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Electron-electron scattering and conductivity of disordered systems
with a Galilean-invariant spectrum
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The electron-electron scattering does not affect the electrical current in Galilean-invariant systems. We show
that, nevertheless, electron-electron collisions may contribute to the electric resistivity of systems with parabolic
spectrum provided that they have multiply connected Fermi surfaces, and there is an additional mechanism of
scattering. To this end, we calculate the resistivity of a two-dimensional electron gas with two filled transverse
subbands in a presence of electron-electron and impurity scattering. Although the collisions between the
electrons do not directly affect the current in such systems, they cause a redistribution of the electrons between
the Fermi contours, which results in a noticeable change in resistivity for realistic mechanisms of impurity
scattering.
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I. INTRODUCTION

In systems with a simple parabolic spectrum, electron-
electron scattering does not contribute to the resistivity
because of their Galilean invariance. In other words, the
electron-electron collisions do not change the current because
it is proportional to the total momentum of electrons, which is
conserved in such collisions. The situation is more interesting
if the spectrum of electrons has several branches, which may
break the Galilean invariance. The effects of electron-electron
scattering on the transport properties of different conductors
that lack Galilean invariance have been a subject of interest
for many years. Typically, the systems under investigation
included two types of charge carriers with different charges or
effective masses. First of all, a number of papers theoretically
addressed scattering between electrons and holes in semimet-
als [1–4]. Another group of papers dealt experimentally and
theoretically with mutual scattering of holes from spin-split
subbands in GaAs heterostructures [5–7] in order to explain
the unusual temperature of resistivity and magnetoresistance
in them. The cyclotron resonance in Si inversion layers in a
presence of collisions between electrons in different valleys
was investigated in Ref. [8]. Several years ago, the electrical
conductivity was calculated for non-Galilean electron systems
with several geometries of Fermi surface [9,10]. Very recently,
it was calculated for a two-dimensional (2D) electron gas
with Rashba spin-orbit coupling [11]. Most theoretical papers
predicted an increase in resistivity proportional to the square
of temperature. The experiment [6] also revealed a decrease
in the temperature derivative of resistivity at sufficiently high
temperatures. All these papers have in common that individual
two-particle collisions do not conserve the current despite
momentum conservation. The reason is that the colliding
particles have either opposite charges or different effective

masses, so the current is not proportional to the total momen-
tum of charge carriers.

In this paper, we show that the electron-electron colli-
sions contribute to the resistivity even if the electrons are
Galilean invariant provided that there is an additional mecha-
nism of scattering. To this end, we consider a 2D electron gas
formed in a semiconductor heterostructure with two populated
subbands of transverse quantization. The Fermi surface of
such systems is doubly connected, but the effective masses
are equal in both subbands, hence, any individual electron-
electron collision cannot change the current. Nevertheless,
these collisions affect the resistivity if either the electron-
impurity scattering rates on the two Fermi contours are
different or there is a sufficiently strong intersubband impurity
scattering. The reason is that the two-particle collisions redis-
tribute nonequilibrium electrons between the two contours. As
a result, the resistivity increases with temperature to a new
finite value. We analyze different mechanisms of impurity
scattering and determine the optimal conditions for observing
this effect.

Except Ref. [11], all cited calculations of the electron-
electron contribution to the resistivity used certain simplifying
assumptions. In particular, they neglected the scattering
processes that involve only one type of charge carriers.
Here we take into account several possible scattering chan-
nels and show that the collisions involving only electrons
at the same Fermi contour are essential at intermediate
temperatures.

The paper is organized as follows. Section II presents the
model, the kinetic equation, and general expressions for the
electron-electron and electron-impurity collision integrals. In
Sec. III, the kinetic equation is solved for arbitrary mechanism
of impurity scattering. In Sec. IV, the results for different
types of impurities are compared, and Sec. V contains the
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summary of the results. Some lengthy expressions are given
in the Appendix.

II. THE MODEL AND KINETIC EQUATION

Consider a 2D semiconductor heterostructure with
parabolic dispersion law and Fermi level crossing two sub-
bands of transverse quantization. In what follows, we will
designate the lower and upper subbands by n = 1 and
n = 2, respectively. Hence, the dispersion laws of electrons
in these subbands are εn(p) = p2/2m + δn2 �0, where �0

is the subband splitting. At low temperatures, the resistiv-
ity of this system is dominated by electron-impurity and
electron-electron scatterings, so the kinetic equation for the
nonequilibrium electron distribution is of the form

−eEvn

T
f̄ (1 − f̄ ) = I imp

n + Iee
n , (1)

where E is the electric field, vn = ∂εn/∂ p, and f̄ (εn) is the
equilibrium Fermi function. The electron-impurity collision
integral with account taken of intersubband scattering was ob-
tained in many papers [12–15] and in the Born approximation
is given by the equation,

I imp
n (p) = 2π

h̄

∑
n′

∫
d2 p′

(2π h̄)2
δ(εn − εn′ )

× |Unn′ (p − p′)|2[ fn′ (p′) − fn(p)], (2)

where Unn′ (p − p′) is the matrix element of the impurity po-
tential between electron states (p, n) and (p′, n′). The specific
form of these matrix elements for different kinds of impurities
will be discussed in Sec. IV.

The electron-electron collision integral may be written in
the standard form as

Iee
n (p) =

∑
n1

∑
n2

∑
n3

∫
d2 p1

(2π h̄)2

∫
d2 p2

(2π h̄)2

∫
d2 p3

× δ(p + p1 − p2 − p3)δ(εn + εn1 − εn2 − εn3 )

×Wn···n3 (pp1, p2 p3)

× [(1 − f )(1 − f1) f2 f3 − f f1(1 − f2)(1 − f3)].

(3)

In the limit of weak electron-electron interaction, the scatter-
ing probabilities may be calculated in the Born approxima-
tion. For simplicity, we assume that the interaction potential V
is short ranged due to the presence of a nearby screening gate.
If the distance to gate d0 is smaller than the Fermi wavelength,

Wn···n3 ≡ 2π

h̄
〈nn1|V |n2n3〉2, (4)

where 〈nn1|V |n2n3〉 = 4πe2
0d0κ

−1δnn2δn1n3 , e0 is the electron
charge, and κ is the dielectric constant. It was taken into
account here that for wave vectors smaller than 1/d0, the
longitudinal Fourier transform of V weakly depends on trans-
verse coordinates and that the transverse wave functions for
n = 1 and n = 2 are orthogonal.

As the system is rotationally symmetric in the plane of the
electron gas, it is convenient to seek the solution of Eq. (1) in

the form

fn(p) = f̄ (ε) + f̄ (ε)[1 − f̄ (ε)]Cn(ε) cos ϕ, (5)

where the energy ε is measured from EF and ϕ is the angle
between E and p. With this substitution, the electron-impurity
collision integral is easily brought to the form

I imp
n (ε, ϕ) = (	xC3−n − 	nCn) cos ϕ f̄ (1 − f̄ ), (6)

where the intrasubband scattering rates,

	n = m

2π h̄3

∫ π

−π

dχ [|U12(p − p′)|2

+ |Unn(p − p′)|2(1 − cos χ )] (7)

are always positive, but the intersubband scattering rate,

	x = m

2π h̄3

∫ π

−π

dχ |U12(p − p′)|2 cos χ (8)

may be, in general, of either sign. Note that 	n > |	x| regard-
less of the scattering potential.

The electron-electron collision integral is treated in the way
similar to Ref. [11]. A substitution of Eq. (5) into Eq. (3)
brings it to the form

Iee
n (ε, ϕ)

= m
∑

n1

∑
n2

∑
n3

Wn···n3

∫
dε1

∫
dε2

∫
dε3

× δ(ε + ε1 − ε2 − ε3)(1 − f̄ )(1 − f̄1) f̄2 f̄3

×
∫

dϕ1

∫
d2 p2

(2π h̄)2

∫
d2 p3

(2π h̄)2
δ(εn2 − ε2)δ(εn3 − ε3)

× δ(p + p1 − p2 − p3)[Cn2 (ε2) cos ϕ2 + Cn3 (ε3) cos ϕ3

− Cn(ε) cos ϕ − Cn1 (ε1) cos ϕ1]. (9)

Furthermore, the cosines in the last factor of the integrand
may be expressed in terms of p · · · p3, ϕ, and ϕ1. Assume that
all the quantities except the distribution functions f̄ and Cn

are energy independent near the Fermi level. Subsequently,
integrating in Eq. (9) over p3, p2, and dϕ1, one obtains

Iee
n = cos ϕ

	ee

T 2

∫
dε′K (ε, ε′)

{
Qn[Cn(ε′) − Cn(ε)]

+ �n
pnC3−n(ε′) − p3−nCn(ε′)

p1 + p2

}
, (10)

where the effective electron-electron scattering rate is given
by 	ee = 8πe4

0d2
0 m3T 2/κ2h̄5 p1 p2 and

K (ε, ε′) = [1 − f̄ (ε)]
ε − ε′

e(ε−ε′ )/T − 1
f̄ (ε′). (11)

It is assumed that Cn are even functions of ε.
The first term in Eq. (10) is similar to the expression for the

2D conductors with the singly connected Fermi surface. The
coefficients,

Qn = 2
pn + 2p3−n

pn
ln

(
p2

n

2mT

)
(12)

exhibit a logarithmic singularity at T → 0 that results from
head-on or small-angle collisions [16,17]. However, this term
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vanishes identically if Cn(ε) = const, and for this reason it
does not contribute to the electric resistivity if taken alone.
Note that it originates not only from the collisions in which all
the initial and final states belong to the same Fermi contour,
but also from the scattering processes in which both the initial
and the final states are at different contours.

The second term in Eq. (10) is nonzero even for energy-
independent Cn and arises only from collisions of electrons
with both initial and final states at different Fermi contours.
The quantities �n are given by the equations,

�n = p1 + p2

pn
ln

(
p1 + p2

p1 − p2

)
. (13)

The structure of this term emanates from the fact that the
collision integral must be turned into zero by a distribu-
tion fn(p) = f̄ (εn) + up f̄ (εn)[1 − f̄ (εn)], i.e., with p1C2 =
p2C1 [18]. Another condition p1�1 = p2�2 stems from the
Galilean invariance of the system and the current conserva-
tion by the electron-electron collisions. The second term in
Eq. (10) is of crucial importance for the effects considered
here.

III. ELECTRICAL CONDUCTIVITY

Equation (1) results in a system of two integral equations in
Cn(ε). To solve it, one may use the method proposed by
Brooker and Sykes [19] for calculating thermal conductivity
of Fermi liquid. Upon a substitution of Eq. (5) into Eq. (1),
reduce both parts by cos ϕ

√
f̄ (1 − f̄ ) and introduce new vari-

able,

ρn(ε) =
√

f̄ (1 − f̄ )Cn(ε). (14)

As a result, the kernel K (ε, ε′) of the integral in Eq. (10) is
replaced by a function of ε′ − ε, and the integral equation may
be brought to the differential form by a Fourier transform in ε

with the parameter u. A subsequent replacement of the inde-
pendent variable ξ = tanh(πTu) brings these equations to the
form

	eeQn(L̂ + 2)ρn(ξ ) + 2	ee�n
pnρ3−n − p3−nρn

p1 + p2

− 1

π2

	nρn − 	xρ3−n

1 − ξ 2
= − eEvn

π
√

1 − ξ 2
, (15)

where L̂ is the differential operator,

L̂ψ = ∂

∂ξ

[
(1 − ξ 2)

∂ψ

∂ξ

]
− ψ

1 − ξ 2
. (16)

As the solutions of Eq. (15) are even functions of ξ , they may
be presented in the form of a series,

ρn(ξ ) =
∞∑

r=0

γnrψ2r (ξ ), (17)

where ψr (ξ )’s are the eigenfunctions of operator L̂ with
eigenvalues −(r + 1)(r + 2) [20]. A substitution of these
expansions into Eq. (15) results in an infinite system of equa-

tions for the coefficients γnr of the form

2	ee

[
r(2r + 3)Qnγnr + �n

p3−nγnr − pnγ3−n,r

p1 + p2

]

+ 1

π2

∞∑
r=0

Yrs(	nγns − 	xγ3−n,s) = eEvn

π
Xr, (18)

where Yrs’s are the matrix elements of (1 − ξ 2)−1 between
ψ2r and ψ2s, and Xr’s are the projections of (1 − ξ 2)−1/2 on
ψ2r . The explicit expressions for these quantities are given in
the Appendix. Once the coefficients γnr are found, the current
density is calculated as the sum,

j = e

2π h̄2

∑
n

∫
dε f̄ (1 − f̄ )pnCn(ε)

= e

4π2h̄2

∑
n

pn

∑
r

Xrγnr . (19)

In general, the system (18) may be solved only numerically,
but an analytical solution is possible in the limiting cases
of vanishing or very strong electron-electron scattering. If
	ee = 0, Eq. (1) with the electron-impurity collision integral
Eq. (6) is easily solved in Cn, and the first part of Eq. (19)
readily gives

σ0 = e2

2π h̄2

	1 p2v2 + 	2 p1v1 + 	x(p1v2 + p2v1)

	1	2 − 	2
x

, (20)

in agreement with previous results for two-subband conduc-
tors. In the opposite limit of a very strong electron-electron
scattering, it is sufficient to keep in the system (18) only
the pair of equations with r = 0. However, one cannot just
neglect the electron-impurity scattering because the system
would be satisfied by any solution with p2γ10 = p1γ20 and,
hence, be degenerate. To lift the degeneracy, one has to keep
the electron-impurity scattering rates nonzero and isolate the
most singular contribution in them to γn0. The resulting co-
efficients are inversely proportional to a linear combination
of the impurity-scattering rates and satisfy the above ratio
so that the currents carried by the subbands are proportional
to the electron densities in them. Making use of the explicit
expressions for �n Eq. (13) and the expression for j Eq. (19),
one easily obtains the corresponding conductivity,

σ∞ = e2

2π h̄2

(p1v1 + p2v2)2

	1 p1v1 + 	2 p2v2 − 	x(p1v2 + p2v1)
. (21)

The σ0(EF ) and σ∞(EF ) curves vary in shape depending on
the ratios of 	n and 	x, but the difference of these conductiv-
ities,

σ0 − σ∞ ∝ [
(	1 − 	2)p1 p2 + 	x

(
p2

1 − p2
2

)]2
(22)

is positive regardless of impurity type. The quadratic depen-
dence of the conductivity difference Eq. (22) on the difference
of the scattering rates is the consequence of the structure
of the second term of the collision integral Eq. (10) and
the general relation between �1 and �2, so it does not de-
pend on the particular choice of the interaction potential V .
For arbitrary temperatures and arbitrary relation between the
electron-electron and impurity scattering, Equation (18) may
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FIG. 1. The σ (T )/σ0 dependence for a GaAs heterostruc-
ture with �0 = 10 meV, EF = 15 meV, d0 = 20 nm, 	1 =
2.5 × 1011 s−1, 	2 = 0.1	1, and 	x = 0. The dashed line shows the
same quantity calculated with Qn = 0.

be solved only numerically. The σ (T ) curve for a GaAs het-
erostructure with �0 = 10 meV, EF = 15 meV, d0 = 20 nm,
	1 = 2.5×1011 s−1, 	2 = 0.1	1, and 	x = 0 is shown in
Fig. 1. The dashed line shows the same curve calculated for
Qn = 0, i.e., in the absence of the first term in the collision
integral Eq. (10). Although the solid and the dashed curves
almost coincide in the low-T and high-T limits, they are
noticeably different at intermediate temperatures. This sug-
gests that the intrasubband electron-electron scattering also
contributes to the electric resistivity, in contrast to the claim
made in many previous papers [2,4,5,7–10]. The difference
between the two calculated conductivities does not appear to
be parametrically small.

IV. ESTIMATES FOR DIFFERENT TYPES OF IMPURITIES

Estimate now the effect of electron-electron scattering for
different types of impurities. The intersubband scattering rate
	x is typically much smaller than the intrasubband rates
	n, and, therefore, to maximize the difference σ0 − σ∞, one
has to find the type of impurities with maximum difference
|	1 − 	2|.

First of all, consider neutral pointlike impurities, which
may be formed by atomic vacancies in the semiconductor. In
this case, the scattering potential may be written in the form

U (r, z) = �0

∑
i

δ(r − ri )δ(z − zi ), (23)

where i labels impurities, r stands for the in-plane coordinates,
and z is the transverse coordinate. Therefore, the impurity-

FIG. 2. The dependence of the relative difference �σ/σ0 =
(σ0 − σ∞)/σ0 on the position of the Fermi-level EF for pointlike im-
purities. The inset separately shows σ0(EF ) (blue curve) and σ∞(EF )
(red curve) normalized to σ0(�0).

averaged square of the matrix element is

|Unn′ (p − p′)|2 = �2
0nimp

∫
dz φ2

n (z)φ2
n′ (z), (24)

where nimp is the three-dimensional concentration of impuri-
ties and φn(z)’s are the transverse components of the electron
wave functions corresponding to the subband n. It is imme-
diately seen that 	x = 0 in this case. The estimates made
using φn for a triangular transverse confining potential give
	1/	2 ≈ 1.3, which results only in a slight decrease in σ with
temperature about 1% (Fig. 2).

Consider now a δ-doped semiconductor heterostructure
where the 2D electron gas is located between the impurities
and the metallic gate in such a way that the impurity-2D gas
distance h0 is much larger than the 2D gas-gate separation
d0 [21]. The 2D Fourier transform of the unscreened poten-
tial of a single impurity U0(q) = 2πe2

0 exp(−qh0)/q is well
known. Therefore, in a presence of the gate, it becomes

Ū0(q) = 2πe2
0q−1{exp(−qh0) − exp[−q(h0 + 2d0)]}

≈ 4πe2
0d0 exp(−qh0) (25)

provided that qd0 
 1. As Ū0(q) is independent of z, the
matrix elements U12 and 	x are zero in this approximation.
Following Ref. [22], one may bring Eq. (7) for the intrasub-
band scattering rates to the form

	n = 64π
mNimpe4

0d2
0

h̄3

∫ 1

0
dξ

ξ 2√
1 − ξ 2

e−4pnh0ξ/h̄, (26)

where Nimp is the 2D concentration of impurities. If pnh0 
 h̄,
the integral over ξ equals π/4. In the opposite limit, it scales
as (pnh0/h̄)−3. If the Fermi level crosses the upper subband
near its bottom and p2 
 p1, it is quite possible that p1h0 > h̄
whereas p2h0 < h̄ and p1d0/h̄ < 1. In this case, 	1 
 	2 and
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FIG. 3. The dependence of the relative difference δσ/σ0 =
(σ0 − σ∞)/σ0 on the position of the Fermi-level EF for δ-doped
Coulomb impurities. The distance between the electron gas and the
impurity layer is h0 = 3h̄/p1(�0). The inset shows σ0(EF ) (blue
curve) and σ∞(EF ) (red curve) normalized to σ0(�0).

the suppression of conductivity by electron-electron collisions
may be about 100% if EF − �0 < �0 (Fig. 3).

Finally, if the charged impurities with three-dimensional
concentration nimp are uniformly distributed over the volume
of the semiconductor, the intrasubband scattering rates may be
obtained by integrating Eq. (26) over h0, which readily gives

	n = 16πmnimpe4
0d2

0 /h̄2 pn. (27)

Therefore, 	1/	2 = p2/p1, and the maximum difference of
σ0 and σ∞ is about 10% at EF ≈ 1.1 �0 (Fig. 4).

A good candidate for observing the suppression of con-
ductivity are AlGaAs/GaAs heterostructures. Currently, these
systems reached such a quality that the electron-electron
scattering is much stronger than the impurity scattering at
temperatures as low as 2 K [23,24]. Transport measurements
in GaAs quantum wells with two populated subbands are also
possible [25,26]. Figure 5 shows the relative correction to the
conductivity calculated as a function of electron concentration
and the width of a rectangular GaAs quantum well, which was
used in experiments [25,26]. In this approximation, the maxi-
mum value of δσ/σ0 does not depend on the width of the well
and corresponds to the electron concentration slightly above
the threshold for the population of the second subband. Wider
wells require lower electron concentrations for observing the
effect, but for narrow wells the range of concentrations where
the effect exists is wider. The suppression of conductivity by
electron-electron scattering could be also observed in double
quantum wells where the overlap between the wave functions
in them results in a formation of symmetric and antisymmetric

FIG. 4. The dependence of the relative difference δσ/σ0 =
(σ0 − σ∞)/σ0 on the position of the Fermi-level EF for uniformly
distributed Coulomb impurities. The inset shows σ0(EF ) (blue curve)
and σ∞(EF ) (red curve) normalized to σ0(�0).

states with a small energy separation, so the population of two
subbands may be achieved at lower electron densities [27].

The above effects may be expected to take place at
the temperatures about several Kelvins or lower, so the
temperature-dependent correction to the resistivity from

FIG. 5. Contour plot of δσ/σ0 as a function of electron concen-
tration and the width of quantum well for the case of uniformly
distributed Coulomb impurities. The blue color corresponds to higher
values of δσ/σ0, and the red color corresponds to its smaller values.
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electron-electron scattering should saturate long before the
electron-phonon scattering comes into play. Note that this
effect is purely semiclassical, and, therefore, it is much larger
than the correction the the conductivity from quantum in-
terference between electron-electron interaction and impurity
scattering [28]. For two-dimensional systems, this correction
is on the order of e2

0/h̄ ∼ 10−4 �−1, whereas for high-quality
GaAs-AlGaAs heterosructures, the conductivity is on the or-
der of 10−1 �−1 and the semiclassical correction may be on
the order of this conductivity.

V. CONCLUSIONS

In conclusion, it was shown that the electron-electron col-
lisions may contribute to the resistivity of Galilean-invariant
systems in a presence of other mechanisms of scattering. In a
2D electron gas with a parabolic spectrum and two populated
subbands, it results in a significant increase in resistivity with
temperature provided that the elastic-scattering rates in these
subbands are essentially different. The reason is that these
collisions redistribute nonequilibrium electrons that carry the
current between the subbands in favor of the subband with
stronger elastic scattering. The effect is maximal if the elastic
scattering is caused by δ-doped Coulomb impurities located
from the 2D electrons further than the screening length, and
the Fermi level is not too high above the bottom of the upper
subband.

As the expressions for σ0 and σ∞ do not contain any pa-
rameters of electron-electron scattering, the comparison of the
low-temperature and high-temperature conductivities allows
a separate determination of the impurity-scattering rates of
electrons 	1 and 	2 in both subbands.

It was also shown that the standard assumption that the
intraband electron-electron scattering does not affect the re-
sistivity of multiband systems holds only in the limit of
very frequent two-particle collisions. Actually, this scattering
is essential at intermediate temperatures where the energy

dependence of nonequilibrium electron distribution deviates
from the simple derivative of the Fermi function.

Although the analytical expressions and numerical results
were obtained for the particular case of the Coulomb inter-
action of electrons screened by a metallic gate, the general
conclusions of this paper remain valid for arbitrary interac-
tions because they stem only from the Fermi statistics and
conservation laws.
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APPENDIX: EXPLICIT EXPRESSIONS
FOR SOME QUANTITIES

The normalized eigenfunctions of differential operator L̂
Eq. (16) are given by the expressions,

ψr (ξ ) =
√

(2r + 3)(r + 2)

8(r + 1)

√
1 − ξ 2P(1,1)

r (ξ ), (A1)

where P(1,1)
r (ξ ) are Jacobi polynomials. The coefficients of

expansion of (1 − ξ 2)−1/2 in these functions are given by

Xr =
∫ 1

−1
dξ

φ2r (ξ )√
1 − ξ 2

=
√

4r + 3

(2r + 1)(r + 1)
. (A2)

The matrix elements of 1/(1 − ξ 2) between the eigenfunc-
tions of L̂ are given by the equation,

Yrs =
∫ 1

−1
dξ

φ2r (ξ )φ2s(ξ )

1 − ξ 2
= min(r, s) + 1/2

max(r, s) + 1

×
√

(4r + 3)(r + 1)(4s + 3)(s + 1)

(2r + 1)(2s + 1)
. (A3)
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