
PHYSICAL REVIEW B 106, 085404 (2022)

Degenerate bound states in the continuum in square and triangular open acoustic resonators
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We consider square and equilateral triangular open acoustic resonators with the C4v and C3v symmetries,
respectively. There is a unique property of square and triangular resonators of accidental number fourfold
degeneracy of eigenstates that gives rise to twofold-degenerate Friedrich-Wintgen (FW) bound states in the
continuum (BICs). Compared to usual FW BICs, the degenerate FW BICs maintain high Q factor in wide range
of the size of resonators. That removes the fabrication difficulties of the proper choice of resonator. The presence
of degenerate BICs in triangular resonators is extremely sensitive to switch output flows by small perturbations
with 100% efficiency.
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I. INTRODUCTION

A new paradigm for the trapping and confining of reso-
nant modes has emerged in recent years based on the bound
states in the continuum (BICs) in wave systems. BICs, also
known as trapping mode with infinite large Q factor, have
triggered extensive interest in photonic and acoustic commu-
nities [1–5]. The most straightforward mechanism of BICs is
the symmetrical incompatibility of closed system states with
propagating states of the continuum [6–10]. More interesting,
Friedrich-Wintgen (FW) BICs are the result of full destructive
interference of two or more resonant modes competing for
leakage into open channels of waveguides [4,11,12]. The FW
BICs can be realized in open resonators by a gradual change
of aspect ratio of the resonator when a degeneracy of eigenfre-
quencies occur [12]. In acoustic systems, the FW BICs were
considered by many scholars [13–17]. The experimental evi-
dence for the FW BICs was reported by Lepetit and Kanté [18]
and by Huang et al. [19] in the most straightforward configu-
ration of rectangular resonator opened to attached waveguide.

Although the last time BICs had been successfully demon-
strated in different acoustic resonators fabricated by 3D
printing, the Q factor of quasi-BICs was sensitive to the struc-
ture imperfections. Moreover, continual variation of the aspect
ratio of the resonator for the achievement of FW BICs is
very challenging for any type of resonator, acoustic, metallic,
or dielectric. Therefore, a search of FW BICs not sensitive
to the aspect ratio of resonators is highly desired. In the
present paper, we advocate square or equilateral triangular res-
onators with the group symmetries C4v and C3v , respectively.
Its eigenmodes ψmn and eigenfrequencies ν2

mn exhibit trivial
degeneracy by permutation of indices m ↔ n. Here the eigen-
frequencies are given in terms of the frequency ω0 = πs/a,
where s is the velocity of sound or light in air, and a is the side
size of the resonator. Therefore, one can expect that opening
of the resonator by attachment of waveguides transforms these
degenerate eigenmodes into superradiant mode and FW BIC
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for granting as it follows from the FW mechanism of BICs,
which occur at degeneracy of eigenfrequencies [4,11,12,20].
Variants of attachment of waveguides to a square resonator are
sketched in Fig. 1. However, for the case (a) in Fig. 1 the FW
BICs occur only after deformation of square resonator into the
rectangular one [19]. The reason for cancellation of FW BICs
is lowering of the symmetry C4v of closed square resonator
towards C2v after the (a) case opening. Quantitatively, the
coupling of eigenmodes of a square resonator with evanes-
cent modes of waveguides perturbs the eigenfrequencies of
the resonator and removes the permutation degeneracy of the
open square resonator [21]. Next, consider the cases in which
for opening of the resonators the symmetry C4v is preserved,
as sketched in Fig. 1(b) and 1(c). In this case the degenerate
eigenmodes (m, n) and (n, m) of closed resonator and their
resonant counterparts of open resonator are both classified
according to the different irreducible representations of the
group C4v and therefore can not be coupled via the continuum
of waveguides that cancels the FW mechanism of the BICs
too. The same consideration is applied to equilateral triangular
resonator with the symmetry group C3v .

However, there is a unique case of accidental or num-
ber degeneracy of eigenmodes over twofold in the square
and equilateral triangle ν2

mn = ν2
m′n′ . For example, in square

acoustic resonator two choices of integers m = 1, n = 6 and
m′ = 5, n′ = 4 have the same frequency 25/a2 [22,23]. That
brings fourfold degeneracy of a closed resonator that plays
the key role in the existence of twofold degeneracy of the
FW BICs provided that open resonators preserve the group
symmetries C4v or C3v as shown in Fig. 1(b)–1(d). We show
that the degenerate FW BICs are classified according to the
two-dimensional irreducible representation E of these group
symmetries. Without loss of generality we focus on the acous-
tic resonators with Neumann boundary conditions in which
BICs can be directly probed by microphone measurements
of acoustic pressure inside resonators [17,19]. Actually, res-
onators are three dimensional, but the acoustic resonators
allow completely disregard the third dimension if the thick-
ness of the resonator is small enough compared to longitudinal
sizes as sketched in Fig. 1(d). In that case, the solutions are
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FIG. 1. (a) Two waveguides attached to the square resonator with the symmetry C4v lower the symmetry of the open system until inversion
symmetry σ . (b) and (c) Four identical waveguides attached to square resonator preserve the symmetry C4v . (d) Three waveguides attached to
equilateral triangle resonator preserve the symmetry C3v .

constant over the third dimension to be excluded from the so-
lutions presented in the Appendix. That opens many ways for
experimental verifications of theoretical predictions outlined
below in the square and equilateral triangle resonators.

II. THE SP BICS DUE TO PERMUTATION SYMMETRY
IN OPEN SQUARE RESONATORS

The symmetry of the open resonators is important for clas-
sification and establishment of BICs. For dielectric resonators
embedded into radiation space, the total symmetry is given
by the structure that determines multipole classification of
radiation and the symmetry of ultrahigh Q resonances (quasi-
BICs) of the structure consisting of one or a few symmetrical
dielectric cavities [24–26]. The symmetry of BICs in photonic
crystals is given by the symmetry of the crystals [27–30].
As opposed to the above, the symmetry of resonators with
attached directional waveguides is determined by the compati-
bility of the symmetry of closed resonators with the symmetry
of waveguides. The symmetry of the total system can be low-
ered or can coincide with the symmetry of closed resonators
as illustrated in Fig. 1.

The eigenmodes and eigenfrequencies of the acoustic
square resonator are collected in the Appendix. There are
two distinct pairs of degenerate states ψm,n, ψn,m, m �= n. The
first pair of the eigenmodes with m − n odd is classified
according to the two-dimensional irreducible representation
E . The particular case of m = 2, n = 3 is demonstrated in
Fig. 6 in the Appendix. The second pair with m − n even is

classified according to the reducible representations. Only the
linear combinations ψm,n ± ψn,m are classified according to
the irreducible one-dimensional representations B1 and A1 or
B2 and A2 respectively. A particular case of eigenmodes ψ24

and ψ42 classified according to B2 and A2 is shown in Fig. 7
in the Appendix.

Opening the resonator transforms the real eigenfrequencies
of the closed resonator into the complex eigenfrequencies.
The procedure of transition from a closed system to an open
system can be performed by use of the Feshbach projec-
tion technique that results in the non-Hermitian effective
Hamiltonian [31–36]. The complex eigenvalues of this Hamil-
tonian respond to the position of resonances and resonant line
widths and therefore provide an excellent way to establish
BICs as eigenmodes of effective Hamiltonian with real eigen-
values [4]. The specific form of the effective non-Hermitian
Hamiltonian is given in the Appendix and is applied to open
acoustic resonators [36].

Let us first consider the degenerated pair of eigenmodes of
closed square resonator ψm,n, ψn,m with m − n odd and m �=
n classified according to the two-dimensional representation
E , for example, the pair presented in the Appendix ψ23 and
ψ32. The coupling matrix elements of these modes with the
first open channel p = 1 and the second closed channel p = 2
for the case in Fig. 1(b) are collected in the Appendix. As a
result, we can write the effective non-Hermitian Hamiltonian
projected into these modes whose general form is given in
Eq. (A3) of the Appendix

Ĥeff =
(

5/a2 − 2ik1|k2|α2 + 2|k2|β2 0
0 5/a2 − 2ik1|k2|α2 + 2|k2|β2

)
. (1)
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FIG. 2. (a) The Q factor of quasi-FW BIC shown in subplot (b) with the modal expansion coefficients shown in (c).

Here, according to Table II of the Appendix, we introduced the notations α = W2,3;p=1,C=1 = − 2
π

sin π
a , β = W2,3;p=2,C=1 =

f (a). The case of Fig. 1(c) gives the similar diagonal matrix

Ĥeff =
(

5/a2 − 4ik1|k2|γ 2 + 4|k2|δ2 0
0 5/a2 − 4ik1|k2|γ 2 + 4|k2|δ2

)
. (2)

Here, the coupling strengths γ and δ can be evaluated only numerically by integration over thin dotted lines shown in Fig. 1(c).
Irrespectively, we obtain that the degenerate pair of eigenmodes ψ2m,2n+1 and ψ2n+1,2m transforms into two degenerate resonances
but not BICs. That has a clear physical origin. Since the symmetry of the open resonator C4v is preserved, the eigenmodes of the
closed resonator ψ2,3 and ψ3,2 are modified but cannot be coupled through the open continuum p = 1 of waveguides owing to
the symmetry C4v of the open square resonator. As a result, the FW mechanism of BICs is canceling.

Next, we consider the pair ψs,a = ψm,n ± ψn,m, m �= n and m − n even, which are classified according to the one-dimensional
irreducible representations B2 and A2. Examples of these eigenfunctions m = 2, n = 4 are illustrated in Fig. 7 of SI. For the case
in Fig. 1(b), all coupling matrix elements with the first open channel of each waveguide equal zero as clearly seen in Fig. 7 of SI.
As a result, only closed channels of waveguides contribute in the effective Hamiltonian, which in the space of the eigenmodes
ψ2,4 and ψ4,2 takes the following form:

Ĥeff =
(

10/a2 + 4|k2|(b(a)2 + c(a)2) −4|k2|b(a)c(a)
−4|k2|b(a)c(a) 10/a2 + 4|k2|(b(a) + c(a)2)

)
. (3)

Therefore, we have two SP BICs ψs,a shown in Fig. 2 of SI
with the eigenfrequencies

ν2
s,a = 10/a2 + 4|k2|

{
b(a)2

c(a)2 ,
(4)

where the coupling constants b(a), c(a) are collected in
Eq. (A9) of SI.

III. THE TWO-FOLD DEGENERATE BICS IN OPEN
SQUARE RESONATOR

As said in the Introduction there is the accidental number
degeneracy of two doublets each degenerated by permutation
of indices. For example, eigenmodes with indices 1, 6 and
4, 5, both classified according to the two-dimensional irre-
ducible representation E , have the same eigenvalue ν2

16 =
ν2

4,5 = 25/a2. The next quartet of degenerated eigenmodes is,
for example, 3, 10, 10, 3 and 7, 8, 8, 7 with the eigenvalue
85/a2. It is reasonable to project the effective non-Hermitian
Hamiltonian onto this space of the eigenmodes. Let us
enumerate the eigenmodes as follows:

φ1 = ψ1,6, φ2 = ψ5,4, φ3 = ψ6,1, φ4 = ψ4,5.

In order to close the second channel p = 2 of waveguides,
we consider the eigenfrequencies of the resonator below the
second cutoff of the waveguide, i.e., νm,n/a < 1 if to express

side sizes of resonators a via the width of waveguides d = 1.
In particular, for the eigenstates under consideration the size
of resonator is to exceed a > 5.

Let us first consider the case of sidewall connection of
waveguides as shown in Fig. 1(b). The coupling matrix el-
ements of these eigenmodes with open channel p = 1 and
closed channel p = 2 are collected in Tables II and III
of the Appendix. As a result, we obtain for the effective
Hamiltonian in truncated Hilbert space of the eigenfunctions
φ j, j = 1, 2, 3, 4

Ĥeff = 1

a2

(
ĥeff 0
0 ĥeff

)
,

ĥeff =
(

ε − iγ1 −u − i
√

γ1γ2

−u − i
√

γ1γ2 −ε − iγ2

)
, (5)

where according to Tables II and III in the Appendix

ε = |k2|(g(a)2 − h(a)2), u = 2|k2|g(a)h(a), γ1

= 4k1

a2
, γ2 = 2k1

π2
sin2

(
2π

a

)
, (6)

and according to Eq. (4) in the Appendix k1 = ν = ν16 =
5/a, |k2| = 7/a.

One can see that the effective Hamiltonian consists of two
identical blocks 2 × 2, each of which has typical form for
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FIG. 3. The same as in Fig. 2 but for vertex connection of resonator to waveguides as shown in Fig. 1(c).

description of FW BICs [4,11,20]. Comparison with expres-
sions (1) and (3) shows that the eigenmodes (1, 6) and (5, 4)
and, respectively, (6, 1) and (4, 5) are coupled through the
continuum of waveguides that gives rise to FW mechanism
of two degenerate BICs classified according to the two-
dimensional irreducible representation E . If we neglected by
closed channel, p = 2, one could have two degenerate FW
BICs for a > 5. However, the evanescent modes of waveg-
uides play the principal role because they give rise to real
coupling u between modes. For u �= 0, the FW BIC occurs
in the framework of the Hamiltonian (5) according to the
following equation [4,20,37]:

u(γ1 − γ2) = 2ε
√

γ1γ2. (7)

It is easy to fulfill Eq. (7) if the parameters u, γ1, γ2, ε were
independent. However, for the present case all constants de-
pend on only the square size a as given in Eq. (6). As Comsol
MultiPhysics shows in Fig. 2(a) the condition (7) is not ful-
filled for variation a that defines the solution as quasi-FW BIC
although with extremely large Q factor around 600 000. In
view material losses of 3D printed acoustic resonators which
restrict the Q factor by order of 103 [19] one can consider
the solution in Fig. 2(b) as the FW BIC. Remarkably, com-
pared to usual FW BICs with sharp peak in the Q factor for
variation of the sizes of resonator the degenerate FW BICs
maintain extremely high Q factor in wide range of the size.
That relieves experimentalists from the fabrication difficulties
of proper choice of the resonators.

Figure 2(c) clearly shows that this BIC is composed of
eigenmodes (1, 6) and (5, 4). The FW BIC composed of the
eigenmodes (6, 1) and (4, 5) differs from this solution by 90
°°degree rotation.

In order to restore true degenerate FW BICs, we attach
waveguides at the vertices of the square as shown in Fig. 1(c)
which also give equal couplings of eigenmodes of the square
resonator with the continua of waveguides. However similar
to side coupling of square with waveguides the evanescent
modes remove the number degeneracy of modes 1, 6 and
5, 4. Numerics reveals two degenerate FW BICs with the
frequency ν = 0.832051 occur for variation of square size
a = 6.8818, the first of which is shown in Fig. 3. One can
see that FW BIC is superposed of two eigenmodes (1, 6)
and (5, 4). The second degenerate FW BIC is obtained by
90o rotation and both BICs are classified according to the
two-dimensional representation E .

IV. DEGENERATE BICS IN EQUILATERAL TRIANGLE

Less obvious cases of the number degeneracy exist in the
equilateral triangle with the eigenmodes and eigenfrequencies
presented in the Appendix. Similar to a square resonator,
all eigenmodes are twofold degenerate relative to m ↔ n,
giving rise to the FW BICs. However, there are also excep-
tional cases of the fourfold accidental number degeneracy,
for example, for m = −11, n = −19 and m = −16, n = −17.
Pressure profiles of these four eigenmodes with the lowest
frequency ν ≈ 40 are shown in the Appendix. Respectively,
with opening of the triangular resonator with three attached
waveguides these four eigenmodes are transformed into two
superradiant modes and two FW BICs classified according
to the two-dimensional irreducible representation E of group
symmetry C3v . Similar to open square resonator, only vertex
attachment of waveguides allows the existence of degenerate
BICs, as shown in Fig. 4. The resonant eigenmodes of the

FIG. 4. (a) Degenerate BICs with the frequency νBIC = 0.8938 classified according to the two-dimensional irreducible representation E of
group symmetry C3v . a = ac = 14.1939. (b) The Q-factor dependence on side size of triangle a.
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FIG. 5. Transmittance from input waveguide 1 into the output
waveguides 2 and 3 in the triangular resonator with rotated (a) trian-
gular pencil and (b) rectangular pencil. The frequency of input wave
is tuned onto the frequency of degenerate FW BICs shown in Fig. 4.

open triangular resonator can be found only numerically as
distinctive from the case of the square open resonator.

The existence of degenerate resonances and, in particular,
BICs opens a way of highly effective manipulating out power
flows by small perturbations. In particular, that can be done by
slight violation of symmetry of the system, say, by slight local
pressure onto the resonator walls. In the present paper, we
apply a local perturbation in the form of pencil of triangular or
rectangular cross sections at the center of the resonator which
can be rotated by the angle θ relative to the resonator. Figure 5
demonstrates the striking result of the symmetry incompat-
ibility of the resonator and perturbation. Figure 5(a) shows
that perturbation which preserves the symmetry C3 of the total
system cannot manipulate by acoustic flows irrespective of the
angle θ . However, the perturbation of the symmetry C2 whose
symmetry is not compatible with the symmetry of the total
system drastically changes the output acoustic flows.

V. CONCLUSIONS

We considered square and triangular resonators with
the symmetries whose eigenmodes are classified to the
irreducible representations of group symmetries C4v and C3v

among which there is the two-dimensional representation
E . One can preserve the symmetries of open resonators
owing to proper connection of waveguides to the resonator
as sketched in Fig. 1. The Hamiltonian of closed resonator
HB transforms into non-Hermitian effective Hamiltonian Heff

after the Feshbach projection of the total system into space
of eigenfunction of HB [31]. Respectively, the eigenmodes of
HB with real eigenvalues are substituted by resonant modes,
which are the eigenmodes of Heff with complex eigenvalues.
Both Hamiltonians commute with the symmetry group
transformations, and therefore one can expect that there are
twofold degenerate resonant states classified according to
the two-dimensional irreducible representation E . However,
analytical consideration in Sec. III explicitly shows these
resonant states can not be true FW BICs because of the
absence of interaction through the continuum of waveguides.
In order to realize the degenerate FW BICs, we explore
the unique property of square and triangular resonators of
numeric accidental degeneracy of eigenmodes. As a result,
we obtain the fourfold degeneracy of eigenmodes of HB

which transform into the twofold degenerate FW BICs and

two superradiant resonances. Shaw has presented even more
unique cases of number eightfold degeneracy for m = 5, n =
34; m = 10, n = 33; m = 13, n = 32; m = 24, n = 25 with
higher eigenfrequencies [22]. Respectively, we can expect
the fourfold degenerate FW BICs or go above the first cutoff
ν = 1 towards the FW BICs embedded into a few continua
of the next propagating bands of waveguides [38]. In general,
degenerate BICs can also occur in open systems symmetrical,
for example, relative to axial rotations. Then the Hilbert space
of total system splits into a direct sum of spaces specified
by the azimuthal index m. Respectively, the BICs, if they
exist, are degenerate relative to ±m because of time-reversal
symmetry. Examples of such degenerate BICs were reported
in the periodical array of dielectric spheres [39] and disks
[40]. However, these BICs are not degenerate in each Hilbert
subspace specified by the azimuthal index m.

APPENDIX

1. The eigenmodes of square resonator classified according to
irreducible representations of square symmetry group C4v

In the acoustic square resonator with the Neumann bound-
ary conditions result in the following eigenmodes

ψm,n(x, y) =
√

(2 − δm,1)(2 − δn,1)

a
cos

(
π (m − 1)x

a

)

× cos

(
π (n − 1)y

a

)
(A1)

with the eigenfrequencies

ν2
m,n = ω2

m,n/ω
2
0 = (m − 1)2 + (n − 1)2, m, n = 1, 2, 3, . . . ,

(A2)

where ω0 = πs/a, s is the velocity of sound in air and a is the
size of square.

The group of symmetry C4v of square consists of ro-
tations C4 and C2, two mirror reflections σv along the
square axis x and y and σ ′

v along the diagonals of square
[41,42]. Table I shows the irreducible representations of each
symmetry transformation and their characters [42]. Fig. 6
shows that the eigenmodes ψm,2n+1 and ψ2n+1,m belong
to the two-dimensional irreducible representation E . How-
ever, the eigenmodes ψ2m,2m+2n and ψ2m+2n,2m are classified
by the reducible representations. As Fig. 7 shows, only the
linear combinations ψ2m+2n,2m + ψ2m,2m+2n and ψ2m+2n,2m −
ψ2m,2m+2n are classified according to the irreducible one-
dimensional representations B2 and A2 respectively. Similarly,
the linear combinations ψ2m+2n+2,2m+1 + ψ2m+1,2m+2n+2 and

TABLE I. The characters of irreducible representations of group
symmetry C4v.

C4v 1 C2 2C4 σx, σy σxy, σ
′
xy basic modes

A1 1 1 1 1 1 z
A2 1 1 1 −1 −1 Jz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 x, y
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FIG. 6. Symmetry group C4v transformations of the eigenmode ψ23(x, y).

ψ2m+2n+2,2m+1 − ψ2m+1,2m+2n+2 are classified according to the
irreducible one-dimensional representations B1 and A1 respec-
tively. In Fig. 8 we present an example of eigenmodes ψ16

and ψ54 degenerated accidentally [22,23].

2. Effective non-Hermitian Hamiltonian

The procedure of the Feshbach projection of the to-
tal Hilbert space of the total system closed resonator plus
waveguides with Neumann boundary conditions onto Hilbert
space of the eigenmodes of closed resonator is described in
Ref. [36]. In application to the square acoustic resonator we
have

Ĥeff = ν2
mnδmm′δnn′ −

∞∑
p=1

∑
C

ikpŴC pŴ
†

C p, (A3)

where kp are the propagating momenta of the pth channel in
waveguides of width d . In what follows, all dimensions are
measured in terms of d , i.e., d = 1. Then

ν2 = k2
p + (p − 1)2, p = 1, 2, 3, . . . (A4)

with

φp(x, y) = √
2 − δp,1 cos(π (p − 1)y)eikpx. (A5)

The index w in Eq. (A3) sorts waveguides. For attachments
of waveguides shown in Fig. 1 of the main text the coupling
matrix ŴC p can be evaluated analytically

Wmn;p,C=1,3 = ∫ 1/2
−1/2 ψmn(x = ∓a/2, y)φp(y)dy, (A6)

Wmn;p,C=2,4 = ∫ 1/2
−1/2 ψmn(x, y = ±a/2)φp(x)dx. (A7)

After integration in geometry shown in Fig. 1(b) of the paper
we obtain for the waveguide 1:

Wmn;p,C=1 =
√

(2 − δm,1)(2 − δn,1)(2 − δp,1)

π

[
sin

[
π
2a (n − 1 + a(p − 1))

]
cos

[
π
2 (n − 1 + a(p − 1))

]
n − 1 + a(p − 1)

+ sin
[

π
2a (n − 1 − a(p − 1))

]
cos

[
π
2 (n − 1 − a(p − 1))

]
n − 1 − a(p − 1)

}
. (A8)
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FIG. 7. Symmetry group C4v transformations for the eigenmode ψ24(x, y).

FIG. 8. The number degenerated eigenfunctions of square.

Some particular coupling matrix elements relevant for the
paper are collected in Tables II and III where according to
Eq. (A8) we denote

b(a) = 4
√

2a

π (a2 − 9)
sin

πa

2
cos

3π

2a
,

c(a) = 4
√

2a

π (a2 − 4)
sin

πa

2
cos

π

2a
,

f (a) = 4
√

2a

π (a2 − 4)
cos

π

a
cos

πa

2
,

TABLE II. Coupling matrix elements with the first open channel
p = 1.

modes m, n \ C 1 2 3 4

2, 3 − 2
π

sin π

a 0 2
π

sin π

a 0
3, 2 0 2

π
sin π

a 0 − 2
π

sin π

a
2, 4 0 0 0 0
4, 2 0 0 0 0
1, 6 0

√
2

a 0 −
√

2
a

5, 4 0 1
π

sin 2π

a 0 − 1
π

sin 2π

a

6, 1
√

2
a 0 −

√
2

a 0
4, 5 1

π
sin 2π

a 0 − 1
π

sin 2π

a 0
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TABLE III. Coupling matrix elements with the second closed
channel p = 2.

modes m, n \ C 1 2 3 4

2, 3 0 – f (a) 0 f (a)
3, 2 – f (a) 0 f (a) 0
2, 4 –b(a) –c(a) b(a) c(a)
4, 2 c(a) b(a) –c(a) –b(a)
1, 6 g(a) 0 g(a) 0
5, 4 –h(a) 0 –h(a) 0
6, 1 0 g(a) 0 g(a)
4, 5 0 h(a) 0 h(a)

g(a) = − 4a

π (a2 − 25)
cos

5π

2a
sin

πa

2
,

h(a) = 4
√

2a

π (a2 − 16)
cos

2π

a
cos

πa

2
. (A9)

3. Eigenmodes of equilateral triangular billiard

The eigenfrequencies of equilateral triangle equal for the
Neumann boundary conditions

ν2
mn = ω2

mn/ω
2
0

= 16

27
(m2 + n2 − mn), m, n = 0,±1,±2, . . . , (A10)

where ω0 is defined in Eq. (A2) with the following conditions:
m + n is a multiple of 3 [43]. The eigenmodes are of the form

ψmn = fmn + fm,m−n + f−n,m−n + f−n,−m

+ fn−m,−m + fn−m,n

fmn(x, y) = exp(2π i/3)(nx + (2n − m)y/
√

3). (A11)

In Fig. 9 we show patterns of the eigenmodes which are
fourfold degenerate due to permutation symmetry m ↔ n
and accidental number degeneracy at m = −16, n = −17 and
m = 11, n = −19.

FIG. 9. Fourfold degenerate eigenvalues of equilateral triangle
with eigenfrequencies ν2

−11,−19 = ν2
−16,−17 = 161.778.

There are also other cases of the fourfold degeneracy
however with higher eigenfrequencies with m = −13, n =
−23, m = −23, n = −13 and m = −17, n = −22, m =
−22, n = −17 with the eigenvalue ν2

−13,−23 = 226.312. The
group of symmetry C3v of equilateral triangle consists of
rotations C3, mirror reflections σv along the diagonals of
resonator [42]. Table IV shows the irreducible representations
of each symmetry transformation and their characters [42].

TABLE IV. The characters of irreducible representations of
group symmetry C3v.

C3v 1 2C3 3σv basic modes

A1 1 1 1 z
A2 1 1 −1 Jz

E 2 −1 0 x, y
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