ

j
ns

)[
1 − �sn(k) − �ms(k)

�mn(k)

]

+ iωe2

4

∑
mn

fnm

∫
BZ

dk
(2π )3

∂ j (Emk + Enk )

�mn(k) − h̄(ω + i0+)
ξ i

nmξ l
mn

(
5

�mn(k)
+ �mn(k) + h̄ω

�mn(k)(�mn(k) − h̄(ω + i0+))

)

− iωe2

4

∑
mn

fnm

∫
BZ

dk
(2π )3

2

�mn(k)

∂l (Emk + Enk )

�mn(k) − h̄(ω + i0+)
ξ i

nmξ j
mn

− iωe2

4

∑
mn

fnm

∫
BZ

dk
(2π )3

2

�mn(k)

∂i(Emk + Enk )

�mn(k) − h̄(ω + i0+)
ξ j

nmξ l
mn (92)
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where the prime on the band index s is to indicate that the
sum is restricted such that s �= m, n. Here we have simpli-
fied the contributions identified earlier [12], as detailed in
Appendix C, so that only off-diagonal components of the
non-Abelian Berry connection matrix appear. Thus, with a
knowledge of the band structure and cell periodic Bloch func-
tions, the optical conductivity tensors can be computed with
the sum over unoccupied bands truncated; for the off-diagonal
non-Abelian Berry connection matrix elements can be re-
placed with the velocity matrix elements divided by the energy
difference, avoiding complications at degenerate k points in
evaluating the non-Abelian Berry connection.

The tensor σ il (ω) is symmetric in the presence of time-
reversal symmetry; more generally it is not. In the presence
of time-reversal symmetry the contributions to σ il j (ω) from
α

i j
G vanish; more generally they are present. The additional

frequency dependent contribution to σ il j (ω) is in general non-
vanishing even with time-reversal symmetry, but does vanish
in the presence of inversion symmetry.

VII. CONCLUSIONS

In this paper we have extended a treatment of the optical
response of crystals based on microscopic polarization and
magnetization fields [10] to include electron spin. The Hamil-
tonian employed includes an interaction term between the spin
and an external magnetic field, and spin-orbit coupling. Some
of the real space expressions for quantities such as the ground
state atomic and itinerant magnetization differ from what was
found previously [13], due to a modified velocity operator and
a different unperturbed Hamiltonian, but when converted to an
integral over the Brillouin zone, they are formally identical to
the previous work [13]. The explicit expression for the spin
magnetization is also identified.

In calculating the linear response we can generalize the
“orbital magnetoelectric polarizability” (OMP) tensors and
construct magnetoelectric polarizability (MP) tensors that in-
clude spin contributions, both explicitly due to a Zeeman term

in the Hamiltonian and implicitly in the spinor Bloch states
used to calculate matrix elements. For the first time we give
expressions for the MP tensors that include spin effects and
are valid at finite frequencies; they reduce to a single tensor at
zero frequency, even including spin effects.

Other terms that contribute to the total current density
induced by the electric field at finite frequency are also
identified, leading to the third-rank tensor σ il j (ω) character-
izing the response of the total current density to the spatial
variation in the electric field. While individual contributions
to the tensor are gauge dependent, the full tensor itself is
gauge invariant. This is in contrast to existing work on op-
tical activity that begins with the total current response and
then attempts to decompose the response into quadrupolar
and magnetoelectric-like contributions, our decomposition is
made a priori and it can be seen how the various contributions
can arise and combine. An expression for this tensor, which
characterizes optical activity, has been given that includes the
effects of spin, holds at finite frequency, and is valid even if
the crystal initially does not satisfy time-reversal symmetry.

Finally, we have shown how to write the expression for
the tensor σ il j (ω) in a form involving only off-diagonal com-
ponents of the Berry connection. This makes the expression
immediately suitable for numerical calculation.
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APPENDIX A: VELOCITY MATRIX ELEMENTS

To determine the form of the velocity matrix elements as
functions of k we begin by manipulating the left-hand side of
Eq. (31),

∫
ψ

†
n′k′ (x)

[ h̄

im

∂

∂xa
− e

mc
Aa

stat (x) + h̄

4m2c2
εabcσb

∂V(x)

∂xc

]
ψnk(x)dx = 1

(2π )3

∫
ei(k−k′ )·xKa

n′k′;nk(x)dx, (A1)

where

Ka
n′k′;nk(x) = u†

n′k′ (x)
[ h̄

im

∂

∂xa
+ h̄

m
ka − e

mc
Aa

stat (x) + h̄

4m2c2
εabcσb

∂V(x)

∂xc

]
unk(x). (A2)

Then converting the integral over all space in Eq. (A1) to a sum of integrals over unit cells leads to

=
∑

R

1

(2π )3

∫
�uc

ei(k−k′ )·Rei(k−k′ )·yKa
n′k′;nk(y + R)dy

= δ(k − k′)
1

�uc

∫
�uc

Ka
n′k;nk(y)dy

= δ(k − k′)va
n′n(k), (A3)

where

va
n′n(k) = 1

�uc

1

m

∫
�uc

u†
n′k(x)

[
h̄

i

∂

∂xa
+ h̄ka − e

c
Aa

stat (x) + h̄

4mc2
εabcσb

∂V(x)

∂xc

]
unk(x)dx. (A4)
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To simplify the above integral we look at the effective Hamiltonian operator that acts on the cell-periodic part of the Bloch
function

H0
k(x) = 1

2m

(
h̄

i

∂

∂xb
− e

c
Ab

stat (x) + h̄kb

)2

+ V (x) + h̄

4m2c2
εabcσ b∇cV(x)

(
h̄

i

∂

∂xa
− e

c
Aa

stat (x) + h̄ka

)
− eh̄

2mc
σ aBa

static(x, t ),

(A5)

and we take the derivative of the effective Hamiltonian with respect to k,

∂

∂ka
H0

k(x) = h̄

m

(
h̄

i

∂

∂xa
− e

c
Aa

stat (x) + h̄ka + h̄

4mc2
εabcσ b∇cV(x)

)
, (A6)

which allows us to identify the velocity matrix element as

va
n′n(k) = 1

�uc

1

h̄

∫
�uc

u†
n′k(x)

[ ∂

∂ka
H0

k(x)
]
unk(x)dx. (A7)

The integral over the unit cell can be simplified∫
�uc

u†
n′k(x)

[
∂

∂ka
H0

k(x)

]
unkdx

= ∂

∂ka

∫
�uc

u†
n′k(x)H0

k(x)unk(x)dx −
∫

�uc

u†
n′k(x)H0

k(x)
∂unk(x)

∂ka
dx −

∫
�uc

∂u†
n′k(x)

∂ka
H0

k(x)unk(x)dx. (A8)

Since

H0
k(x)unk(x) = Enkunk(x), (A9)

we get

δn′n�uc
∂

∂ka
Enk − En′k

∫
uc

u†
n′k(x)

∂unk(x)

∂ka
dx − Enk

∫
uc

∂u†
n′k(x)

∂ka
unk(x)dx = �ucδnn′

∂Enk

∂ka
+ 1

i
(Enk − En′k )�ucξ

a
n′n(k). (A10)

Putting this all together we find Eq. (32). Thus we see that the expression for the k-dependent velocity matrix elements of
spinless electrons also holds when using spinors and including spin-orbit coupling.

APPENDIX B: EXPRESSIONS FOR SITE QUANTITIES

The dynamics of the single particle density matrix ηαR;βR′ (t ) ≡ 〈â†
βR′ (t )âαR(t )〉 are governed by

ih̄
∂ηαR;βR′ (t )

∂t
=

∑
λR′′

ei�(R,R′′,R′;t )(H̄αR;λR′′ (t )ηλR′′;βR′ (t ) − ηαR;λR′′ (t )H̄λR′′;βR′ (t )) − e�0
R′ (R; t )ηαR;βR′ (t ). (B1)

The matrix H̄ is Hermitian, and its matrix elements are

H̄αR;λR′′ (t ) = 1

2

∫
dxχ∗

αR;i(x, t )ei�(R,x,R′′;t )(Kik(x, R′′; t )χλR′′;k(x, t ))

+ 1

2

∫
dx(Kki(x, R; t )χαR;i(x, t ))∗ei�(R,x,R′′;t )χλR′′;k(x, t )

− ih̄

2

∫
dxei�(R,x,R′′;t )

(
χ∗

αR;i(x, t )
∂χλR′′;i(x, t )

∂t
− ∂χ∗

αR;i(x, t )

∂t
χλR′′;i(x, t )

− ie

h̄

(
�0

R′′ (x, t ) + �0
R(x, t )

)
χ∗

αR;i(x, t )χλR′′;i(x, t )

)
. (B2)

Since all the terms appearing in the dynamics of ηαR′;βR′′

are gauge invariant in the electromagnetic sense, if its initial
conditions are set before any fields are applied then it will
remain so at all later times. The matrix elements H̄αR;λR′′

are effectively hopping matrix elements and on-site energies.

While the matrix elements between different sites (R �= R′′)
are in general nonzero, for R far from R′′ they can be rea-
sonably expected to be zero. Additionally, on the same site
there are hopping matrix elements between different orbital
types α.
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Isolating the contribution to the total charge density due to
the electrons,

ρe(x, t ) = ρ(x, t ) − ρ ion(x), (B3)

the electronic charge density ρe(x, t ) can then be partitioned
into contributions associated with the lattice sites R,

ρe(x, t ) =
∑

R

ρe
R(x, t ). (B4)

The site electronic charge density and current densities are
written in terms of the site Green’s function

ρe
R(x, t ) = −ieTr([GR(x, y; t )]y→x ),

jR(x, t ) = Tr([J R(x, y; t )GR(x, y; t )]y→x ). (B5)

We can reexpress the microscopic charge density in terms of
the single particle density matrix and a site quantity matrix

ρe
R(x, t ) =

∑
α,β,R′,R′′

ρβR′;αR′′ (x, R; t )ηαR′′;βR′ , (B6)

where

ρβR′;αR′′ (x, R; t ) = e

2
(δRR′ + δRR′′ ),

× ei�(R′,x,R′′;t )χ∗
βR′;i(x, t )χαR′′;i(x, t ).

(B7)

The total charge density associated with a site R is the sum
of the electronic and nuclei contributions associated with said
site [(B6) and (14)]

ρR(x, t ) = ρe
R(x, t ) + ρ ion

R (x). (B8)

The charge current density is composed of two separate
parts, one we wish to separately identify with the “magnetiza-

tion current” that arises from the electron spin, as well as the
more standard velocity charge current,

Jp

ij (x, p(x, y; t )) = e

2m

(
p(x) − e

c
�y(x, t )

)
δij

+ εabcêc eh̄

8m2c2
σ a

ij
∂V(x)

∂xb
, (B9)

and

JM
ij (x,p(x, y; t )) = εabcêc eh̄

2m
σ b

ij
∂

∂xa
, (B10)

and their sum

JR
ij (x, p(x, y; t )) = Jp

ij (x, p(x, y; t )) + JM
ij (x, p(x, y; t )).

(B11)
Using (B9), (B10), and (B11) we can identify the micro-

scopic charge current operator J R as

J R
ji (x, y; t ) = −ie

[
JR

ji (x,p(x, R; t )) + JR
ji (y,p∗(y, R; t ))

]
.

(B12)
This natural splitting of the current density allows one to
identify two contributions to the expectation value of the site
current

jR(x, t ) = jpR(x, t ) + jM
R (x, t ), (B13)

where the microscopic velocity charge current is defined as

jpR(x, t ) =
∑

α,β,R′,R′′
jpβR′;αR′′ (x, R; t )ηαR′′;βR′ (t ), (B14)

with

jpβR′;αR′′ (x, R; t ) =
(

1

2
δRR′′ei�(R′,x,R′′;t )χ∗

βR′;j(x, t )
(
Jp

ji (x,p(x, R; t ))χαR′′;i(x, t )
)

+ 1

2
δRR′′

(
Jp

ji (x,p∗(x, R; t ))ei�(R′,x,R′′;t )χ∗
βR′ j(x, t )

)
χαR′′ i(x, t )

+ 1

2
δRR′χ∗

βR′ j(x, t )
(
Jp

ji (x,p(x, R; t ))ei�(R′,x,R′′;t )χαR′′ i(x, t )
)

+ 1

2
δRR′

(
Jp

ji (x,p∗(x, R; t ))χ∗
βR′ j(x, t )

)
ei�(R′,x,R′′;t )χαR′′ i(x, t )

)
. (B15)

As well the magnetization current is given by

jM
R (x, t ) =

∑
α,β,R′,R′′

jM
βR′;αR′′ (x, R; t )ηαR′′;βR′ (t ), (B16)

with

jM
βR′;αR′′ (x, R; t ) = (δRR′ + δRR′′ )

eh̄

4m
∇

× (
ei�(R′,x,R′′ )χ∗

βR′;j(x, t )σ jiχαR′′;i(x, t )
)
.

(B17)

The expressions for the site-specific current and charge
density do not in general satisfy continuity,

KR(x, t ) ≡ ∇ · jR(x, t ) + ∂ρR(x, t )

∂t
�= 0. (B18)

This is because charges are free to travel from a region associ-
ated with site R to other regions. The total charge associated
with a region R is in general a time-dependent quantity. How-
ever, since total charge is conserved the sum over all KR is
zero. Note that the divergence of the magnetization current is
always zero since the magnetization current is the curl of a
vector.
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The total site charges are

QR(t ) ≡
∫

ρR(x, t )dx = e
∑

α

ηαR;αR(t ) +
∑

N

qN , (B19)

which follows from how we defined ρR(x, t ) and our othonor-
mality condition for the Wannier functions. Link currents are
introduced since the total charge associated with site R is not
necessarily constant in time

dQR(t )

dt
=

∑
R′

I (R, R′; t ), (B20)

with

I (R, R′; t ) = e

ih̄

∑
α,λ

(H̄αR;λR′ (t )ηλR′;αR(t )

− ηαR;λR′ (t )H̄λR′;αR(t )). (B21)

With the total site charges and links currents identified in
(B19) and (B20), we can now define the microscopic “free”
charge and current densities

ρF (x, t ) ≡
∑

R

δ(x − R)QR(t ), (B22)

and

jF (x, t ) ≡ 1

2

∑
R,R′

s(x; R, R′)I (R, R′; t ). (B23)

The free charge density is simply the sum of the charges
associated with each lattice site placed at that lattice site.
The second introduces a microscopic current density by dis-
tributing the net link current along a path from site R′ to
R. The factor of 1/2 is so one can sum over all R and R′,
compensating for double counting. These expressions satisfy
continuity

∇ · jF (x, t ) + ∂ρF (x, t )

∂t
= 0. (B24)

As can be seen in Eq. (57), the magnetization has been
split into three contributions. These contributions are termed
the “atomic”, “itinerant”, and “spin” contribution. The atomic
magnetization is defined as

m̄ j
R(x, t ) ≡ 1

c

∫
α jk (x; y, R) jp,k

R (y, t )dy. (B25)

The itinerant magnetization is included due to the possibility
of charges being allowed to move between sites. The deriva-
tion is fairly involved, and we refer the reader to earlier paper
[10]. The relevant equations are

m̃ j
R(x, t ) ≡ 1

c

∫
α jk (x; y, R) j̃k

R(y, t )dy, (B26)

where

j̃R(x, t ) =
∑

α,β,R′,R′′
j̃βR′;αR′′ (x, R; t )ηαR′′;βR′ (t ). (B27)

With

j̃βR′;αR′′ (x, R; t ) = 1

2
(δRR′′ + δRR′ )j̃βR′;αR′′ (x, t ), (B28)

and

j̃βR′′′;αR′′ (x, t ) = −
∑

R

∫
s(x; y, R)�αR′′;βR′′′

R (y, t )dy

− 1

2

∑
R,R′

s(x; R, R′)ζ αR′′;βR′′′
RR′ (t ), (B29)

where

ζ
αR′′;βR′′′
RR′ (t ) = e

ih̄
(δR′′′RδR′′R′H̄βR;αR′ (t )

− δR′′RδR′′′R′H̄βR′;αR(t )), (B30)

and

�
αR′′;βR′
R (x, t ) = ∇ · jpβR′;αR′′ (x, R; t ) + ∂ρβR′;αR′′ (x, R; t )

∂t

+ 1

ih̄

∑
μ,ν,R1,R2

ρνR2;μR1 (x, R; t )FαR′′;βR′
μR1;νR2

(t ),

(B31)

with

F
αR′′;βR′
μR1;νR2

(t ) = δβνδR2R′ei�(R1,R′′,R2;t )H̄μR1;αR′′ (t )

− δαμδR′′R1 ei�(R1,R′,R2;t )H̄βR′;νR2 (t )

− eδβνδαμδR2R′δR1R′′�0
R2

(R1; t ). (B32)

The spin contribution to the magnetization is given by

m̆(x, t ) = eh̄

2mc
〈ψ†(x, t )σψ (x, t )〉

= eh̄

4mc

∑
α,β,R,R′,R′′

(δRR′ + δRR′′ )ηαR′′;βR′ (t )

× ei�(R′,x,R′′ )χ∗
βR′;i(x, t )σ ijχαR′′;j(x, t ), (B33)

which can be broken up into site magnetizations in an obvious
way,

m̆(x, t ) =
∑

R

m̆R(x, t ). (B34)

The expression for m̆R(x, t ) has already been given in Sec. II,
Eq. (58).

The total microscopic polarization field is just the sum of
all the site polarizations, and likewise the total microscopic
magnetization field is just the sum of all the site magneti-
zations. This follows what was done earlier [10] when the
formalism was outlined excluding electron spin. The key dif-
ferences are that now the Wannier functions are spinors, the
velocity operator is modified by spin-orbit coupling, and there
is an extra contribution to the magnetization explicitly due to
the spin.

APPENDIX C: EFFECTIVE CONDUCTIVITY TENSOR

The effective third-rank conductivity tensor σ il j (ω) ob-
tained by our formalism is naturally decomposed into portions
associated with the electric quadrupole and magnetic dipole
response to an applied electric field, and the electric dipole
response to a magnetic field and spatial derivatives of the
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electric field. These contributions all combine [12] to produce the total gauge-invariant response

σ il j (ω) = ωγ̆ i jl (ω) − ωχ̆
i jl
Q (ω)

− icᾰia
P (ω)εa jl + icεi jbᾰlb

M(ω). (C1)

The gauge-invariant response tensors denoted with a breve accent are

γ̆ i jl (ω) ≡ e2

4

∑
mn

fnm

∫
BZ

dk
(2π )3

[
F jl

mn(k, ω) + F l j
mn(k, ω)

]
ξ i

nm, (C2)

χ̆
i jl
Q (ω) ≡ e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ l
mn(ξ i

nsξ
j

sm + ξ
j

nsξ
i
sm)

�mn(k) − h̄(ω + i0+)
, (C3)

ᾰia
P (ω) ≡ αia

G + αia
S;P (ω) + ωe2

4c
εabc

∑
mn

fnm

∫
BZ

dk
(2π )3

B̀bc
mn(k, ω)ξ i

nm

�mn(k) − h̄(ω + i0+)
, (C4)

where

B̀bc
mn(k, ω) ≡ i

∑
s

[
�sn(k)

�mn(k)
ξ b

msξ
c
sn + �sm(k)

�mn(k)
ξ b

msξ
c
sn

]
−

[
3 + h̄ω

�mn(k) − h̄(ω + i0+)

]
∂b(Emk + Enk )

�mn(k)
ξ c

mn, (C5)

and lastly,

ᾰlb
M(ω) ≡ αlb

G + αlb
S;M(ω) + ωe2

4c
εbac

∑
mn

fnm

∫
BZ

dk
(2π )3

1

�mn(k) − h̄(ω + i0+)

×
[

2
∂c(Emk + Enk )

�mn(k)
ξ a

nmξ l
mn + i

∑
s

[
�sm(k)

�mn(k)
− �ns(k)

�mn(k)

]
ξ a

nsξ
c
smξ l

mn

]
. (C6)

The Chern-Simons contribution to the magneto-polarizability plays no role in describing optical activity so is not present in
ᾰia
P and ᾰlb

M. We can identify the portion of σ il j (ω) that remains when treating the zero frequency response as

σ
il j
DC = −icαia

G εa jl + icεi jbαlb
G − icαia

S;P (0)εa jl + icεi jbαlb
S;M(0), (C7)

since at zero frequency all other contributions vanish; σ
il j
DC vanishes if the system does not break both time-reversal and inversion

symmetry. On the other hand, the frequency dependent response only requires inversion symmetry to be broken.
We can write σ il j (ω) as

σ il j (ω) = − icαia
G εa jl + icεi jbαlb

G − icαia
S;P (ω)εa jl + icεi jbαlb

S;M(ω)

+ ωe2

4

∑
mns

fnm

∫
dk

(2π )3

[
ξ

j
msξ

l
snξ

i
nm + ξ l

msξ
j

snξ
i
nm

�mn(k) − h̄(ω + i0+)
+ i

∂ j (Emk + Enk )ξ l
mn + ∂l (Emk + Enk )ξ j

mn

(�mn(k) − h̄(ω + i0+))2
ξ i

nm

]

− ωe2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ l
mn(ξ i

nsξ
j

sm + ξ
j

nsξ
i
sm)

�mn(k) − h̄(ω + i0+)
− iεa jlεabc ωe2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ i
nm

�mn(k) − h̄(ω + i0+)

×
[

i
�sn(k) + �sm(k)

�mn(k)
ξ b

msξ
c
sn −

(
3 + h̄ω

�mn(k) − h̄(ω + i0+)

)
∂b(Emk + Enk )

�mn(k)
ξ c

mn

]

+ iεi jbεbac ωe2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

1

�mn(k) − h̄(ω + i0+)

[
i
�sm(k) + �sn(k)

�mn(k)
ξ a

nsξ
c
smξ l

mn + 2
∂c(Emk + Enk )

�mn(k)
ξ a

nmξ l
mn

]

(C8)

Using the identity for the product of two Levi-Civita tensors with a shared index εa jlεabc = δ jbδlc − δ jcδlb and εi jbεbac = δiaδ jc −
δ jaδic we can then rewrite Eq. (C8) as Eq. (92). Focusing on the second and third lines of Eq. (92) we see that these are the only
lines that seemingly contain diagonal Berry connection matrix elements,

ωe2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

1

�mn(k) − h̄(ω + i0+)

(
ξ i

nmξ j
msξ

l
sn − ξ i

nsξ
j

smξ l
mn

)[
1 + �sn(k) − �ms(k)

�mn(k)

]

+ ωe2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

1

�mn(k) − h̄(ω + i0+)

(
ξ i

nmξ l
msξ

j
sn − ξ i

smξ l
mnξ

j
ns

)[
1 − �sn(k) − �ms(k)

�mn(k)

]
. (C9)
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However, written in this way we make it apparent that these
diagonal elements cannot contribute to optical activity so do
not need to be included in the sum. In the first line of Eq. (C9)
if s = n the term in square brackets vanishes, if s = m then
the term in round brackets vanishes. Likewise, in the second
line of Eq. (C9) if s = m the term in square brackets vanishes,
and if s = n the term in round brackets vanishes. Thus the sum
over s should exclude n and m, avoiding the need to calculate
the diagonal elements of the Berry connection, which cannot
be expressed in terms of the velocity matrix elements.

APPENDIX D: SYMMETRY CONSTRAINTS
ON MP TENSOR

In this Appendix we confirm that the zero frequency MP
tensor vanishes unless both time-reversal and inversion sym-
metry are broken, with the caveat that the gauge-dependent
part of the MP tensor, entirely contained in the Chern-Simons
contribution, does not necessarily vanish. The frequency
dependent MP tensor only requires inversion symmetry
breaking. For convenience we include the form of the Chern-
Simons and cross-gap contribution.

The Chern-Simons contribution can be written as [13]

αil
CS = −δil e2

2h̄c
εabc

∫
BZ

dk
(2π )3

∑
vv′

[(
ξ a
vv′∂bξ

c
v′v − 2i

3

∑
v1

ξ a
vv′ξ

b
v′v1

ξ c
v1v

)
+ (∂bWa

vv′ )Wc
v′v − 2i

3

∑
v1

Wa
vv′Wb

v′v1
Wc

v1v

]
. (D1)

This is the usual Chern-Simons contribution to the MP tensor [1–3,5]. The “cross gap” contribution can be written as [13]

αil
G = e2

h̄c
εlab

∫
BZ

dk
(2π )3

{
−

∑
cv

∂b(Eck + Evk )

Evk − Eck
Re[(∂av|c)(c|∂iv)] −

∑
vv′c

Evk − Ev′k

Evk − Eck
Re[(∂bv|v′)(∂av

′|c)(c|∂iv)]

+
∑
vcc′

Eck − Ec′k

Evk − Eck
Re[(∂bv|c′)(c′|∂ac)(c|∂iv)]

}
, (D2)

where v labels an occupied state and c labels an unoccupied
state. When n, m, or s are used the index runs over both
occupied and unoccupied states, like in the spin contribution
Eq. (86). The Chern-Simons and cross gap contributions have
not changed their form by adding the spin degree of freedom,
the Zeeman term, and spin-orbit coupling. From the form of
Eq. (D2) it is clear that the “degeneracy” and “reflection”
conditions outlined in Essin et al. [5] cause αG to vanish.

1. Inversion-symmetry Bloch functions

In the case of inversion symmetry one requires that the
Hamiltonian satisfies H0(x) = H0(−x). This implies that the
eigenstate ψnk(x) has the same energy as the state ψnk(−x).
Furthermore, the new state ψnk(−x) can in fact be identified
with a Bloch state with wavevector –k [47]. Thus, we may
choose the cell-periodic Bloch spinors at opposite momenta
to be identical,

un(k) = un(−k). (D3)

The relationship in Eq. (D3) could be altered by a k-dependent
phase factor. This represents an alternative gauge choice, only
affecting the diagonal elements of U(k), seen in Eq. (21).

Choosing Bloch functions that satisfy (D3) the non-
Abelian Berry connection at opposite momenta is related by

ξ a
nm(−k) = −ξ a

nm(k). (D4)

As well the spin matrix elements at opposite momenta are the
same,

Si
nm(−k) = Si

nm(k). (D5)

Now the question becomes what consequences these con-
straints have on the MP tensor. We can only make a definitive

statement on the gauge-independent part of the MP. Split the
integrals in half and perform a change of variables of k →
–k. The result is as one would expect zero, bar the gauge-
dependent terms. Had we chosen the Bloch functions to be
related by some k-dependent phase with a nonzero derivative
the relationships (D4) and (D5) would be more complicated
but the result for the MP tensor would be the same. This
is because the MP tensor is insensitive to purely diagonal
gauge transformations. This vanishing of αil

S and αil
G for zero

frequency holds also at finite frequency. The same arguments
lead to αli

M(ω) and αil
P (ω) vanishing with inversion symmetry

(neglecting the gauge dependence).

2. Time-reversal Bloch functions

The time-reversal operator for half-integer spinors can be
written as [48,49]

T → iσyK, (D6)

where σy is the second of the Pauli matrices, K is the com-
plex conjugation operator, and we use the arrow to denote
the spinor representation of the operator. A general Bloch
function can be labeled by its energy eigenvalue n and crystal
momentum k, as is shown in Eq. (19). We can easily examine
the effect of the time-reversal operator on a general Bloch
state

T ψnk(x) = e−ik·x

(2π )3/2

[
u∗

n,k↓(x)
−u∗

n,k↑(x)

]
. (D7)

If the time-reversal operator and the Hamiltonian commute
then T ψnk(x) is an eigenstate with the same energy as ψnk(x),
but is orthogonal. Let us label this state by n′ instead of n,
to indicate that it is distinct but has the same energy. The
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time-reversed state also is an eigenstate of the translation
operator with eigenvalue –k instead of k. Thus we can write

T |ψnk〉 = eiφn (k)|ψn′−k〉, (D8)

where there is the possibility of an arbitrary k-dependent
phase relating the eigenstates. The spin expectation value of
ψnk is the negative of ψn′−k.

We also have the relationship between the energy of the
time-reversed states [49],

En(k) = En′ (−k). (D9)

When we sum over all states we will have time-reversed
partners appearing. We assume the ground state is time-
reversal symmetric, so if a state is filled in the ground state
its time-reversed partner is also filled. The relationships the
non-Abelian Berry connection and spin matrix elements obey,
complicated by the addition of primed indices due to Kramer’s
pairs, are

ξ a
nm(k) = ξ a

m′n′ (−k),

Sa
nm(k) = −Sa

m′n′ (−k),

ξ a
nm′ (k) = −ξ a

mn′ (−k),

Sa
nm′ (k) = Sa

mn′ (−k). (D10)

If one takes the integrals in the MP and splits them in half,
performs a change of variables from k to –k in one of them,
one will find that all that remains are the gauge-dependent
terms.

This cancellation does not occur for the finite fre-
quency case. This is because a change of indices n ↔
m is required in the above procedure, the energy denom-
inator �nm(k) will then merely pick up a negative sign
upon swapping band indices. In the finite frequency case
the denominator �nm(k) − h̄(ω + i0+) appears, which does
not have that simple relationship upon swapping band in-
dices. However, the cancellation can still occur at finite
frequency if one begins with an identical Hamiltonian for the
spin-up and spin-down electrons, the “scalar particle” treat-
ment, and uses T → K. Then ψnk(x) = ψ∗

n−k(x), En(k) =
En(−k), ψnk↑(x) = [ψnk(x), 0], ψnk↓(x) = [0, ψnk(x)],
and En↑(k) = En↓(k) = En(k). The inclusion of spin-orbit
coupling, while not breaking time-reversal symmetry, can be
sufficient to lift this degeneracy and lead to a nonzero spin
contribution to the MP tensor.
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