
PHYSICAL REVIEW B 106, 085408 (2022)

Deep neural networks for the prediction of the optical properties
and the free-form inverse design of metamaterials

Timo Gahlmann and Philippe Tassin
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden

(Received 26 January 2022; revised 31 May 2022; accepted 7 July 2022; published 11 August 2022)

Many phenomena in physics, including light, water waves, and sound, are described by wave equations. Given
their coefficients, wave equations can be solved to high accuracy, but the presence of the wavelength scale
often leads to large computer simulations for anything beyond the simplest geometries. The inverse problem,
determining the coefficients from a field on a boundary, is even more demanding, since traditional optimization
requires a large number of forward problems to be solved sequentially. Here we show that the free-form inverse
problem of wave equations can be solved with machine learning. First we show that deep neural networks can be
used to predict the optical properties of nanostructured materials such as metasurfaces. Then we demonstrate the
free-form inverse design of such nanostructures and show that constraints imposed by experimental feasibility
can be taken into account. Our neural networks promise automated design in several technologies based on the
wave equation.
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I. INTRODUCTION

Machine learning is a technology that has revolutionized
medical diagnosis, image and face recognition, self-driving
vehicles, and many more applications in recent decades. Re-
cently, neural networks have also led to new developments
in physics. For example, it was shown that neural networks
can find phase transitions in quantum-mechanical systems [1]
and even identify basic physical concepts such as energy
conservation [2]. The laws of physics are often described
by partial differential equations and a formidable number
of computational techniques have been developed to solve
partial differential equations given definite values of their
coefficients. The inverse problem [3–8], determining the coef-
ficients that produce an a priori given solution, is a much more
complex problem, but a very relevant one since it may offer
technological solutions that go beyond human imagination.
Free-form inverse design in physics, also known as topology
optimization, is well established in continuum mechanics [9],
but only at its infancy in paradigms of physics that rely on the
wave equation [10].

In this article, we will show that the problem of free-
form inverse design for wave equations can be solved with
deep neural networks. To solve the inverse problem of the
wave equation, one normally defines an objective function
that characterizes how close the solution of the wave equa-
tion is to the desired solution. An optimization algorithm is
then used to find the coefficients of the wave equation that
minimize the objective function. This can be applied to the
design of, for example, optical and acoustic devices, since
the coefficients of the wave equation define the materials
and the geometry of the device. Depending on the number
of degrees of freedom, inverse design can be achieved in
different ways. With three or fewer parameters, an exhaustive

parameter scan of the wave equation’s solution can often
be obtained in a reasonable time. If the wave equation’s
coefficients must be represented by three to a few tens of
parameters, binary search [11], physics-informed gradient-
descent methods [12–16], and stochastic optimization such as
genetic algorithms [10,17–20] and particle swarm optimiza-
tion [21–24], have been shown effective. Such optimization
algorithms require a large number of evaluations of the for-
ward problem, which must be solved sequentially. Sometimes,
inverse design reproduces known structures such as periodic
photonic crystals or gratings [14,25], but more often capri-
cious designs with small features that are difficult to fabricate
with lithographic methods are obtained; this shows the im-
portance of integrating fabrication feasibility into the inverse
design method.

Here we want to specifically focus on metasurfaces, i.e.,
thin nanotechnological structures that are built up from
subwavelength-small elementary building blocks—also called
meta-atoms [26–28]. These meta-atoms are individually de-
signed to locally modify the phase and amplitude of the
scattered waves, allowing us to control the electromagnetic
wave front at a subwavelength scale. In this way, one can
obtain nontrivial scattering response from the metasurface.
Metasurfaces have been designed for a wide range of different
purposes, e.g., for holograms [29], axicons [30], and retrore-
flectors [31]. A metasurface consists of a two-dimensional
array of thousands of meta-atoms, each of which needs to
be individually designed to have the correct transmission
amplitude and phase. With a gradient-descent or stochastic
optimization method, this means the optimization must be
restarted thousands of times, leading to wall-clock times of
months or years. Below we will discuss how it is possible
to address the computational and methodological difficul-
ties emerging when using neural networks for the inverse

2469-9950/2022/106(8)/085408(8) 085408-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5618-8987
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.085408&domain=pdf&date_stamp=2022-08-11
https://doi.org/10.1103/PhysRevB.106.085408


TIMO GAHLMANN AND PHILIPPE TASSIN PHYSICAL REVIEW B 106, 085408 (2022)

2 groups of Additional 
convolutional layers

. . . . . .

. . .. . .

. . .

…...Fully 

layers

12 separated 
dense layers

4 concatenated  
dense layers

Grid S-parameters,  
Intensities

Re [S11]

∑ Int

Im [S11]

(a)

(b)

(c) (d)

(e)

Tr
an

sm
is

si
on

 a
m

pl
itu

de
Frequency [THz]

connected

270 275 280 285 290 295

R
ef

le
ct

io
n 

am
pl

itu
de

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

forward model

full-wave simulations
forward model

full-wave simulations

convolutional layers

Tr
an

sm
is

si
on

 p
ha

se

Frequency [THz]
270 275 280 285 290 295

R
ef

le
ct

io
n 

ph
as

e

-3

-2

-1

0

1

2

forward model

full-wave simulations
forward model

full-wave simulations

3

-3

-2

-1

0

1

2

3

FIG. 1. The forward model, which is schematically depicted in this figure, approximates the S parameters of a given meta-atom.
(a) Rendered illustration of a meta-atom. (b) Grid representation (2D cross section) of the meta-atom. (c) Schematic architecture of the
forward model. (d) Output of the forward model. (e) Comparison of S parameters predicted by the forward model (circles) and calculated by
full-wave simulations (crosses).

design of metasurfaces. Indeed, deep artificial neural net-
works (DNNs) can have significant advantages compared to
traditional calculation methods when they are applied care-
fully [40–42]. Several authors have demonstrated that DNNs
can be successfully used for the design of nanophotonic
structures described by a limited number of geometric param-
eters [32–39]. In particular, DNNs provide the big advantage
that they can quickly generate a design for a meta-atom with
any desired transmission amplitude and phase in the subset
of realizable S parameters once they are trained, with no
need to run an optimization for each meta-atom again. The
training of the neural networks still requires a large number
of simulations of the wave equation, but these simulations are
independent, which means they can be run simultaneously on
high-performance computer clusters. In this article, we will
demonstrate a DNN for the inverse design of free-form meta-
surfaces, i.e., not constituted by a special geometry, such as
cylinders or cubes or a combination thereof. We will also show
how DNNs allow to integrate fabrication feasibility directly
into the inverse design.

II. FORWARD MODEL AND FABRICATION FEASIBILITY

We start with building a forward model F that approxi-
mates the optical properties [43–45] of our meta-atoms, the
scattering parameters S , as a function of the grid (g) repre-
senting the lithographic mask:

F[g] ≈ S. (1)

Such a forward model can considerably speed up the evalu-
ation of the optical properties compared to direct full-wave
solutions of the wave equation. Later in this article, we will
use the forward model as a surrogate model [3,6,46,47] in the
training of the generative adversarial network (GAN) we will
build for the inverse design; indeed, a fast and differentiable
approximation of the optical properties is required for the
convergence of the GAN model to output high-quality results
in a reasonable time.

Our metasurface consists of a silicon substrate with a
300-nm-thin silica spacer and a 500-nm-thick patterned layer
of silicon. We use a binary grid to represent the lithographic
mask—0 means that the top layer is etched away, 1 means
the top layer remains at that position. An example of a
meta-atom is shown in Figs. 1(a) and 1(b). This prepares
us for free-form inverse design where the geometry is not
defined by shape parameters. Due to the similarity of this
binary grid representation with pixelated images, a convo-
lutional neural network (CNN) was chosen to model the S
parameters of the meta-atoms. [The topology of the neural
network is shown in Figs. 1(c) and 1(d) and in Fig. S1.]
The network has 12 separate dense layers [followed by a
one-dimensional (1D) convolution for smoothing and a crop-
ping layer for eliminating edge effects] that return estimates
for the following variables: Re[S], Im[S], and |S| for each
of the four S parameters (transmission and reflection in
two polarization states). From these, the network calculates
five additional outputs: (Re[S]2 + Im[S]2) for each of the
S parameters and

∑ |S|2, where the sum is over all S
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FIG. 2. The conditional generative adversarial network model. The generator creates meta-atom grids from noise and S parameters, while
the encoder prevents mode collapse. Two expert networks (forward and classifier model) are integrated inside the discriminator.

parameters. This gives 17 outputs for each frequency. In the
training of the DNN, the objective is to match them with
the respective outputs from the full-wave simulations. The
17 outputs are partly redundant, but by using all of them in
the loss function of the forward network we can confine the
manifold of possible outputs of the DNN to solutions that
better capture the physical constraints on the outputs imposed
by energy conservation and other relationships between the
outputs. In order to create the training and validation data set
for the CNN, about 40 000 semirandom grids were created
and loaded into the finite-element simulator COMSOL [48] to
obtain the S parameters. The binary grids were grown from
random noise by filling too small holes and erasing too small
islands of increasing size (see Supplemental Material [49]),
since such holes and islands cannot be realized by current
lithographic techniques. Therefore, the allowed geometries of
our meta-atoms are only limited by the 100 × 100 resolution
of the grid and by fabrication feasibility, and not by any other
constraints arising from the computational method.

In Fig. 1(e), we show the results for a sample from the
validation set. We find excellent agreement between the S
parameters predicted by the forward model and the S param-
eters calculated from the finite-element simulations (with the
exception of samples with narrow resonances, see also below),
with a mean square error (MSE) in the validation set of less
than 0.003 and a normalized mean square error (NMSE) of
0.006. To achieve these results, about 36 000 samples were
used for training and 4 000 for validation.

As we argued before, it is important to integrate fabrication
feasibility into the inverse design method. Filtering out too
small geometry features as we did for the creation of the
training samples is, however, too time-consuming. To address
this issue, we trained a classifier network C on flawless and
flawed grids:

C[g] ≈ D. (2)

The grids were labeled with the number of pixels (D) that
would need to be changed in order to satisfy the fabrication
restrictions by a variation of the algorithm that created the
semirandom grids for the training samples. The complete
layout of the classifier network can be found in Fig. S2.

III. INVERSE DESIGN

We now have all the elements we need to build the neural
network model for the inverse design. The traditional methods
of using an artificial neural network (ANN) as a surrogate
model for evolutionary optimization [5] are computationally
not the most efficient and often bare the risk of converging to
a singular point of the surrogate model. An exclusively ANN-
based inverse design model is much more computationally
efficient and allows obtaining multiple possible solutions for
one set of target scattering parameters [43,44,50]. The main
obstacle for the convergence of an inverse design network
is the so-called “one-to-many” problem, which describes the
issue that in general multiple non-unique solutions exist for
a given design target (F[gi] − F[g j] < ε). Consequently, a
naive inversion of the ANN fails to converge, because the net-
work is trained on seemingly conflicting data, where one set of
input values has different possible output targets (F−1[S] =
gi and F−1[S] = g j). Therefore, the network cannot converge
to one of the local minima of the loss function. One way of
dealing with the one-to-many problem is a so-called condi-
tional generative adversarial network (CGAN) [51–55], which
is a variation of the traditional GAN [56] (see Fig. 2 for a
schematic of the topology of the CGAN network and Fig. S3
and Fig. S4 for the full network topology). In a CGAN, a
generator G creates grids based on noise N and the desired
S parameters, while the discriminator D is fed not only the
grids produced by the generator and ground truth grids from
the data set, but also the respective labels (S parameters):

G[S,N ] = gG D[g,S] = oD. (3)
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FIG. 3. Comparison of the S parameters as requested from the CGAN (black dots), predicted by the forward model (blue and red dots),
and calculated by full-wave simulations (green and purple crosses). (a) A meta-atom from the validation set (MSE=0.0004; NMSE=0.001).
(b) A meta-atom with a resonance obtained by requesting a desired transmission amplitude and phase at a single frequency from the
CGAN (MSE=0.007; NMSE=0.02). (c) A meta-atom obtained from the CGAN by requesting a constant transmission amplitude and linear
transmission phase (MSE=0.0003; NMSE=0.0008).

The discriminator takes the grids as input and has in this case
two groups of convolutional layers that analyze them, where
one of the two groups is a residual network [57]. Combined
with subsequent fully connected layers, this should in theory
be sufficient to train the discriminator. However, we have
found that it is a difficult task for the discriminator to dif-
ferentiate between grids produced by the generator and grids
from the data set while at the same time evaluating whether
the grids have the desired optical properties and obey the
required fabrication constraints. Therefore, we have integrated
two pretrained expert networks, the forward network F and
the classifier network C, into the discriminator (the parameters
in these two networks are frozen during the training of the
CGAN). These two networks introduce biases into the con-
vergence process, which we minimize by choosing a random
network from a set of good networks for each of the two
expert networks. The expert networks significantly improve
the training speed and performance of the discriminator and,
thereby, also the performance and results of the generator:

D[g, f (F (g),S ), C(g)] = oD. (4)

The two expert models are embedded into the discriminator
by feeding the grid g to the two networks and their output
to a hidden layer of the discriminator after performing some
simple mathematical operations, such as evaluating the dif-
ference between the S-parameter labels and the output of
the forward network and subsequent multiplication with the
optional input mask, which implements the option of only
specifying a subset of desired S parameters.

The architecture of the generator differs from traditional
ones [56]; instead of having one group with multiple batch
normalizations we use four groups of transposed convolu-
tional layers with varying amounts of batch normalizations in
each group, which we found to work better. The four groups
are stacked at the end and a single convolutional filter trans-
forms the concatenated filters from all groups to the output of
the generator. It turns out that, like GANs in general, also our
CGAN with continuous labels is susceptible to mode collapse.
This means that the output of the generator depends very
little or not at all on the input noise and the generator maps
only to a small subset of the surrogate model. Apart from the
typical reasons for mode collapse, this is further enhanced by
the continuous nature of the labels, which already demands
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a relatively large variety of the generated grids, so the dis-
criminator cannot punish this dynamic sufficiently. Therefore,
an encoder network E was introduced, which is trained along
with the generator to map back from the generated grids and
the corresponding labels to the noise input of the generator:

E[G(S, N ),S] = E[gG,S] ≈ N . (5)

The resulting error of the encoder is added to the loss function
of the generator. In this way, the generator is incentivized
to encode the noise in the grids, so the encoder can map it
back and the result is a greater variety of generated grids.
Another improvement in the learning algorithm was achieved
by integrating grids created in previous epochs of the same
training cycle into the current epoch to stabilize the discrimi-
nator and, consequently, also the generator. Furthermore, the
generator was asked to create grids with specific S parameters
that would be most relevant after training in order to improve
the quality of these generated grids. The relative share of grids
created during the current or previous epochs and of asking
the generator to create specific grids of interest can be preset
or adaptive based on the average output of the discriminator
in the current epoch.

Finally, we have iteratively improved the training data by
using the CGAN to find training samples in sparsely sampled
regions of the S-parameter space. This increases the accuracy
of all models, reduces the number of corrections needed to be
made to the grids generated by the generator in order to satisfy
feasibility constraints, and leads to the S parameters of the
generated grids better approximating the target parameters.

We now demonstrate that our CGAN network is very ef-
ficient in designing meta-atoms with desired S parameters.
In Fig. 3, we show the transmission amplitude and phases
for three meta-atoms: one meta-atom from the validation set
and two meta-atoms from the generator. For each meta-atom,
we show the requested S parameters as well as the spectrum
of the S parameters obtained from a direct finite-element
simulation and the output of the forward model. We see that
the agreement between the S parameters predicted by the
CGAN and the exact calculation by full-wave simulations
is excellent, not only for meta-atoms from the validation set
[Fig. 3(a)], but also for meta-atoms created by the generator
[Figs. 3(b) and 3(c)]. Resonances are not captured perfectly
by the CGAN and the forward model. More training data
in general and more specifically a greater number of grids
with narrow resonances would increase the performance of the
forward model. However, for many applications in metasur-
faces, strong resonances are not desired, since this makes the
designs sensitive to fabricational tolerances, and it is therefore
not worth spending these additional computational resources.
This does not mean that resonances are not important; in order
to access a large range of S parameters (e.g., in gradient-phase
metasurfaces a 2π coverage of phase is required), metasur-
faces must necessarily have resonances. But our networks
are still able to capture the effect of resonances at frequen-
cies not in the immediate neighborhood of the resonance
frequency [black dot in Fig. 3(b)]. It is equally possible to
request a desired spectrum from the CGAN. In Fig. 3(c), for
example, we request a spectrum with constant amplitude and
linear phase, and again we get excellent agreement between
the requested S parameters and full-wave simulations. The

FIG. 4. Different CGAN output grids for the same S parameters,
dependent on 2D noise. From the different designs we can select the
best suitable grid in terms of how close it approximates the desired
S parameters and the ease of fabrication.

CGAN can generate multiple designs for the same desired
S parameters—an example of this is shown in Fig. 4. This
provides us with multiple alternatives to choose from in order
to ease the nanofabrication or to get a better approximation to
the desired S parameters.

IV. METALENS

Finally, we have designed a cylindrical metasurface lens.
A lens is essentially a phase mask that focuses an incoming
plane wave to a focal point. This can be achieved in a meta-
surface by stacking meta-atoms in a two-dimensional array
where each meta-atom is designed to have a predetermined
phase (and constant amplitude). This requires essentially a
map between meta-atom designs and their transmission phase
and amplitude. Constructing such a map without a DNN
would have required an exhaustive parameter search and, to
the best of our knowledge, this would not have led to meta-
atoms with constant amplitude. With our CGAN, we can very
quickly generate a set of meta-atoms with any transmission
phase between 0 and 2π and with an almost constant ampli-
tude. For each pixel in a square-lattice grid, we determine the
phase required to focus light to a focal point 50 wavelengths
farther down and use our CGAN to generate the correspond-
ing meta-atom. Figure 5(a) shows the central section of such
a metasurface lens designed with our CGAN. Subsequently,
we perform a full-wave simulation of how a normally inci-
dent optical beam is focused by our metasurface. Plotting the
optical intensity around the designed focal length of 50 wave-
lengths away from the metasurface in Fig. 5(b), we observe a
sharp peak in intensity confirming that the metasurface lens is
focusing light exactly onto the desired focal point. This
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(a) (b)

FIG. 5. Cylindrical lens constructed from meta-atoms with predetermined phase generated by the CGAN. (a) Top view of the central
section of the lens. (b) Optical intensity of the beam focused by the ANN-designed lens. The designed focal distance was 50 wavelengths away
from the metasurface.

confirms the successful inverse design of the wave equation by
our CGAN.

V. CONCLUSIONS

We have applied machine learning to the free-form in-
verse design of nanophotonic devices. We have found that
a conditional generative adversarial network, together with a
classifier for fabrication feasibility constraints and a surrogate
neural network model for predicting the optical proper-
ties, is particularly suited for free-form inverse design in
nanophotonics. Our trained neural network is able to generate
thousands of designs for meta-atoms in seconds, allowing us
to design large-area metasurfaces with arbitrary amplitude
and phase masks (in the range of parameters provided in
the training set)—all meta-atoms in such a metasurface can
be generated without needing to run an optimization algo-
rithm for every meta-atom individually. The network also has
fabrication feasibility incorporated, avoiding the capricious
designs that are obtained with some other methods.

As is common for neural networks, if the input is very
different from any input in the training data, the neural net-
work will perform badly. Therefore, we have tried to get a
good coverage of the possible input data by diversifying the
input masks as much as possible and by using the looped data
improvement (see Supplemental Material [49]). Similarly, the
forward network will not work for grids that were deemed
fabricationally unfeasible as these masks are filtered out from
the training data on purpose. However, we are not interested
in such unfeasible designs anyway.

The training of the neural networks requires a large number
of full-wave simulations obtained with a classical solver for

partial differential equations. However, a big advantage of
deep neural networks over iterative optimization methods is
that these simulations are independent and can be run simulta-
neously on different computers, allowing us to take advantage
of high-performance cluster infrastructure. We expect that
our conditional generative adversarial network, particularly
in combination with complementary techniques such as di-
mensionality reduction and knowledge discovery [58–60], can
become a widely adopted tool to achieve inverse design in
nanophotonic structures, such as metasurfaces, metamateri-
als, plasmonic waveguides and resonators, and nanophotonic
structures for nonlinear optics. While we have focused in this
article on metasurfaces with a certain desired scattering be-
havior, our network can be employed equally easily to design
structures with strong near fields or large nonlinear optical
interactions. Finally, since our training samples are obtained
from full-wave simulations of the wave equation, our ap-
proach can be generalized to other technology areas based on
the wave equation, such as microphotonics, acoustics, water
waves, and seismic waves.
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