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Atomistic simulation of phonon heat transport across metallic vacuum nanogaps
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The understanding and modeling of heat transport across nanometer and subnanometer gaps, where the
distinction between thermal radiation and conduction becomes blurred, remains an open question. In this work,
we present a three-dimensional atomistic simulation framework by combining the molecular dynamics (MD)
and phonon nonequilibrium Green’s function (NEGF) methods. The relaxed atomic configuration and interaction
force constants of metallic vacuum nanogaps are generated from MD as inputs into harmonic phonon NEGF.
Phonon tunneling across gold-gold and copper-copper nanogaps is quantified, and is shown to be a significant
heat transport channel below a gap size of 1 nm. We demonstrate that lattice anharmonicity contributes to
within 20%–30% of phonon tunneling depending on gap size, whereas electrostatic interactions turn out to
have a weak effect for the small bias voltage typically used in experimental measurements. This work provides
detailed information of the heat current spectrum and interprets the recent experimental determination of thermal
conductance across gold-gold nanogaps. Our study contributes to deeper insight into heat transport in the
extremely near-field regime, as well as hints for future experimental investigation.
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I. INTRODUCTION

When the distance between two solid objects drops down
to a few nanometers or even smaller, heat transport lies in
the extremely near-field regime where the interplay of ther-
mal radiation and conduction plays an important role [1,2].
Understanding extremely near-field heat transport is of vital
importance in many applications including scanning tunneling
microscopy [3,4], heat assisted magnetic recording [5,6], non-
contact friction [7–9], thermal contact resistance [10,11], and
so on. The two recent experimental reports of thermal con-
ductance in this regime [12,13] are, however, controversial.
Kloppstech et al. [12] observed giant thermal conductance
of nanometer gaps while Cui et al. [13] found much smaller
values below the detection limit of their probe. The underlying
physical mechanism of heat transfer thus remains still an open
question.

One possible mechanism to explain the giant experimental
thermal conductance in the gold tip-surface nanogap [12]
is the phonon tunneling across the nanogap. As two solid
objects are sufficiently close to each other, the transfer of
lattice vibration (phonons) may occur via the direct atomic
interaction across the nanogap. There have been already some
investigations of phonon tunneling across nanogaps by ei-
ther harmonic or anharmonic theoretical approaches. The
harmonic approaches were usually based on Landauer’s for-
malism of quantum transport, with the phonon transmission
obtained through various methods: (i) phonon nonequilib-
rium Green’s function (NEGF) formalism [14–18], (ii) elastic
continuum model [19–22], or (iii) harmonic lattice dynamics
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[23,24]. Recently there has also been a fluctuational electrody-
namic model for acoustic phonon tunneling across the vacuum
gap in the elastic continuum limit [25,26]. The harmonic
phonon NEGF simulations were mostly based on simplified
one-dimensional (1D) formalism except in the very recent
first-principles modeling of phonon transport across a Si-Si
nanogap [18]. In addition, the nanogap configuration was
usually not relaxed in both harmonic phonon NEGF and
lattice dynamic methods except in the first-principles study
[18]. The lattice anharmonicity was instead included in the
recent molecular dynamics (MD) simulation of heat transport
across Pt-Pt nanogaps [27]. However, the anharmonic effect
on the thermal conductance of the nanogap has not yet been
elucidated.

In this work, we present an atomistic modeling of phonon
heat transport across metallic nanogaps by combining MD
simulation and three-dimensional (3D) phonon NEGF for-
malism. The relaxed nanogap configuration and atomic
interaction forces are generated from MD as inputs into the
phonon NEGF. Furthermore, we extract and compare the
spectral thermal conductance across the nanogap from both
methods. Thus we provide a robust computational framework
to investigate the effects of anharmonicity and electrostatics.
The remainder of the paper is organized as follows. The atom-
istic simulation methodology will be introduced in Sec. II,
and the results and discussions are given in Sec. III, with the
concluding remarks finally made in Sec. IV.

II. METHODOLOGY

We model the phonon heat transport across a fcc (face-
centered cubic) metal-metal nanogap, as shown in Fig. 1(a).
Our atomistic simulation framework combines both the classi-
cal MD [28,29] and phonon NEGF methods [30,31]. The MD
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FIG. 1. Atomistic simulation of phonon heat transport across a metallic nanogap: (a) schematic of the Au-Au nanogap with a gap size
d and periodic cross section; (b) Lennard-Jones potential for interaction between Au atoms; (c) energy accumulations at the hot and cold
thermostats in MD (molecular dynamics) simulation of the Au-Au gap with d = 3.94 Å at 300 K; the discrete points represent the MD data
while the solid lines are linear fitting.

includes all the order of anharmonicity automatically, whereas
the harmonic phonon NEGF is adopted in this work due to too
large computational cost of the anharmonic formalism [32].
The same empirical atomic interaction potential is employed
in MD and NEGF, as will be explained later.

A. Molecular dynamics simulation

The classical NEMD (nonequilibrium MD) simulation is
implemented in the open-source package LAMMPS [33]. We
consider two types of metallic nanogaps: Au-Au and Cu-
Cu gaps. The goal of our study on the Au-Au nanogap is
to explain the recent experimental data of thermal conduc-
tance between the gold tip and gold substrate [12,13]. The
Cu-Cu nanogap is also considered to investigate the effect
of anharmonicity since copper is less anharmonic than Au
based on the value of the Grüneisen parameter [34]. The
12-6 Lennard-Jones pairwise potential is adopted as seen
in Fig. 1(b), with the parameters for Au and Cu detailed
in Ref. [35], which provide a good description of the sur-
face and interface properties relevant to the situation in the
present study. The cutoff radius in MD simulation is 12 Å
for both metals, which is large enough to include the long-
range atomic interaction [35]. We have also checked that
the long-range interaction between metallic atoms is indeed
captured in the Lennard-Jones potential by comparing to the
Grimme’s density functional dispersion correction [36], as
detailed in Appendix A. The parallel plate-plate configuration
is considered as shown in Fig. 1(a), where periodic boundary

conditions are used in the transverse direction. A very large
cross section of 16 uc × 16 uc is adopted for both Au and
Cu gaps after careful independence verification. Here 1 uc
denotes one cubic conventional unit cell of fcc metals with
four atoms. In the transport direction, we have sandwiched
the nanogap between hot and cold thermostats with the same
length of 4 uc. Two fixed layers with the same length of 2 uc
are imposed on both ends of the system. The number of atomic
unit cells in the nanogap region are 6 and 7, respectively,
for the Au gap and the Cu gap, which are equally divided
into both sides. These numbers are large enough to ensure
that there is no direct interaction between one side of the
nanogap and the thermostat on the other side. The gap size
(d) is defined as the distance between the centers of the two
surface atomic layers adjacent to the gap.

During the MD simulation, a time step of 0.5 fs is used. For
both metal cases, firstly 1 000 000 time steps (0.5 ns) are run
to relax the whole system under the NPT (isothermal-isobaric)
ensemble. Then the fixed layers on both ends are fixed and
4 000 000 time steps (2 ns) are run to make the free part reach
a steady state under the effect of Langevin thermostats in
the NVE (microcanonical) ensemble. Finally, 15 000 000 time
steps (7.5 ns) of steady-state runs are done for the calculation
and analysis of the gap thermal conductance. To avoid the
collapse of the gap structure due to the attractive interatomic
force, a uniform tethering is exerted by attaching a harmonic
spring (only along the transport direction) to each atom within
the surface atomic monolayers adjacent to the nanogap. The
spring stiffness is low in order to not perturb the phonon
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dynamics too much, as to be discussed later. The thermal
conductance of the nanogap is extracted based on the energy
accumulation at the hot and cold thermostats, as exemplified
in Fig. 1(c) for the Au-Au gap with d = 3.94 Å at 300 K.

The frequency-dependent thermal conductance (or the
spectral thermal conductance) is obtained by a spectral heat
current (SHC) decomposition scheme [37,38], where the total
heat current Q is written as

Q =
∫ ∞

0
q(ω)

dω

2π
=

∑
i∈I
j∈J

∫ ∞

0
qi→ j (ω)

dω

2π
, (1)

where ω is the angular frequency of phonons; I, J denote
separately the left and right sides of the nanogap region. The
SHC between atom i and atom j is calculated by qi→ j (ω) =
2Re[K̃ji(ω)], where “Re” denotes the real part and K̃ ji(ω) is
the Fourier transform of the atomic force-velocity correlation
function between two time instants t1 and t2 [37,38]:

Kji(t1 − t2) = 1
2 〈F ji(t1) · [v j (t2) + vi(t2)]〉. (2)

In Eq. (2), F ji denotes the force acting on atom j due to
atom i, and vi and v j are the atomic velocities. The brackets
“〈〉” in Eq. (2) denote the ensemble average, which is cal-
culated through time average in MD simulation. Following
previous work, we consider only harmonic terms in F ji such
that the calculation of the SHC is simplified [38]:

qi→ j (ω) = − 2

tsimulω

∑
α,β

Im
[
v̂α

i (ω)∗�αβ
i j v̂

β
j (ω)

]
, (3)

where v̂α
i (ω), v̂β

j (ω) are the Fourier transforms of the atomic
velocities along the α, β directions, respectively, with “*”
denoting the complex conjugate. �

αβ
i j is the harmonic

(second-order) force constant matrix, “Im” denotes the imag-
inary part, and tsimul is the sampling simulation time. Note
that the lattice anharmonicity is still included in the atomic
velocity statistics in Eq. (3). In practical implementation,
we output the time-dependent atomic velocities during the
aforementioned 7.5 ns steady-state runs. The harmonic force
constant matrix is computed based on the relaxed gap con-
figuration obtained in the equilibration stage. The spectral
thermal conductance per unit area is finally obtained as hω =
q(ω)/(2πAc�T ), with Ac and �T the cross-sectional area
and the temperature difference between thermostats, respec-
tively. The thermal conductance of the nanogap can also be
obtained by integrating the SHC from NEMD, which is usu-
ally close to that by the direct NEMD except in the presence
of very strong anharmonicity. The direct NEMD result of the
thermal conductance is used for discussion throughout this
work unless stated otherwise.

B. Nonequilibrium Green’s function method

In parallel, the harmonic phonon NEGF formalism is
adopted in this work, with the retarded Green’s function cal-
culated in matrix notation as [39,40]

GR(ω; q⊥) = [ω2I − �̃(q⊥) − �R(ω; q⊥)]
−1

, (4)

where the superscript “–1” means the inverse of a matrix;
(ω, q⊥) denote the frequency and wave-vector dependences

along the transport direction and transverse periodic direc-
tion, separately; I is the unity matrix; and �̃(q⊥) is the
Fourier’s representation of the harmonic dynamic matrix
[32,39]. The retarded self-energy matrix includes the contri-
bution only from the two contacts, �R(ω; q⊥) = �R

1 (ω; q⊥) +
�R

2 (ω; q⊥), which are related to the surface Green’s functions
of contact 1 and contact 2 as calculated by the decimation
technique [41].

Once the retarded Green’s function is obtained, the phonon
transmission through the nanogap is calculated by [39,40]

�(ω) = 1

N

∑
q⊥

Tr[�1(ω; q⊥)GR(ω; q⊥)�2(ω; q⊥)GA(ω; q⊥)],

(5)
where N denotes the total number of discrete transverse wave
vectors (q⊥); “Tr” denotes the trace of a matrix; GA the
advanced Green’s function as the Hermitian conjugate of GR;
and the broadening matrices of contacts 1 and 2, �1(2) =
i[�R

1(2) − �A
1(2)], with i = √−1 here and �A the advanced

self-energy matrix as the Hermitian conjugate of �R. The ther-
mal conductance per unit area is related to the transmission
based on the Landauer’s formula [30,31,39]:

h = 1

Ac

∫ ∞

0
h̄ω

∂ fBE(ω)

∂T
�(ω)

dω

2π
, (6)

where h̄ is the reduced Planck constant, and fBE(ω) is the
Bose-Einstein distribution of phonons. To have a direct com-
parison to the MD simulation, the classical limit of Eq. (6)
is written as follows by replacing the quantum heat capacity
[h̄ω∂ fBE(ω)/∂T ] by the classical one (kB):

h = 1

Ac

∫ ∞

0
kB�(ω)

dω

2π
, (7)

where kB is the Boltzmann constant.
As we aim to compare the phonon NEGF and MD results,

the effect of tethering of the surface atomic monolayers adja-
cent to the nanogap in MD simulation must also be considered
in the phonon NEGF method. To do that, a diagonal term
is added into the dynamic Eq. (4) of the retarded Green’s
function:

GR(ω; q⊥) =
[
ω2I − �̃(q⊥) − kspring

m
I1 − �R(ω; q⊥)

]−1

,

(8)
where I1 is a diagonal matrix with diagonal components
[1 0 0] associated with each atom under the tethering along
only the transport direction (x direction), and kspring the spring
constant of the harmonic spring and m the atomic mass.
Equation (8) is derived based on the lattice dynamic equation
with an external tethering force; more details are given in
Appendix B.

The required inputs into phonon NEGF include the atomic
configuration of the nanogap and the harmonic force constant
matrix, both of which are generated from MD simulation. A
simulation cell with a cross section of 1 uc × 1 uc is ex-
tracted from the cross-sectional center of the relaxed nanogap
in the aforementioned equilibration stage. The length of the
simulation cell for phonon NEGF is the same as that in MD
simulation. We have checked that the transverse lattice sym-
metry is well preserved in the nanogap to justify the Fourier’s
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TABLE I. The initial and relaxed Au-Au nanogap configurations
under the corresponding tethering spring of surface atomic layers
adjacent to the gap in molecular dynamics simulation.

dinit (Å) kspring (N/m) fspring (THz) drelax (Å)

4.5 16.68 1.14 3.94
5.0 9.73 0.87 4.43
5.5 5.56 0.66 4.92
6.0 4.17 0.57 5.56
7.0 0.70 0.23 6.28

representation with such a cross-section period in phonon
NEGF. The harmonic force constant matrix of the nanogap
is computed by combining LAMMPS with the same Lennard-
Jones potential and the open-source package PHONOPY [42]
based on the finite-displacement method. The phonon NEGF
simulation is implemented in our highly parallelized compu-
tational framework [32], with a very dense transverse wave
vector of 100 × 100 after independence verification.

C. Configurations of nanogaps

In our NEMD simulation, the nanogaps will collapse in the
natural state due to surface attraction. In the realistic situation
of a tip-surface system, the tip is stretched as it approaches
the surface due to attractive, adhesive forces between the tip
and surface, as clearly shown in a previous experimental study
[3]. We exert a tethering force on the surface atomic layers
adjacent to the nanogap to avoid the instability owing to struc-
ture relaxation. On the other hand, to minimize the influence
of the tethering on the atomic and phonon dynamics around
the nanogap, we use a tethering force as small as possible.
In practical implementation, we construct a nanogap with an
initial gap size dinit , and run NPT equilibrations under a series
of decreasing tethering spring constants. We adopt the value
of the tethering spring constant just before the collapse of
the nanogap. The relaxed gap size drelax under the adopted
tethering is slightly smaller than the initial value (dinit ). Sev-
eral nanogaps are considered, with their initial (final) relaxed
gap sizes and the corresponding tethering spring constants
given in Tables I and II for Au and Cu cases, separately.
Also we define the tethering spring frequency as ωspring ≡
2π fspring = √

kspring/m, which will be compared to the dom-
inant frequency of phonons tunneled across the nanogap in
later discussions.

Although the tethering is unavoidable, we will show that
it does not perturb too much the phonon dynamics across the

TABLE II. The initial and relaxed Cu-Cu nanogap configurations
under the corresponding tethering spring of surface atomic layers
adjacent to the gap in molecular dynamics simulation.

dinit (Å) kspring (N/m) fspring (THz) drelax (Å)

4.0 18.07 2.08 3.45
4.5 11.12 1.63 4.05
5.0 6.95 1.29 4.62
5.5 4.17 1.00 5.12
6.0 2.78 0.82 5.67

nanogap, especially at larger gap sizes. As the global variation
of thermal conductance with nanogap size is much larger
(several orders of magnitude), the tethering will not impact
the general trend and final conclusion. Similar system collapse
has been reported in a previous MD simulation of near-field
heat transport between two silica nanoparticles, where the
authors stopped the simulation after a 10% reduction of the
initial interparticle distance [43]. Even though the stability
issue was not explained in the recent MD study of heat trans-
port across the Pt-Pt nanogap [27], we believe the situation
should be similar as the soft Lennard-Jones potential was also
adopted.

D. Electronic tunneling heat transport

The electrons will tunnel across the metallic nanogap with
a gap size below 1 nm [12,13] and also contribute to heat
transport. For comparison, we estimate this electronic tun-
neling heat current leaving contact 1 based on the following
formula:

Qe1 =
∫ ∞

0
(Ex − μ1)[N1(Ex ) − N2(Ex )]τ (Ex )dEx

+
∫ ∞

0
dExτ (Ex )

m

2π2h̄3

∫ ∞

0
dEr[ f1(E ) − f2(E )]Er,

(9)

where Ex and τ (Ex ) represent, respectively, the energy and
the transmission probability of electrons along the transport
direction, Er being the electron energy along the transverse
direction in the cylindrical coordinate, and the total electron
energy E = Ex + Er . The chemical potentials of electrons in
the two metallic contacts are denoted by μ1 and μ2, respec-
tively. The expressions of electron number distribution along
the transport direction N1(2)(Ex ) and Fermi-Dirac distribution
f1(2)(E ) in contacts are detailed in Appendix C, where the
derivation of Eq. (9) is also shown. The present formulation
is improved over the previous one in Ref. [17] in two aspects:
(i) subtraction of the chemical potential in defining the heat
current in contrast to an energy current in previous work; (ii)
a more accurate account for the transverse kinetic energy (Er)
in contrast to an approximation (kBT ) in previous work.

III. RESULTS AND DISCUSSIONS

In this section, we present the results of overall and spectral
thermal conductance across the nanogaps by comparing the
NEMD simulation and phonon NEGF modeling in Sec. III A.
Then the effect of anharmonicity is investigated through the
temperature-dependent results in Sec. III B. Finally the effect
of electrostatics and the explanation of experimental data are
discussed in Secs. III C and III D, respectively.

A. Overall and spectral thermal conductance

1. Thermal conductance

The gap size dependent thermal conductances of the Au-
Au and Cu-Cu nanogaps at room temperature (300 K) by
NEMD and phonon NEGF are shown in Figs. 2(a) and 2(b),
respectively. In NEMD, we use a temperature difference of
±50 K (i.e., 100 K), which is sufficiently small to remain in

085403-4



ATOMISTIC SIMULATION OF PHONON HEAT … PHYSICAL REVIEW B 106, 085403 (2022)

FIG. 2. Thermal conductance versus gap size at room temperature (300 K): (a) Au-Au gap, (b) Cu-Cu gap. The blue squares denote
the direct NEMD (nonequilibrium molecular dynamics) result; the magenta diamonds and the black circles represent the phonon NEGF
(nonequilibrium Green’s function) results with and without tethering of the surface atomic layers adjacent to the nanogap. The dashed line
represents a power-law scaling of d−9. The conduction limit (Cond. Limit) corresponds to the contact situation (with a gap size of half the
lattice constant).

the linear regime while it is sufficiently large to have good
statistics due to the very weak interaction across the nanogap.
For both cases, we do not consider gap size larger than ∼7 Å
as the heat transport is too weak to obtain statistically mean-
ingful heat currents in NEMD. On the other hand, we do
not consider too small a gap size as the nanogap is prone to
collapse. In all, the nanogap size lies in a range where the
atomic interaction is dominated by the attractive long-range
dispersion force in Fig. 1(b). The NEMD thermal conductance
of the nanogap decreases very rapidly with increasing gap size
(d), following approximately a power law of d−9. The usual
NEGF conductance based on Eq. (4) is appreciably lower
than the NEMD one at small gap size, which is mainly due
to the perturbation stemming from the tethering treatment in
NEMD. With the correction of the tethering force in Eq. (8),
the NEGF conductance generally agrees with the NEMD one
in the considered range of gap size. This also indicates the
weak effect of anharmonicity at room temperature.

We now compare the calculated thermal conductance of the
Au-Au nanogap to the recent experimental results [12,13]. As
the parallel plate-plate configuration is considered in our sim-
ulations, its thermal conductance per unit area (h) [W/m2 K]
is converted into the thermal conductance (G) [W/K] of a tip-
plate configuration in experimental setup using the classical
Derjaguin approximation [17,22]:

G(d̃ ) =
∫ rtip

0
h(d )2πrdr, (10)

where rtip is the radius of the tip, and r is the radius of a
horizontal slice of the tip with a distance d to the plate, with

d = d̃ + rtip −
√

r2
tip − r2, d̃ being the distance between the

tip apex and the plate. Since the phonon thermal conductance
h(d) decreases very rapidly with d , the relevant gap size for
the integration in Eq. (10) is much smaller than the tip radius
in the experimental setup (rtip = 30 nm [12] and rtip = 150 nm
[13]), such that rtip � d−d̃ and we have, approximately, r2 ≈
2rtip(d−d̃ ). Introducing d̃ ′ = (d−d̃ ), we have r2 ≈ 2rtipd̃ ′

and Eq. (10) is simplified to

G(d̃ ) = 2πrtip

∫ rtip
2

0
h(d̃ ′ + d̃ )dd̃ ′. (11)

In practical implementation, we consider the tip-plate gap
size (d̃) up to 6 Å with the upper limit of the integration in
Eq. (11) adopted as d̃ ′ = (9 Å − d̃ ). This ensures the accuracy
as the integrand h at the upper limit (d = 9 Å) is at least two
orders of magnitude smaller than the value at the lower limit
(d = d̃ � 6 Å), as shown in Fig. 3(a). As the NEGF result
with tethering correction is very close to the NEMD one, we
adopt the former as the thermal conductance of the plate-plate
configuration. An analytical expression is obtained through a
fitting of the phonon NEGF data in Fig. 3(a), and then used for
the integration in Eq. (11). For nanogap size (d) larger than
those in Table I, we follow the same procedure to generate the
nanogap configuration and atomic interaction forces from MD
as inputs into phonon NEGF.

In Fig. 3(a), the thermal conductance by the 1D phonon
NEGF with Lennard-Jones potential [17] also is included,
which shows almost the same power-law scaling yet much
larger magnitude compared to the present 3D NEGF. The
underlying reason is that the average phonon group speed
along different directions in 3D angular space is much smaller
than that along the monodirection in the simplified 1D space
[17]. This demonstrates the necessity of 3D atomistic sim-
ulation to accurately describe the phonon transport across
vacuum nanogaps. The thermal conductance by the 3D har-
monic lattice dynamic model [24] is higher than the present
NEGF result, as shown in Fig. 3(a). Such difference could
be mainly caused by the different treatments of atomic inter-
action, as the ab initio force constant and a Lennard-Jones
potential are adopted, respectively, in the contacts and across
the vacuum gap in Ref. [24]. We also include in Fig. 3(a) the
result by the elastic continuum model [25], which is generally
a few orders of magnitude smaller than various atomistic
modeling results. Especially in the conduction limit (d ∼
2 Å), the continuum model predicts a thermal conductance
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FIG. 3. Thermal conductance versus gap size around room temperature: (a) plate-plate configuration, (b) tip-plate configuration corre-
sponding to experimental setup. The magenta diamonds denote the present 3D phonon NEGF (nonequilibrium Green’s function) result with
tethering of the surface atomic layers adjacent to the nanogap, the black dash-dotted line represents the 1D phonon NEGF result from Ref. [17],
the black squares denote the lattice dynamic (LD) model result of phonons from Ref. [24], the blue solid line denotes the elastic continuum
model (ECM) result of phonons from Ref. [25], the red solid line denotes the NFRHT (near-field radiative heat transfer) result predicted by
the fluctuational electrodynamic theory, and the green solid line denotes the contribution of electron tunneling to heat transport, whereas the
blue circles represent the experimental data [12].

of ∼106 W/m2 K, which is around three orders of mag-
nitude smaller than the present atomistic modeling result
(∼109 W/m2 K). A clear understanding of the underlying
reason remains an open question in the current stage due to
very different frameworks. From our perspective, the different
orders of magnitude of phonon thermal conductance mainly
come from: (i) the different descriptions of interfacial phonon
scattering, i.e., continuum versus atomistic; (ii) the different
treatments of van der Waals force. In particular, only surface-
surface interactions across the nanogap are taken into account
in the continuum model, whereas the cross-gap interaction
between atoms within a cutoff range near the surfaces is also
considered in the atomistic modeling.

The phonon thermal conductance of the gold tip-plate
nanogap with a tip radius of rtip = 30 nm [12] is shown in
Fig. 3(b), with a power-law scaling of G ∝ d̃−7.6. For com-
parison, we also include the electronic thermal conductance
and the near-field radiative heat transfer (NFRHT) result by
the fluctuational electrodynamic theory [44] using the lo-
cal dielectric function of gold [45]. The NFRHT thermal
conductance is calculated for nanogap size only down to 1
nm, below which the nonlocal effect will play a significant
role and saturate the conductance [46]. The Derjaguin ap-
proximation in Eq. (10) is also valid for NFRHT, while it
is not valid for electronic tunneling. We follow an approx-
imate scheme for electron tunneling proposed in Ref. [22]:
G(d̃ ) = h(d = d̃ )πr2

Au, with rAu = 1.35 Å the radius of a gold
atom. As shown in Fig. 3(b), the phonon thermal conduc-
tance is dominant over the photon and electron counterparts
in this extremely near-field regime. However, the phonon
thermal conductance is still much smaller than the experi-
mental data of Kloppstech et al. [12]. With the tip radius
of rtip = 150 nm [13], we obtain a maximal phonon thermal
conductance of 0.23 nW/K at the minimal d̃ = 4 Å for the

tip-plate configuration. This conductance is of the same or-
der of magnitude as the measured maximal possible thermal
conductance (∼0.5 nW/K) of the smallest gaps after a careful
cleaning process [13]. The thermal conductance at larger gap
size is indeed below the detection limit of their probe, as
consistent with the conclusion drawn in the experiment of Cui
et al. [13]. Further discussion about the explanation of the
giant thermal conductance in the experiment of Kloppstech
et al. [12] is given in Sec. III D.

2. Spectral thermal conductance

The spectral thermal conductances of Au-Au nanogaps are
extracted from NEMD simulations based on Eqs. (1)–(3),
as shown in Fig. 4(a). The phonon heat current spectrum is
reduced very sharply beyond a critical frequency (∼2 THz)
as the higher-frequency phonons are more difficult to tunnel
across the nanogap. Here the critical frequency denotes a fre-
quency beyond which the phonon transmission drops rapidly.
With the increase of nanogap size from 3.94 to 6.28 Å, the
spectral thermal conductance decreases about two orders of
magnitude, which explains well the rapid decay of thermal
conductance in Fig. 2(a). Such rapid decay of phonon tun-
neling with gap size is related to the r−6 distance-dependent
dispersion force of the Lennard-Jones potential. We also in-
clude the usual NEGF spectral conductance in Fig. 4(a), which
shows good consistency with the NEMD result at high fre-
quency while there is appreciable deviation at low frequency
for the 3.94 and 4.92 Å nanogaps. The frequency range with
large deviation is around the tethering spring frequency in
Table I, evidencing more definitely that the difference between
the thermal conductances by NEGF and by NEMD at small
gap size in Fig. 2(a) is relevant to the perturbation intro-
duced by tethering in NEMD. The restoration of the tethering
spring to balance the collapse trend impacts the surface lattice
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FIG. 4. Spectral thermal conductance of Au-Au nanogaps at room temperature (300 K): NEMD result versus NEGF results (a) without
and (b) with tethering of the surface atomic layers adjacent to the nanogap. The solid lines represent the NEMD (nonequilibrium molecular
dynamics) results, whereas the dashed and dash-dotted lines represent the phonon NEGF (nonequilibrium Green’s function) results without
and with tethering, respectively.

vibration at similar frequency (i.e., close to the tether-
ing spring frequency). At smaller gap size, the nanogap
is more prone to collapse which corresponds to stronger
surface-surface interaction and stiffer tethering spring to avoid
instability. This explains the shift of the frequency range with
appreciable deviation to lower value with increasing nanogap
size in Fig. 4(a). With the tethering correction, the NEGF
results of spectral thermal conductance show general agree-
ment with the NEMD ones, as illustrated in Fig. 4(b). There
is still some deviation around the tethering spring frequency,
due to the fact that only the harmonic interaction is taken into
account in NEGF.

The results of Cu-Cu nanogaps are similar as shown in
Fig. 5. The critical frequency beyond which the phonon heat
current spectrum is reduced sharply is almost twice (∼4 THz)
the value for the Au-Au nanogaps, as the atomic mass of Au
is close to 3–4 times that of Cu. With the tethering correction,

the deviation between NEGF and NEMD results around the
tethering spring frequency is apparently smaller than that in
Au-Au nanogaps. This could be explained by the weaker
anharmonicity of Cu as compared to Au based on the average
Grüneisen parameters of 2.0 and 3.0, respectively [34]. In
addition, the spectral thermal conductance profile of the Cu
nanogap is more peaky than that of the Au nanogap because
of large fluctuations due to both smaller atomic mass and the
weak nature of atomic interaction across the nanogap.

B. Effect of anharmonicity

Anharmonic effects are known to play a non-negligible role
in interfacial heat transfer [37,47] but remain ambiguous in
heat transport across nanogaps. The present atomistic simula-
tion framework provides a unique tool to uncover the role of
anharmonicity through a comparison of the results of NEMD

FIG. 5. Spectral thermal conductance of Cu-Cu nanogaps at room temperature (300 K): NEMD result versus NEGF results (a) without
and (b) with tethering of the surface atomic layers adjacent to the nanogap. The solid lines represent the NEMD (nonequilibrium molecular
dynamics) results, whereas the dashed and dash-dotted lines represent the phonon NEGF (nonequilibrium Green’s function) results without
and with tethering, respectively.
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FIG. 6. Spectral thermal conductance of Au-Au nanogap with
d = 3.94 Å at different temperatures: (a) 1 K, (b) 10 K, (c) 300 K,
and (d) 500 K. The black solid line represents the NEMD (nonequi-
librium molecular dynamics) result, whereas the blue solid line and
magenta dashed line represent the phonon NEGF (nonequilibrium
Green’s function) results without and with tethering of the surface
atomic layers adjacent to the nanogap, respectively.

and harmonic phonon NEGF. We consider small Au-Au and
Cu-Cu nanogaps with relaxed gap sizes of 3.94 and 3.45 Å, re-
spectively. In the Au nanogap, four system temperatures of 1,
10, 300, and 500 K are considered, whereas in the Cu nanogap
only the first three temperatures are considered. Note the
classical statistics are considered in both NEMD and NEGF
[via Eq. (7)], and the system temperature is varied to tune the
strength of the lattice anharmonicity. In NEMD simulations,
the temperature differences of ±0.5, ±5, ±50, and ±50 K
are adopted at the four system temperatures, respectively. The
thermal expansion effect on the nanogap structure is shown
to be very small by optimizing the lattice constant through
the NPT ensemble at each temperature. For instance, in the
Au case, the lattice constants at the four temperatures are

FIG. 7. Spectral thermal conductance of Cu-Cu nanogap with d = 3.45 Å at different temperatures: (a) 1 K, (b) 10 K, and (c) 300 K.
The black solid line represents the NEMD (nonequilibrium molecular dynamics) result, whereas the blue solid line and magenta dashed line
represent the phonon NEGF (nonequilibrium Green’s function) results without and with tethering of the surface atomic layers adjacent to the
nanogap, respectively.

4.0571, 4.0571, 4.0593, and 4.0611 Å, respectively, whereas
the relaxed nanogap sizes are 3.9455, 3.9284, 3.9429, and
3.9489 Å, respectively.

The spectral thermal conductances of Au-Au nanogaps
computed at different temperatures are shown in Fig. 6. The
NEGF spectral conductance with tethering correction is closer
to the NEMD one at low temperatures (1 and 10 K) in
Figs. 6(a) and 6(b) compared to the situation at 300 K in
Fig. 6(c). This can be understood as the amplitude of atomic
displacement is reduced with decreasing temperature such
that the lattice vibration amplitude is small showing weaker
anharmonicity. The ratio of thermal conductance by NEGF
over that by NEMD is thus larger at 1 K than those at 10 and
300 K, as shown in Fig. 8(a). The NEMD thermal conductance
is higher than the NEGF one (ratio <1), as consistent with the
trend of spectral thermal conductances. However, the com-
plex interplay between tethering and anharmonicity makes
the underlying mechanism still a bit elusive, which requires
further study. As the temperature increases to 500 K, the
enhanced anharmonic phonon scattering will decrease a bit
the heat transport in NEMD, such that the ratio of thermal con-
ductances increases again. Note that the apparent agreement
between NEMD spectral conductance and the NEGF one with
tethering correction in Fig. 6(d) is due to the consideration
of only harmonic force terms in the SHC decomposition in
Eq. (3). As shown in Fig. 8(a), the thermal conductance ob-
tained by NEGF is still around 20% lower than that obtained
by the direct NEMD calculation at 500 K. The latter (namely,
6.41 MW/m2 K) is slightly larger than the thermal conduc-
tance (6.06 MW/m2 K) obtained by integrating the SHC from
NEMD.

The results for the Cu-Cu nanogaps are similar, as shown
in Figs. 7 and 8(b). As Cu is less anharmonic than Au,
the spectral thermal conductance predicted by NEGF with
tethering correction at lower temperatures (1 and 10 K) is
even closer to the NEMD result, as illustrated in Figs. 7(a)
and 7(b). This is also reflected in the slightly larger ratio of
thermal conductance by NEGF over that by NEMD as seen in
Fig. 8(b). In summary, the effect of anharmonicity is moderate
in heat transport across Au-Au and Cu-Cu nanogaps. The dif-
ference between the anharmonic and harmonic approaches is

085403-8



ATOMISTIC SIMULATION OF PHONON HEAT … PHYSICAL REVIEW B 106, 085403 (2022)

FIG. 8. Temperature-dependent thermal conductance of
nanogaps: (a) Au-Au gap with d = 3.94 Å, (b) Cu-Cu gap with
d = 3.45 Å. The squares and diamonds with lines denote the direct
NEMD result and NEGF result with tethering, respectively, whereas
the circles with line represent the ratio of the thermal conductance
by NEGF over that by direct NEMD. The cross symbols represent
the thermal conductance by integrating the SHC from NEMD.

around 20%–30% in the studied temperature range. For larger
nanogaps, the anharmonic effect is weaker as inferred from
the small difference between the NEMD and NEGF thermal
conductances in Fig. 2.

C. Effect of electrostatics

In the experimental measurements of the thermal con-
ductance of nanogaps [12,13], a small bias voltage (V) is
applied on the system for monitoring the tunneling current
of electrons. Under the bias voltage, there will be induced
surface charges which produce long-range Coulomb force.
The Coulomb force may promote phonon tunneling through
enhancing the atomic interactions across the nanogap. Here
we explore this electrostatic effect by putting uniform charges
with opposite signs at adjacent surfaces of the Au-Au nanogap
at 300 K in the NEMD simulation. We follow the method to
calculate the surface charge density in the elastic continuum
model [25,26]. The surface charge is computed by qe = CV ,
where the capacitance of the parallel plate-plate configuration
is defined as C = ε0Ac/d , with ε0 the vacuum permittivity.
The capacitance and surface charge density are calculated
based on the relaxed gap size (drelax, bare ) as in Table I, whereas
a voltage of 600 mV is adopted from the experimental report
[12]. We reoptimize the nanogap configuration with surface
charges under the NPT ensemble and obtain a new relaxed gap
size (drelax, charged ). In principle, the surface charge density has
to be recalculated based on drelax, charged and the optimization is

FIG. 9. Electrostatic effect on thermal conductance of Au-Au
gap via direct NEMD at room temperature (300 K): (a) thermal
conductance; (b) ratio of thermal conductance over bare case. The
squares denote the result of bare nanogaps; the diamonds denote
the result of nanogaps with uniformly charged surfaces under a
constant voltage of 600 mV, corresponding to the experimental setup
of Kloppstech et al. [12]; and the circles denote the result of nanogaps
with electrical double layer (EDL) at the surfaces; the dash-dotted
line represents the result of electrostatic phonon heat transfer across
nanogaps with EDL based on the elastic continuum model (ECM) in
Ref. [49].

redone through a self-consistent iterative procedure. However,
drelax, charged after the first iteration is quite close to drelax,bare, as
summarized in Table III for the different cases. Thus we adopt
the nanogap configuration after the first iteration for further
simulation and analysis.

The thermal conductances of the bare and charged Au-Au
nanogaps are compared in Fig. 9(a), which shows a very
small difference (except the 6.28 Å nanogap) as quantified in
Fig. 9(b). The results of large (� 7.53 Å) relaxed nanogaps
are no longer shown as the thermal conductance is too low
to obtain statistically meaningful heat current in NEMD even
in the presence of surface charges. The spectral thermal con-
ductances of three typical nanogaps are compared in Fig. 10
between the bare and charged cases. Although there seems
to be minor change of the heat current spectrum across the
6.28 Å nanogap induced by the surface charges, no signifi-
cant effect is visible in the overall thermal conductance. The
present atomistic modeling result is consistent with that by
the elastic continuum model [25,26] which shows negligi-
ble electrostatic effect on phonon heat transfer across the
Au-Au nanogap under a bias voltage of 1 V. However, our
conclusion is different from that of a recent 1D harmonic

TABLE III. Initial and relaxed Au-Au nanogap configurations under the corresponding tethering without (bare) or with (charged) a bias
voltage of 600 mV.

dinit (Å) drelax,bare (Å) Surface charge (e) Surface charge per atom (e) Surface charge density (C/m2) drelax,charged (Å)

4.5 3.94 3.56 6.96 × 10–3 1.35 × 10–2 3.97
5.0 4.43 3.17 6.19 × 10–3 1.20 × 10–2 4.42
5.5 4.92 2.86 5.58 × 10–3 1.08 × 10–2 4.93
6.0 5.56 2.53 4.93 × 10–3 9.55 × 10–3 5.56
7.0 6.28 2.24 4.37 × 10–3 8.46 × 10–3 6.25
8.0 7.52 1.87 3.65 × 10–3 7.06 × 10–3 7.53
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FIG. 10. Electrostatic effect on spectral thermal conductance of Au-Au gap via molecular dynamics at room temperature (300 K): (a)
d = 3.94 Å, (b) d = 4.43 Å, and (c) d = 6.28 Å. The blue solid lines denote the results of bare nanogaps; the red solid lines denote the results
of nanogaps with uniformly charged surfaces under a constant voltage of 600 mV, corresponding to the experimental setup of Kloppstech et al.
[12]; and the black lines denote the results of nanogaps with electrical double layer (EDL) at the surfaces. The relaxed gap sizes of the charged
nanogaps are 3.97, 4.42, and 6.25 Å, respectively; the relaxed gap sizes of the nanogaps with EDL are 3.96, 4.46, and 6.40 Å, respectively.

phonon NEGF modeling of the Au-Au nanogap [17], which
shows large enhancement of the phonon thermal conductance
by the bias voltage. The difference is mainly caused by the
different treatments of the effect of electrostatic interaction.
In Ref. [17], an additional static surface charge was assumed
on the sample surface following a previous experimental re-
port on a metal-dielectric tip-surface system [48]. Also the
formula of total electrostatic force on the tip from both the
dielectric surface and the metal electrode in Ref. [48] was
adapted for the Coulombic interaction between the tip and
surface [17]. Regarding the metal-metal tip-surface system
considered here, we do not find clear evidence to assume
an additional static surface charge on a metal surface as on
a dielectric surface. Instead, we only consider the induced
capacitive charges on the surfaces of the Au-Au nanogap by
the bias voltage.

Another possible electrostatic effect comes from the elec-
trical double layer (EDL) at the metal surface even in the
absence of bias voltage, as discussed in a very recent work
[49] based on an elastic continuum model. The EDL at the
metal surface results from the redistribution of the electron
density due to the “spill-out” of electrons into vacuum, which
induces a negatively charged surface atomic layer and a
positively charged uncompensated subsurface atomic layer
[49–51]. We investigate this effect via NEMD simulation
by putting opposite charges on the two atomic layers near
each surface of the Au-Au nanogap. The layer charge density
is estimated as [49] σ = ε0�ϕ/ed0, with d0 the interlayer
separation, e the elementary charge, and �ϕ = Wf + μ̄ the
potential step due to EDL, where Wf and μ̄ are the work
function and bulk chemical potential of the contact metal,
respectively. As shown in Figs. 9(a) and 9(b), the EDL has
a stronger impact on the phonon heat transport across the
nanogap compared to the electrostatic effect of the small
bias voltage. This is also illustrated in Fig. 10, where a no-
ticeable reduction of spectral thermal conductance is seen in
the moderate-frequency (∼1–2 THz) range in the presence
of EDL. The main underlying mechanism includes (i) the

Columbic interaction between the two atomic layers in the
EDL alters the lattice vibration near the surface; (ii) the at-
traction of the negatively charged surface atomic layer by the
positively charged subsurface atomic layer reduces a bit the
relaxation of the nanogap, as evidenced by the slightly larger
(<1% for small nanogaps, and <2% for the largest considered
nanogap) gap size. Nevertheless, the EDL effect by the present
atomistic modeling is generally small in contrast to the domi-
nant electrostatic phonon heat transfer induced by EDL based
on the continuum model [49] as included in Fig. 9(a). Note
the phonon thermal conductance due to the van der Waals
interaction predicted by the continuum model is much smaller
as shown in Fig. 3(a). The cause of the difference between
atomistic and continuum models deserves further study as
discussed in Sec. III A.

D. Discussions

One of the motivations of this work was to explain the
experimental thermal conductance of the nanogap in the ex-
tremely near-field regime by the phonon transport channel.
Although our atomic simulation results are consistent with
the experiment of Cui et al. [13], they are not able to re-
produce the giant experimental conductance of Kloppstech
et al. [12] in both the magnitude and the decaying slope as
discussed in Sec. III A. There are more recent unpublished
experimental data included in Ref. [22] for comparison to
the theoretical modeling result. However, the measured gap
thermal conductance shows a similar trend of slow decay with
increasing gap size, which could not be well explained even
considering the effect of bias voltage on the electronic tun-
neling channel [22]. We have also tried to model the phonon
heat transport by NEGF with first-principles calculation of
interatomic forces across the nanogap, which are, however,
comparable to or even smaller than the residual force in struc-
ture relaxation for stable gaps larger than ∼5 Å. Thus we
could not obtain a reliable first- principles modeling result.
As all the possible channels (phonons, electrons, photons)
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have been considered, the disagreement is most probably due
to the different conditions between the simulation and the
experiment. Clean nanogaps with ideal surface conditions are
modeled in the simulation. In contrast, there may be unknown
contaminations from the sample fabrication and preparation
procedure in experiment, as indicated by the cleaning process
dependent apparent barrier heights and thermal conductances
[13]. As no tunneling current was observed beyond 1 nm
gap size [12,13], the contamination is electrically insulating
and is possibly organic molecules. Such organic molecules
would bridge the tip and surface, and contribute to a new
heat transport channel across the nanogap. A gradual decrease
of the thermal conductance has been observed due to the
breaking of some molecular junctions when the tip is retracted
from the surface within a few nanometers [52]. This physical
picture seems to be a possible explanation for the slow decay
of thermal conductance versus gap size observed in the ex-
periment of Kloppstech et al. [12]. To exclude the effect from
contamination and achieve a more definite understanding of
the underlying physics, further experimental investigation of
the extremely near-field heat transport is pending in the future.

IV. CONCLUSIONS

In summary, we investigate the phonon heat transport
across metallic nanogaps by combining molecular dynam-
ics simulation and the three-dimensional harmonic phonon
nonequilibrium Green’s function method. The tip-surface
phonon thermal conductance decays rapidly with the gap size
(d̃) through a power law of d̃−7.6, and the phonon tunneling
is a significant heat transport channel below the gap size of
1 nm. The effect of lattice anharmonicity on phonon heat
transport across the nanogap amounts to within ∼20%–30%
of the thermal conductance depending on gap size, whereas
the impact of small bias voltage used in experimental mea-
surement is found to be weak. Our atomistic simulation is
consistent with the experiment by Cui et al. [13] while it is
not able to explain the giant heat transfer in the experiment
by Kloppstech et al. [12] probably due to contaminations.
The present atomistic simulation framework contributes to
a more pertinent modeling of the phonon transport channel
and hitherto detailed information of the heat current spectrum
across nanogaps. This work thus promotes deeper understand-
ing and a future perspective of heat transport in the extremely
near-field regime.
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APPENDIX A: COMPARISON OF LENNARD-JONES
POTENTIAL AND GRIMME’S DISPERSION CORRECTION

To make sure that the Lennard-Jones potential captures the
long-range dispersion force between metallic atoms, we com-
pare to the Grimme’s density functional dispersion correction
(DFT-D3) [36]:

Edisp = −C6

r6
fd,6(r), (A1)

where the C6 coefficient is 342.3526 a.u. (atomic unit) for
gold, and the damping function is defined as

fd,6(r) = 1

1 + 6[r/(sr,6R0)]−14 . (A2)

The atom pairwise cutoff radius for gold is R0 = 3.26 Å,
and the scaling factor sr,6 = 1.532 based on the PW6B95
functional is adopted due to its small mean absolute deviation
[36]. The C8 term in DFT-D3 is not considered here as it is
more short ranged. The dispersion correction in Eq. (A1) is
shown in Fig. 11 together with the Lennard-Jones potential
used in the present work. The long-range attractive interaction
term in the Lennard-Jones potential has the same trend as the
dispersion correction, and is negligibly small beyond 12 Å
used as the cutoff radius in MD simulation.

APPENDIX B: DERIVATION OF PHONON NEGF
FORMALISM WITH EXTERNAL FORCE

Here we present a derivation of 1D phonon NEGF formal-
ism with external tethering force, following the basic idea in
classical works [30,53]. In the harmonic approximation, the
lattice dynamic equation of atoms under an external harmonic
spring is

mp
d2up

dt2
= −

∑
q

kpquq − kspringup, (B1)

where up, uq denotes the vibrational degrees of freedom (i.e.,
atomic displacements), with mp the atomic mass associated
with up, kpq = ∂2�/∂up∂uq is the second-order force constant
with � the interatomic potential here, and kspring is the spring
constant of the tethering spring.

Owing to the lack of translational lattice symmetry in the
studied nanosystem by 1D phonon NEGF, the normal mode
solution of Eq. (B1) with respect to time t has the following
form [53]:

up = 1√
mp

φp exp (−iωt ), (B2)

with ω, φp the frequency and amplitude of the vibrational de-
gree of freedom, respectively. Putting the solution of Eq. (B2)
into the lattice dynamic equation in Eq. (B1), we obtain the
dynamic equation in the frequency domain as(

ω2 − kspring

mp

)
φp −

∑
q

�pqφq = 0, (B3)

where the components of the dynamic matrix are defined as
�pq ≡ kpq/

√
MpMq. Equation (B3) can be rewritten into the
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FIG. 11. Comparison of Lennard-Jones potential and Grimme’s DFT-D3 dispersion correction for gold.

matrix notation as[(
ω2 − kspring

mp

)
I − �

]
φ = 0, (B4)

where I and � are, respectively, the unity matrix and dynamic
matrix of dimension Np × Np, whereas φ is a Np × 1 column
vector, with Np the total number of vibrational degrees of
freedom of the system. The retarded Green’s function of the
device region in the form of Eqs. (4) and (8) can be de-
rived straightforwardly from Eq. (B4) by splitting the system
into two contact regions and a device region [53]. For the
considered case with only tethering force along the transport
direction (x direction) in the present work, Eq. (B4) is reduced
to [

ω2I − kspring

mp
I1 − �

]
φ = 0, (B5)

with the diagonal matrix I1 defined as

I1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0

0
1

0
0

0 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B6)

Finally, the formulation of 3D phonon NEGF used in the
present work [i.e., Eq. (8)] is obtained by introducing the
Fourier’s representation into the 1D formulation derived here
along the transverse direction.

APPENDIX C: ELECTRONIC TUNNELING HEAT CURRENT ACROSS VACUUM NANOGAPS

Here we explain the heat current associated with the electronic tunneling across a vacuum nanogap. Consider the two identical
metallic contacts at temperatures T1, T2 and chemical potentials μ1, μ2, respectively. In the absence of a bias voltage, μ1 = μ2 =
E f , whereas in the presence of a bias voltage (V), μ1 = E f and μ2 = E f –eV , with E f the Fermi level of the metal and e the
elementary charge.

The heat current leaving contact 1 associated with the electronic tunneling can be written in the form of the Landauer formula
[54,55]:

Qe1 = m

2π2h̄3

∫ ∞

0
dEx

∫ ∞

0
dEr (E − μ1)[ f1(E ) − f2(E )]τ (Ex ). (C1)

Equation (C1) can be derived for the 3D plate-plate configuration from

Qe1 = 2
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
vx(E − μ1)[ f1(E ) − f2(E )]τ (Ex )

dkydkzdkx

(2π )3 , (C2)

where vx, Ex, and τ (Ex ) are the velocity, energy, and transmission probability of electrons along the transport direction,
respectively. The factor “2” expresses the spin degeneracy. The Fermi-Dirac distributions in contact 1(2) are expressed as
f1(2)(E ) = {exp[(E − μ1(2))/kBT1(2)] + 1}−1. The free electron gas model has been assumed for metals [56]:

E = Ex + Er = h̄2k2
x

2m
+ h̄2k2

r

2m
= 1

2
mv2

x + 1

2
mv2

r , (C3)

where the cylindrical coordinate system is introduced for treating the periodic transverse direction: k2
r = k2

y + k2
z , v2

r = v2
y + v2

z ,
with vy, vz the velocities along the y and z directions (vr being the overall velocity along the radial direction). The integration in
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Eq. (C1) can be divided into two parts:

Qe1 = m

2π2h̄3

∫ ∞

0
dEx(Ex − μ1)τ (Ex )

∫ ∞

0
dEr[ f1(E ) − f2(E )] + m

2π2h̄3

∫ ∞

0
dExτ (Ex )

∫ ∞

0
dEr[ f1(E ) − f2(E )]Er . (C4)

Accomplishing the integration over Er in the first part of Eq. (C4), we obtain

Qe1 =
∫ ∞

0
(Ex − μ1)τ (Ex )[N1(Ex ) − N2(Ex )]dEx +

∫ ∞

0
dExτ (Ex )

m

2π2h̄3

∫ ∞

0
dEr[ f1(E ) − f2(E )]Er, (C5)

where N1(2)(Ex ) denote the number of electrons in contact 1(2) per unit area, per unit time, per unit energy interval along the
transport direction [57]:

N1(2)(Ex ) = mkBT1(2)

2π2h̄3 ln

[
exp

(
−Ex − μ1(2)

kBT1(2)

)
+ 1

]
. (C6)

The transmission probability of electrons across the vacuum nanogap is calculated based on the WKB (Wentzel-Kramers-
Brillouin) approximation [56]:

τ (Ex ) = exp

[
−

√
8me

h̄

∫ x2

x1

√
W (x) − Exdx

]
, (C7)

where me is the electron mass; W(x) is the potential barrier profile in the nanogap; and x1, x2 are zeros of W (x) − Ex. We include
the effect of image charge in the potential barrier profile: W (x) = Wid (x) + Wic(x), where the ideal linear profile and the image
charge correction are expressed, respectively, as [17,57,58]

Wid (x) = μ1 + Wf − x

d
eV, (C8)

Wic(x) = e2

16πε0d

[
−2ψ (1) + ψ

( x

d

)
+ ψ

(
1 − x

d

)]
. (C9)

In Eq. (C8), Wf is the work function of the metal. In Eq. (C9), ε0 is the vacuum permittivity, and ψ (x̄) is the digamma
function.
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