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Current cross correlations in a quantum Hall collider at filling factor two
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We use the nonequilibrium bosonization technique to study the effects of Coulomb interactions in mesoscopic
electron colliders based on quantum Hall edge states at filling factor ν = 2. The current cross correlations and
Fano factor, which carry the information about the exclusion statistics, are calculated. It is shown that both
these quantities have a nonanalytical dependence on the source transparency, which scales as log(1/Ts ) at small
Ts � 1. This is a consequence of electron-electron interactions in the outgoing nonequilibrium states of the
collider.
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I. INTRODUCTION

The progress in experimental techniques at the nanoscale
has allowed experimentalists to design composite systems
based on quantum Hall (QH) edge states [1–4]. This develop-
ment has already led to a better understanding of fundamental
phenomena in mesoscopic physics, such as phase coher-
ence [5–11], charge and heat quantization [12–18], as well as
equilibration and relaxation [19–28]. In particular, these novel
architectures have started the field of electron quantum optics,
where devices and phenomena known from optics have been
recreated in the electronic domain.

One essential element of these experimental setups is
a quantum point contact (QPC), i.e., a narrow channel
between two electrically conducting systems [29]. In the
context of electron quantum optics, such QPCs act as elec-
tron beam splitters and provide a platform for tunneling
experiments in the presence of different kinds of injection
sources [30–33]. Particular examples are electron analogs of
the photonic Hong-Ou-Mandel, Hanbury Brown and Twiss,
Mach-Zehnder, and Fabry-Pérot experiments [34]. The cur-
rent and shot noise through a QPC connecting integer
and fractional QH edge states have been measured in sev-
eral experiments [2]. These studies have made it possible
to distinguish Fermi-liquid and non-Fermi-liquid phases in
current-voltage characteristics and in the corresponding cur-
rent noise [35–45]. Apart from that, it is worth mentioning that
the noise provides one of the most straightforward methods to
measure the effective charge of tunneling quasiparticles in the
fractional QH regime [46].

Using a combination of QPCs, experimentalists were able
recently to build anyonic colliders at a fractional filling factor
ν = 1/m (where m is an odd integer) and integer filling factor
ν = 2 [47]. Their measurements of the current cross correla-
tions at zero frequency and the generalized Fano factor have
provided evidence for anyonic exclusion statistics of charge
carriers. This agrees with the theoretical predictions for the
Laughlin state at ν = 1/3 [48]. It is worth mentioning that

for conventional Mach-Zehnder and Fabry-Pérot interferom-
eters, the measured current or conductance is sensitive to the
exchange statistics [49]. The latter is not necessarily related
to the exclusion statistics. For instance, interacting bosons
with strong delta-functional repulsion have the same exclu-
sion statistics as fermions, however, their exchange statistics
are different.

In this paper, we consider a mesoscopic electron collider
based on QH edge states at integer filling factor ν = 2, where
the incoming nonequilibrium states are created using two
quantum point contacts (QPC1 and QPC2), with respective
transparencies T1s � 1, where s ∈ {u, d} denotes the upper
and lower channels (see Fig. 1 for a schematic illustration). At
zero temperature, the resulting incoming states have “double-
step” distribution functions f1s(ε) = θ (−ε) + T1sθ (ε)θ (V −
ε), where V is the source voltage. Due to Coulomb interac-
tions the incoming states split into two modes with different
velocities. Subsequently, the nonequilibrium modes arriving
from the upper and lower part of the collider are mixed by a
third QPC (QPC3) with transparency T . In order to investigate
the statistical fluctuations after the collision at QPC3, which
yield information about the exclusion statistics, we calculate
the zero-frequency cross correlations of the current [47]

S1u;1d (ω = 0) = 2
∫

dt〈δ j1u(t )δ j1d (0)〉, (1)

where δ j1s(t ) = j1s(t ) − 〈 j1s(t )〉 and the average is taken
with respect to the nonequilibrium state created by injec-
tion currents from QPC1 and QPC2. This quantity has been
measured in a recent experiment [47]. For chiral fermions
the current in Eq. (1) is proportional to the charge density,
j1s(x, t ) ∝ ψ

†
1s(x, t )ψ1s(x, t ). Apart from the current noise, we

are interested in the generalized Fano factor, which contains
information about the exclusion statistics [47]. It is defined as

P = S1u;1d (0)

2eT (1 − T )I+
, (2)
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FIG. 1. Schematic picture of a mesoscopic electron collider
based on QH edge states at filling factor ν = 2. Two independent
voltage-biased sources QPC1 and QPC2 with respective transparen-
cies T1d and T1u generate nonequilibrium states at the upper and
lower edges, which collide at QPC3 with transparency T . The zero-
frequency current noise j1u(t ) and j1d (t ) after QPC3 is measured.
The charge density fields are expressed in terms of nonequilibrium
chiral boson fields φαs(x, t ), where α ∈ {1, 2} and s ∈ {u, d}.

where I+ = e2V (T1u + T1d )/2π h̄ is the total input current.
The theoretical study of current cross correlations is non-
trivial since one has to deal with a nonequilibrium situation
due to the injection QPCs as well as with strong electron-
electron interactions. For this reason, it is convenient to use
the nonequilibrium bosonization approach [50–53] which we
explain below. Throughout the paper, we focus on the case of
zero temperature. We set |e| = h̄ = kB = 1 during the calcu-
lation and restore the dimensions in the main results for the
noise at the end.

II. THEORETICAL METHOD

To study quantum Hall edge states at filling factor ν = 2,
it is convenient to use their effective field theory [54]. Ac-
cording to this, the low-energy degrees of freedom of the
edge states are collective fluctuations of the charge densities
ραs(x), where the subscripts α ∈ {1, 2} and s ∈ {u, d} denote
the channels (see Fig. 1). The fermionic fields ψαs(x, t ) ∝
exp[iφαs(x, t )] and the charge density fields, ραs(x, t ) =
(1/2π )∂xφαs(x, t ), are represented in terms of chiral boson
fields which satisfy the standard equal-time commutation re-
lations

[φαs(x, t ), φβr (y, t )] = iπδαβδsr sgn(x − y). (3)

The Hamiltonian of the edge states in the presence of
Coulomb interactions is given by

H = 1

2

∑
s,αβ

∫∫
dxdyVαβ (x − y)ραs(x)ρβs(y), (4)

where the integral kernel Vαβ (x − y) = 2πvF δαβδ(x − y) +
Uαβ (x − y) includes both the kinetic energy of the free chiral
electrons with Fermi velocity vF as well as the Coulomb in-
teraction between electrons with interaction potential Uαβ (x).
At low energies the characteristic length scales are much
longer than the screening length of the Coulomb interaction.
Therefore, one can further approximate the Coulomb potential

as short ranged, i.e., Uαβ (x − y) = Uαβδ(x − y), with nonzero
diagonal and off-diagonal interaction strengths Uαβ [34].

The current cross correlations can be calculated by using
the scattering approach locally at QPC3 [55]. One finds that
the cross correlations of the outgoing currents after QPC3 at
zero frequency are given by a sum of two terms [47,48],

S1u;1d (ω = 0) = P1(0) + P2(0). (5)

The first term is associated with a transmitted noise and has
the simple form

P1(0) = e2V

2π h̄
(1 − T )T

∑
s=u,d

T1s(1 − T1s). (6)

The second term describes the generated noise by QPC3,

P2(0) = 2(1 − T )Ta−2
∫

dtKu(t )Gd (t ), (7)

where a is the short-distance cutoff from bosonization and

Ku(t ) = 〈e−iφ1u (L,t )eiφ1u (L,0)〉,
Gd (t ) = 〈eiφ1d (L,t )e−iφ1d (L,0)〉. (8)

All bosonic fields should be evaluated at the position x = L
of QPC3 and the averages in the correlation functions are
taken with respect to the nonequilibrium state created by the
source QPC1 and QPC2. Next, we apply the nonequilibrium
bosonization technique [50,51,53] to evaluate these correla-
tion functions.

The Hamiltonian of the edge states in Eq. (4) generates
the equation of motion of the bosonic fields φαs(x, t ). The
latter have to be supplemented with the appropriate boundary
conditions due to source QPCs, resulting in

∂tφαs(x, t ) = − 1

2π

∑
β

∫
dyVαβ (x − y)∂yφβs(y, t ),

∂tφαs(0, t ) = −2π jin
αs(t ), (9)

where the incoming currents jin
αs(t ) are defined at the point

x = 0+ right after the source QPC1 and QPC2. These equa-
tions of motion can be solved by diagonalizing the interaction
matrix Vαβ = 2πvF δαβ + Uαβ via a Bogoliubov rotation, V =
S(θ )�S†(θ ), which conserves the commutation relations of
the bosonic fields. The rotation angle is determined by the
strength of the electron-electron interaction and is given by
tan(2θ ) = 2V12/(V11 − V22). The new collective excitations
are characterized by two velocities, � = diag(u, v), where

u, v = (V11 + V22)/2 ±
√

(V11 − V22)2/4 + V 2
12 and we used

that V12 = V21. Imposing the boundary conditions (9) we ob-
tain the dynamics of bosonic fields in both channels s ∈ {u, d},
φ1s(x, t ) = −λ1Q1s(tu) − λ2Q2s(tu) − λ′

1Q1s(tv ) + λ2Q2s(tv ),

λ1 = π [1 − cos(2θ )], λ2 = π sin(2θ ),

λ′
1 = 2π − λ1, (10)

where we have introduced the injected charges

Qαs(t ) =
∫ t

−∞
dt ′ jin

αs(t
′) (11)
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and the times tu = t − x/u and tv = t − x/v. Therefore, the
bosonic fields (10) at observation point x at time t are deter-
mined by the charges which arrive with different delay times tu
and tv , and these charges are weighted with coupling constants
due to intra- and interchannel electron-electron interactions.
Now we have all the necessary ingredients to calculate the
generated noise from Eq. (7).

III. GAUSSIAN NOISE REGIME

First, we consider the case of Gaussian fluctuations
of the bosonic fields. This means that the correlation
function in Eq. (8) can be written as log Ku(t ) = 2π〈 jin

1u〉t +
〈φ1u(L, t )φ1u(L, 0)〉 − 〈φ2

1u(L, t )〉/2 − 〈φ2
1u(L, 0)〉/2, where

〈 jin
1u〉 = V T1u/2π is the current injected from upper QPC1.

Now using Eq. (10) we obtain

log Ku(t ) = iT1uV t −
∫

dω

ω2
(1 − e−iωt )(F1 + F2),

F1 = 2π

[
1 − λ1λ

′
1

π2
sin2

(ωtL
2

)]
Sin

1u(ω),

F2 = 2λ2
2

π
sin2

(ωtL
2

)
Sin

2u(ω), (12)

where we have introduced the spectral function of current
fluctuations, Sin

1u(ω) = ∫
dteiωt 〈δ jin

1u(t )δ jin
1u(0)〉, and the delay

time between wave packets, tL = L/v − L/u, where L is the
distance between the injection QPCs and QPC3. A similar ex-
pression can be obtained for Gd (t ) by replacing the subscript
u with d .

To obtain the spectral function of the incoming state, we
again use the free-fermion scattering approach [55] because
the interactions do not influence the tunneling at the injection
QPCs. The general result for α ∈ {1, 2} and s ∈ {u, d} at zero
temperature and finite bias is then given by the sum of two
terms,

Sin
αs(ω) = Sq(ω) + (1 − Tαs)TαsSn(ω), (13)

where Sq(ω) = ωθ (ω)/2π is the equilibrium ground state
contribution and Sn(ω) = ∑

± Sq(ω ± V ) − 2Sq(ω) is the
nonequilibrium part which originates from the voltage-biased
injection QPCs. Substituting Eq. (12) into Eq. (7), the second
term in Eq. (5) takes the following final form,

P2(0) = − e2V

2π h̄
2(1 − T )T

∫
dz

2π

ei(T1u−T1d )z

(z − i0+)2
Kn(z), (14)

where we have introduced the dimensionless integration vari-
able z = V t and used

log Kn(z) = −2[(1 − T1u)T1u + (1 − T1d )T1d ]

×
∫ 1

0

dx

x2
(1 − x)[1 − cos(zx)]

×
[

1 − λ1λ
′
1

π2
sin2

(
xL

2Lex

)]
, (15)

where Lex = uv/[(u − v)V ] is the characteristic correlation
length between the two modes with velocities u and v and
x = ω/V is the dimensionless variable of integration.

In order to understand and compare the case of Gaussian
noise to experimental data, we consider the generalized Fano

FIG. 2. The generalized Fano factor P as a function of the dimen-
sionless length L/Lex for different values of the interaction strength,
parametrized by λ1 = π [1 − cos(2θ )], in the Gaussian noise regime.
We set Ts = 0.15.

factor (2) at T1u = T1d =: Ts,

P = 1 − Ts + 1

Ts

∫
dz

2π

e−4RsTs�(λ1,L/Lex,z)

(z − i0+)2
, �(λ1, L/Lex, z)

=
∫ 1

0

dx

x2
(1 − x)[1 − cos(zx)]

[
1 − λ1λ

′
1

π2
sin2

(
xL

2Lex

)]
,

(16)

as a function of the dimensionless variable L/Lex. Figure 2
shows that the Fano factor is negative, in contrast to experi-
mental data from Ref. [47], indicating that the experiment was
perhaps not performed in the Gaussian regime.

Finally, we would like to mention briefly that our results do
not apply in the strictly noninteracting limit. In that case, the
two modes have identical velocities, u = v, which leads to a
divergence Lex → ∞.

IV. NON-GAUSSIAN NOISE REGIME

Next, we consider the fluctuations of the bosonic fields as
non-Gaussian at long distances L 
 Lex/min{T1u, T1d}. The
physical situation we consider here corresponds to the case
where the correlation function in Eq. (8) may be strongly
affected by high-order boundary current cumulants from
Eq. (9). In particular, such a situation arises in the case of
strong interaction for λ1 = ±π . At such distances, the parti-
tioned charges Q1s at the source QPCs, taken at times tu and tv ,
can be considered as uncorrelated. Therefore, the correlation
functions associated with the upper and lower parts of the
collider in Eq. (8) split into products of four factors,

Ku(t ) = χ1u(λ1, t )χ1u(λ′
1, t )χ2u(λ2, t )χ2u(−λ2, t ),

Gd (t ) = χ1d (−λ1, t )χ1d (−λ′
1)χ2d (−λ2, t )χ2d (λ2, t ), (17)

where each factor represents a generator of full counting
statistics (FCS) [34],

χαs(λ, t ) = 〈eiλQαs (t )e−iλQαs (0)〉. (18)

For the nonequilibrium state created at QPC1 and QPC2,
the generating function can be written analytically in the long-
time Markovian limit, which gives the main contribution to

085405-3



EDVIN G. IDRISOV et al. PHYSICAL REVIEW B 106, 085405 (2022)

FIG. 3. The generalized Fano factor P as a function of source
transparency Ts in the regime of non-Gaussian noise. The solid lines
are numerical results based on Eq. (2) and the dashed lines are the
asymptotics in Eq. (21). The blue and red curves correspond to θ =
π/4 (strong interaction) and θ = π/5.

integrals in Eq. (7). This is known as the Levitov-Lee-Lesovik
formula [56]. In the Poissonian regime of small transparencies
T1s � 1, the Levitov-Lee-Lesovik formula at zero tempera-
ture for positive times t > 0 is given by

log χαs(λ, t ) = λ2

4π2
log

(
γ

it + γ

)
− V t

2π
Tαs(1 − eiλ), (19)

where γ ∝ a/(2πvF ) is related to the short-distance cutoff
a. For t < 0 the FCS can be calculated by analytic contin-
uation of Eq. (19), namely χαs(λ,−t ) = χ∗

αs(λ, t ). Since the
channels with subscript α = 2 are not biased and T2s = 0, the
FCS generators for these channels are given by the first term
of Eq. (19). It is worth mentioning that this is the ground
state (Fermi sea) contribution. However, the channels with
α = 1 include the second term, which is a non-Gaussian con-
tribution. Substituting the FCS generator (19) into Eqs. (17)
and (7), the second term of the noise at T1u = T1d =: Ts turns
out to be equal to

P2(0) = − e2V

2π h̄

∫
dz

2π

exp[−2Ts f (λ1)|z|/π ]

(z − i0+)2
, (20)

where f (λ1) = 1 − cos(λ1) and z = V t is the dimensionless
integration variable. Now, substituting Eq. (20) into Eq. (5)
and then into Eq. (2), we get the final formula for the gener-
alized Fano factor to leading order in the transparency of the
injection QPCs,

P = 1 − Ts + 2 f (λ1)

π2
[C − π T̃s − log(1/T̃s)], (21)

where C = log 2 + γ , γ ≈ 0.5772 is Euler’s constant, and
T̃s = Ts f (λ1) is the renormalized transparency of the source
QPCs. Note that for θ = π/4, which corresponds to strong
electron-electron interactions, one finds f (λ1) = 2. It is worth

mentioning that the subleading corrections in Ts show nonan-
alytical behavior as well and are proportional to log(1/T̃ 2

s ).
The result (21) does not depend on length explicitly because
the calculations were done in the limit of large L, when a
complete separation of the wave packets with velocities u
and v occurs. The generalized Fano factor as a function of
source transparency Ts and for different interaction strengths
θ is plotted in Fig. 3.

V. CONCLUSION

To summarize, we have studied the zero-frequency current
cross correlations and the corresponding generalized Fano
factor in a mesoscopic quantum Hall collider at filling factor
ν = 2. We have used nonequilibrium bosonization in order
to take into account both the nonequilibrium state created
by the source QPCs as well as the electron-electron inter-
actions. We have shown that both the noise and the Fano
factor consist of two terms. The first term is associated
with the transmitted noise and is proportional to Ts(1 − Ts).
This term only contains information about the nonequilib-
rium conditions after the injection QPCs. The second term,
which mixes the incoming nonequilibrium states, is related
with the generated noise. It shows a nonanalytical depen-
dence on the source transparency and scales as Ts log(1/Ts)
at small Ts � 1 in case of strong, screened Coulomb inter-
actions (θ = π/4). The nonanalytical behavior is robust with
respect to the interaction parameter and does not vanish for
θ 
= π/4. Thus, the generated noise contains information both
about the nonequilibrium state after the source QPCs and
the electron-electron interactions. The same considerations
are valid for the generalized Fano factor. It is known that
the absence of current correlations for free fermions at fill-
ing factor ν = 1 is due to perfect spatial exclusion, while
the negative correlations for Laughlin anyons at ν = 1/3 in
the non-Gaussian noise regime are a signature of a reduced
spatial exclusion [48]. However, for filling factor ν = 2 and
experimentally accessible transparencies Ts � 0.05 [47], we
have shown that the Fano factor in the non-Gaussian regime of
the injection QPCs is positive, in contrast to the cases for free
fermions and Laughlin quasiparticles. The positive correla-
tions arise due to the additional Coulomb interactions between
fermions.
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APPENDIX A: GAUSSIAN NOISE REGIME

In this Appendix we derive the Eqs. (12) and (14) of the main text. In order to do this we use the Gaussian nature of the
theory. This entails that

Ku(t ) = 〈e−iφ1u (t )eiφ1u (0)〉 = e−i〈φ1u (t )−φ1u(0)〉e〈φ1u (t )φ1u(0)〉−〈φ2
1u (0)〉. (A1)
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We first we calculate the phase. Using Eq. (10) of the main text and taking into account that the injection current is 〈 jin,1u(t ′)〉 =
V T1u/2π and λ1 + λ′

1 = 2π , we obtain

−i〈φ1u(t ) − φ1u(0)〉 = iλ1〈Q1u(t − L/u) − Q1u(−L/u)〉 + iλ′
1〈Q1u(t − L/v) − Q1u(−L/v)〉 = iT1uV t . (A2)

Next, again using Eq. (10) and introducing the notation tL = L/v − L/u, the remaining part in exponent has the form

〈φ1u(t )φ1u(0)〉 = λ1λ
′
1{〈Q1u(t + tL )Q1u(0)〉 + 〈Q1u(t − tL )Q1u(0)〉 − 2〈Q1u(t )Q1u(0)〉} + (2π )2〈Q1u(t )Q1u(0)〉

− λ2
2{〈Q2u(t + tL )Q2u(0)〉 + 〈Q2u(t − tL )Q2u(0)〉 − 2〈Q2u(t )Q2u(0)〉}. (A3)

Now, substituting the two-point correlation function of charge operators.

〈Q1s(t )Q1s(0)〉 =
∫

dωe−iωt Sin
1s(ω)/2πω2, Sin

1s(ω) =
∫

dteiωt 〈δ jin
1s(t )δ jin

1s(0)〉, (A4)

into Eq. (A3), we obtain the two-point correlation function for the bosonic fields

〈φ1u(t )φ1u(0)〉 = 2π

∫
dωe−iωt Sin

1u(ω)

ω2

[
1 − λ1λ

′
1

π2
sin2(ωtL/2)

]
+ 2π

∫
dωe−iωt Sin

2u(ω)

ω2

(
λ

π

)2

sin2(ωtL/2). (A5)

Furthermore, combining this with −〈φ2
1u(0)〉 and the phase factor iT1uV t , we get the following equation for the correlation

function,

log Ku(t ) = iT1uV t − 2π

∫
dω

ω2
(1 − e−iωt )

{[
1 − λ1λ

′
1

π2
sin2

(ωtL
2

)]
Sin

1u(ω) +
(

λ2

π

)2

sin2
(ωtL

2

)
Sin

2u(ω)

}
. (A6)

This is Eq. (12) of the main text. A similar expression can be obtained for Gd (t ) with a minus sign in phase,

log Gd (t ) = −iT1dV t − 2π

∫
dω

ω2
(1 − e−iωt )

{[
1 − λ1λ

′
1

π2
sin2

(ωtL
2

)]
Sin

1d (ω) +
(

λ2

π

)2

sin2
(ωtL

2

)
Sin

2d (ω)

}
. (A7)

In the case of zero temperature and a finite bias the fluctuations of the incoming currents Sin
1s(ω) are given by [55]

Sin
1s(ω) = Sq(ω) + T1s(1 − T1s)

∑
±

[Sq(ω ± V ) − 2Sq(ω)], Sq(ω) = ωθ (ω)/2π. (A8)

Substituting the correlation functions Ku(t ) and Gd (t ) into Eqs. (8), (7), and (2), and introducing the dimensionless integration
variables x = ω/V and z = V t , we obtain Eqs. (14) and (16) of the main text.

APPENDIX B: NON-GAUSSIAN NOISE REGIME

In this Appendix we derive Eq. (17) of the main text. Since we are interested in the regime of non-Gaussian noise we cannot
simply use Eq. (A1) of the previous section. Instead, we use the fact that at long distances L 
 Lex/min{T1u, T1d}, the charges
Q1s(t ) evaluated at different times tu = t − L/u and tv = t − L/v are uncorrelated. Consequently, the calculations are simplified
as follows,

Ku(t ) = 〈e−iφ1u (t )eiφ1u (t )〉
= 〈ei[λ1Q1u(tu )+λ2Q2u(tu )+λ′

1Q1u(tv )−λ2Q2u(tv )]e−i[λ1Q1u(tu−t )+λ2Q2u(tu−t )+λ′
1Q1u(tv−t )−λ2Q2u(tv−t )]〉

= 〈ei[λ1Q1u(tu )+λ′
1Q1u(tv )]e−i[λ1Q1u(tu−t )+λ′

1Q1u(tv−t )]〉〈ei[λ2Q2u(tu )−λ2Q2u(tv )]e−i[λ2Q2u(tu−t )−λ2Q2u(tv−t )]〉
� 〈eiλ1Q1u(tu )e−iλ1Q1u(tu−t )〉〈eiλ′

1Q1u(tv )e−iλ′
1Q1u(tv−t )〉〈eiλ2Q2u(tu )e−iλ2Q2u(tu−t )〉〈e−iλ2Q2u(tv )eiλ2Q2u(tv−t )〉

= 〈eiλ1Q1u(t )e−iλ1Q1u(0)〉︸ ︷︷ ︸
χ1u(λ1,t )

〈eiλ′
1Q1u(t )e−iλ′

1Q1u(0)〉︸ ︷︷ ︸
χ1u(λ′

1,t )

〈eiλ2Q2u(t )e−iλ2Q2u(0)〉︸ ︷︷ ︸
χ2u(λ2,t )

〈e−iλ2Q2u(t )eiλ2Q2u(0)〉︸ ︷︷ ︸
χ2u(−λ2,t )

= χ1u(λ1, t )χ1u(λ′
1, t )χ2u(λ2, t )χ2u(−λ2, t ). (B1)

Similarly, one can show that Gd (t ) = χ1d (−λ1, t )χ1d (−λ′
1, t )χ2d (−λ2, t )χ2d (λ2, t ). Therefore, we obtain Eq. (17) of the main

text.
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