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Unraveling quantum pathways interference in two-color coherent
control of photoemission with bias voltages
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Coherent control steers a quantum system from an initial state to a target state by controlling quantum
interference phenomena via an external field, which is central to vast applications ranging from quantum
information processing to attosecond physics. Here, we analyze the quantum pathways interference in two-color
coherent control of photoemission using exact analytical solutions of the time-dependent Schrödinger equation.
The theory includes all possible quantum pathways and their interference terms. Constructive (or destructive)
interferences among the pathways leads to the maximum (or minimum) emission with varying phase delay of
the two-color lasers. It is found that increasing the intensity ratio of the second harmonic (2ω) to fundamental
(ω) lasers results in less contribution from the ω pathway (absorption of ω photons only) and more contribution
from multicolor pathway (simultaneous absorption of both ω and 2ω photons) and 2ω pathway (absorption
of 2ω photons only), and therefore stronger pathways interference and increased visibility larger than 95%.
Increasing bias voltages shifts the dominant emission to processes with lower-order photon absorption, which
sequentially decreases the interference between the ω and the 2ω pathways, and between single-color and
multicolor pathways, leading to two peaks in the visibility.

DOI: 10.1103/PhysRevB.106.085402

I. INTRODUCTION

Coherent control of quantum systems relies on the ma-
nipulation of quantum interference phenomena via external
fields such as laser pulses. Two-color laser field consisting of
a strong fundamental laser and a weak second harmonic has
become an essential tool to probe and steer quantum pathways
interference in the interaction with matter. Recently, two-color
coherent control of photoemission from nanotips has drawn
great interest, for its flexibility in manipulating electron dy-
namics in ultrashort temporal scale and nanometer spatial
scale [1–6], which makes it applicable in spatiotemporal char-
acterization of surface plasmon polaritons [7–9], investigation
of hot-carrier dynamics [2], and strong-field photoemission
[10,11], and control of interference fringes in the momentum
distribution of electron emission [12,13]. It also opens up new
opportunities in flexible control of photoemission in appli-
cations such as time-resolved electron microscopy [14–17],
free-electron lasers [18,19], carrier-envelope phase detection
[20–22], and emerging nanophotonic and nanoelectronic de-
vices [23–28].

By tuning the intensity mixture ratio and relative phase
difference between the fundamental laser and its second har-
monic, the photoemission current can be modulated with a
contrast of up to 97.5% [3,5,6,29–31]. The strong modulation
of photoemission current by two-color laser is ascribed to
the quantum interference between competing pathways. The
excitation of two-color laser opens out multicolor quantum
pathways where photons of different colors are simultane-
ously absorbed. Depending on the two-color intensity mixture
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ratio, simple two-pathway or three-pathway quantum inter-
ference model has been used to explain the scaling of the
coherent signal to the second-harmonic intensity in experi-
ments [3,29,31,32]. However, to give satisfactory fitting to
the experimental results, the simple quantum pathway model
has to be modified to allow independent weights for the three
channels and to account for the discrepancy in the extracted
prefactors from those of independent pulses [32]. As another
key tuning knob, increasing DC bias field enhances electron
emission but meanwhile suppresses the current modulation,
as experimentally observed in Refs. [29,32]. Nevertheless,
how the DC bias field influences the weight of each pathway
and interference between them is still ambiguous. Analyzing
the quantum pathway model using exact quantum theory is
therefore of highest interest for photoemission from metals in
two-color fields and for coherent control schemes in general
[32].

In this work, we analyze the quantum pathways interfer-
ence with the exact analytical solutions of the time-dependent
Schrödinger equation (TDSE) including DC bias [5,6]. These
exact analytical quantum models for two-color laser-induced
photoemission show quantitative good agreement with ex-
perimental results [5,6] and demonstrate the potential in
measurement of time-resolved photoelectron energy spectra
[6,33]. Our analysis explicitly shows the effects of laser fields
and DC bias field on the weights of each pathway and the
interference effects among them.

II. RESULTS

The one-dimensional (1D) model is illustrated in Fig. 1(a).
Electrons with initial energy of ε emit through the
metal-vacuum interface (x = 0) due to DC field F0 and two-
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FIG. 1. (a) Energy diagram for photoemission from a metal surface induced by two-color laser fields f (t ) = F1 cos(ωt ) + F2 cos(2ωt + θ )
under a DC field F0. Red and blue arrows depict quantum pathway model, with pathway I: absorption of (4 + k) fundamental photons (red
arrow); pathway II: absorption of (2 + k) fundamental photons and 1 second-harmonic photon (blue arrow); pathway III: absorption of 2
second-harmonic photons and k fundamental photons. (b) Electron transmission probability from initial energy ε = EF , D(ε = EF ), as a
function of 2ω laser field F2 and phase delay θ , with F1 = 2.6 V/nm and F0 = 0. (c) Coefficients of Fourier series expansion for D(τ ) for
F2 = 0.05, 0.3, and 0.55 V/nm. (d) Fourier series coefficients at angular frequency of 0 (n = 0), 2ω (n = 1), and 4ω (n = 2) as a function of
F 2

2 . Scatters represent coefficients from Fourier series expansion of D(τ ) from the exact quantum model in Eqs. (2) and (3), and solid curves
are fitted from the quantum pathway model in Eq. (4). (e) Decomposed electron transmission probability, with blue curves the zero-frequency
terms and red curves the oscillatory terms (2ω and 4ω terms). (f) Electron transmission Di through each quantum pathway (top) and their
interference terms (bottom).

color laser field f (t ) = F1 cos ωt + F2 cos(2ωt + θ ), where
F1 and F2 are the magnitudes of the fundamental and
second-harmonic electric fields, respectively, ω is the angular
frequency of the fundamental laser, θ = 2ωτ is the relative
phase between the fundamental and second harmonic, with
τ the corresponding time delay. For simplicity, the fields are
assumed to be perpendicular to the metal surface and abruptly
cut off inside the metal [5,6,22,34]. The potential barrier seen
by electrons inside the metal reads

φ(x, t ) =
{

0, x < 0
V0 − e f (t )x − eF0x, x � 0 , (1)

where V0 = EF + Weff , EF is the Fermi energy of the metal,
and Weff = W0 − WSchottky is the effective work function with
W0 the nominal work function and WSchottky = 2

√
e3F0/16πε0

the Schottky barrier lowering due to DC field F0, e (>0)
is the elementary charge, and ε0 is the vacuum permittivity.
By exactly solving TDSE subject to the potential barrier in
Eq. (1), the time-averaged electron transmission probability

from energy level ε is obtained as [5,6]

D(ε) =
∞∑

l=−∞
wl (ε), (2)

where wl (ε) represents the electron emission through l-
photon processes, with l < 0 being multiphoton emission,
l = 0 direct tunneling, and l > 0 multiphoton absorption pro-
cesses [5,6,33–36]. The expression of wl is summarized in the
Appendix. More detailed derivation can be found in Ref. [5]
for F0 = 0 and in Ref. [6] for F0 �= 0. It is important to note
that although l in Eq. (2), as written, is referred to the num-
ber of fundamental photons h̄ω, it also includes the possible
processes of substituting two fundamental photons 2h̄ω with a
single second-harmonic photon h̄(2ω), illustrated in the three
possible pathways in Fig. 1(a), as well as arbitrary multiples
of such substitutions.

Figure 1(b) shows the electron emission probability from
Fermi level D(ε = EF ) as a function of second-harmonic laser
field F2 and relative phase θ , with fundamental laser field F1 =
2.6 V/nm and DC field F0 = 0. The metal is assumed as gold,
with W0 = 5.1 eV and EF = 5.53 eV. The fundamental laser
has the wavelength of 800 nm (photon energy of 1.55 eV). For
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a given F2, D(ε = EF ) is a periodic function of relative phase
θ with an angular frequency of 2ω. Maxima of D(ε = EF ) for
a given F2 are observed at θ ∼= π/2 (see Fig. S1(a) in Supple-
mental Material [37]), whereas the minima are at θ ∼= 3π/2
when F2 � 0.4 V/nm and at θ ≈ π when F2 > 0.4 V/nm.
Visibility or the modulation depth due to relative phase θ ,
which is defined as the ratio of the difference between the
maximum and the minimum of transmission probability in θ

domain to the summation of them, increases as F2 increases
for F2 � 0.3 V/nm and keeps almost constant for F2 >

0.3 V/nm (see Fig. S1(b) in Supplemental Material [37]).
Figure 1(c) shows the Fourier series coefficient cn of

D(ε = EF ) vs τ at multiples of second-harmonic laser fre-
quency 2ω, obtained from

D(τ ) = c0

2
+

N∑
n=1

cn sin[n(2ω)τ + ϕn], (3)

with c0 = 2
T ∫T

0 D(τ )dτ , cn = √
a2

n + b2
n, an =

2
T ∫T

0 D(τ ) cos(n(2ωτ ))dτ , bn = 2
T ∫T

0 D(τ ) sin[n(2ω)τ ]dτ ,
T = 2π

2ω
, and ϕn = tan−1( an

bn
). Three dominant components

at angular frequencies of 0, 2ω, and 4ω are observed for
F2 = 0.05, 0.3, and 0.55 V/nm. As F2 increases, c1 and
c2 increase and their relative differences to c0 become
smaller, indicating more contribution from high-frequency
components.

These Fourier coefficients are shown as a function of F 2
2 as

scatters in Fig. 1(d). The results are fitted with the quantum
interference model [3,29,31,32], which considers pathways I,
II, and III as illustrated in Fig. 1(a), with the red and blue ar-
rows representing absorption of one fundamental photon and
one second-harmonic photon, respectively. The transmission
probabilities of each pathway and of the interference terms
between them are

DI ∝ αk
(
F 2

1

)k[
α4

(
F 2

1

)4] = KI , (4a)

DII ∝ αk
(
F 2

1

)k[
ζ 2

(
F 2

1

)2
F 2

2

] = KII F
2

2 , (4b)

DIII ∝ αk
(
F 2

1

)k[
β2

(
F 2

2

)2] = KIII
(
F 2

2

)2
, (4c)

DI&II ∝ 2
√

DI DII cos θ ∝ αk
(
F 2

1

)k[
2α2ζ

(
F 2

1

)3
√

F 2
2 cos θ

] = KI&II

√
F 2

2 cos(2ωτ ), (4d)

DI&III ∝ 2
√

DI DIII cos 2θ ∝ αk
(
F 2

1

)k[
2α2

(
F 2

1

)2
βF 2

2 cos 2θ
] = KI&IIIF

2
2 cos(4ωτ ), (4e)

DII&III ∝ 2
√

DII DIII cos θ ∝ αk
(
F 2

1

)k[
2ζF 2

1 β

√(
F 2

2

)3
cos θ

] = KII&III

√(
F 2

2

)3
cos(2ωτ ), (4f)

where α, ζ , and β are the weights for pathways I, II,
and III, respectively, and Ki is the prefactor for each term
as a power function of F 2

2 . Equating the total transmis-
sion probability D(τ ) in Eq. (3) with the sum of all
the probabilities in Eqs. (4a)–(4f) enables us to extract
straightforwardly the weights α, ζ , and β from the Fourier
coefficients.

By setting k = 0 (see Fig. S2 for fitting Kis as a function
of F 2

1 in Supplemental Material [37]), the fitted KI , KII , and
KIII in Fig. 1(d) yield α = 1.18 × 10−3nm2/V2, ζ = 2.93 ×
10−5nm3/V3, and β = 3.17 × 10−4nm2/V2. With these Ki

weights [Fig. 1(d)], the transmission probability D(ε = EF )
is decomposed into a DC term (zero-frequency term) and an
oscillatory term (consisting of 2ω and 4ω terms), as exempli-
fied in Fig. 1(e) for F2 = 0.3 V/nm. Fourier series expansion
with these fitting parameters perfectly reproduces the raw data
from our quantum model obtained from Eq. (2).

Photoemission through each of the channels in Eq. (4) is
explicitly shown in Fig. 1(f). It is clear that pathways I and
II in combination form the majority of the constant baseline
emission channels, around which the transmission probability
oscillates with the relative phase θ . The strongest interference
is between pathways I and II. Interference terms, and therefore
the total transmission probability, can be strongly tuned by the
phase difference θ , with maximum at θ ∼= π/2 and minimum
at θ ∼= 1.8π , as shown in Figs. 1(e) and 1(f).

The effect of second-harmonic laser field F2 on the con-
tribution of each channel to the total emission is shown in
Fig. 2. Transmission probability Di through each channel i at
the maximum of total D(ε = EF ) in θ domain for a given F2

is plotted in Fig. 2(a). The corresponding normalized trans-
mission probability with respect to the total D(ε = EF ) is
shown in Fig. 2(b). When F2 � 0.2 V/nm, pathway I and
the interference of I&II account for more than 66% of the
total emission, whereas contribution from pathway III can
be neglected. The negligibility of pathway III for a low field
mixture ratio (F2/F1 < 7% here) is further confirmed by the
visibility analysis (see Fig. S1(b) in Supplemental Material
[37]), which is consistent with previous work for tungsten
[3]. As F2 increases, transmission probability through all
channels except pathway I increases, exhibiting strong con-
structive interferences from I&II, II&III, and I&III. When
F2 � 0.35 V/nm, contributions from channels II, I&III, and
II&III exceed that from pathway I. The interference II&III
surpasses I&II at F2

∼= 0.46 V/nm. Figures 2(c) and 2(d)
show the transmission probability and their normalized value
at minima of D(ε = EF ) in θ domain as a function of F2.
The interference terms I&II, II&III, and I&III are negative,
which indicate destructive interferences and greatly suppress
the total transmission probability. More details of the effect of
F2 are given by analyzing the dependence of Di(ε = EF ) vs τ

for F2 = 0.05, 0.3, and 0.55 V/nm in Fig. S3 in Supplemental
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FIG. 2. (a) Electron transmission probability Di through each channel and (b) the corresponding normalized transmission probability Di/D
at maximum of D(ε = EF ) in θ domain for a given F2. (c) Di and (d) Di/D at minimum of D(ε = EF ) in θ domain for a given F2. Here,
F1 = 2.6 V/nm and F0 = 0.

Material [37], which reconfirms the above observation. When
F2 increases to 0.55 V/nm, emission through pathway II and
interference II&III become the dominant DC and oscillatory
terms, respectively.

Figure 3 shows the effect of fundamental laser field on
the modulation of quantum interference and the contribution
of each pathway. As shown in Fig. 3(a), when F1 increases,
the visibility increases and then decreases, with the maxi-
mum at F1 = 2.6 V/nm, corresponding to the intensity ratio
of second harmonic to the fundamental of 1.3%, with fixed
second-harmonic field F2 = 0.3 V/nm and DC field F0 = 0.
The transmission probability from initial energy level ε = EF

as a function of relative phase θ is shown as inset in Fig. 3(a)
under various fundamental laser fields F1. As F1 increases,
D(ε = EF ) is greatly enhanced. The oscillation magnitude
gradually decreases for F1 > 2.6 V/nm, consistent with the
decreasing visibility in Fig. 3(a).

The decrease of the visibility is ascribed to smaller two-
color laser intensity ratio, which results in relatively less
contribution from pathways II and III and therefore the in-
terference terms, as shown in Fig. 3(b). When F1 < 2 V/nm
(or F2/F1 > 0.15), the dominant emission is through pathway
III and the interference term II&III. As F1 increases, electron
emission through pathway I and interference I&II increases
greatly. As F1 reaches ∼3.7 V/nm, the contribution from

pathway I exceeds that of the interference term I&II. For
F1 > 3.7 V/nm, while I&II remains the dominant interference
term, its contribution to photoemission continues to decrease.

As another key knob to the coherent control of electron
emission by two-color lasers, the effect of DC field is shown
in Fig. 4. In Fig. 4(a), D(ε = EF ) is plotted as a function of
relative phase θ under various DC fields F0. As F0 increases,
transmission probability is greatly enhanced due to the low-
ering and narrowing of the surface potential barrier, which
opens emission channels of lower order (cf. Fig. 2 in Ref. [6]).
The minimum shifts from θ ∼= 1.7π to θ ∼= π , which indicates
the suppression of high-order 4ω terms. Figure 4(b) shows the
visibility as a function of F0 under different second-harmonic
laser fields with F1 = 2.6 V/nm. For F2 � 0.3 V/nm, the
maximum visibility is observed at F0

∼= 0.5 V/nm, whereas
for F2 � 0.4 V/nm, the maximum occurs at F0 = 0. Another
peak also appears at F0

∼= 1.75 V/nm for all cases. When
F0 > 1.75 V/nm, visibility decreases. As F0 reaches 3 V/nm,
visibility drops to almost 0 for all cases.

The nonlinear dependence of visibility on DC fields can
be explained by looking at the Fourier series coefficient, as
shown in logarithm scale in Fig. 4(c). When F0 � 0.5 V/nm,
the high-frequency component at 4ω is suppressed compared
to the 0 and 2ω terms. As F0 further increases, the differ-
ence between the coefficient at zero frequency and that at

085402-4



UNRAVELING QUANTUM PATHWAYS INTERFERENCE IN … PHYSICAL REVIEW B 106, 085402 (2022)

FIG. 3. (a) Visibility as a function of F1. Gray solid curve: calculated directly from the data by the quantum model in Eq. (2); black scatters:
calculated from visibility = DI&II/(DI + DII ) with DI , DII , and DI&II from Eq. (4) using fitted parameters; inset: transmission probability as
a function of relative phase under different F1. (b) Normalized transmission probability over the total transmission probability at maximum of
D(ε = EF ) in θ domain as a function of F1. Here, we fix F2 = 0.3 V/nm and F0 = 0.

FIG. 4. (a) D(ε = EF ) as a function of phase delay θ under various DC fields F0. (b) Visibility as a function of F0 under various F2. (c)
Fourier series coefficients under various F0. (d) Normalized transmission probability over the total transmission probability at maximum of
D(ε = EF ) in θ domain as a function of F0. Here, we use F1 = 2.6 V/nm and F2 = 0.3 V/nm in (a), (c), and (d).
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2ω increases. When F0 is sufficiently large, the component
at 2ω becomes also negligibly small compared to the zero-
frequency component. Thus, the peaks around 0–0.5 V/nm
and 1.75 V/nm in Fig. 4(b) can be attributed to the 4ω and 2ω

components, respectively. Note the peaks are also observed in
previous experiments (inset in Fig. 5 of Ref. [32]). Normalized
transmission probability at maximum of D(ε = EF ) in the
θ domain in Fig. 4(d) also confirms this observation. Since
the 4ω term is negligible for the majority of the cases, only
pathways I, II, and their interference I&II are considered here
for simplicity. When F0 < 0.5 V/nm, those two pathways and
the interference between them cannot account for the total
emission, as the sum of those terms is smaller than 1, indi-
cating additional contributions from the 4ω term are needed
in this regime. As F0 � 0.5 V/nm, the sum approaches 1. The
contribution from pathway I to the total emission increases,
while the contribution from the other two channels decreases.
It is important to note that, different from the physical mean-
ing of absorption of 4 photons of fundamental laser in the
absence of DC field, pathway I with positive F0 also includes
contributions from direct tunneling, photon-assisted tunnel-
ing, and photon-emission tunneling (cf. Fig. 2 in Ref. [6]),
which are all captured by the prefactors with power of k in
Eq. (4).

III. CONCLUSION

In conclusion, we analyze quantum pathways interfer-
ence in two-color coherent control of photoemission using
exact analytical solutions of the TDSE including DC bias.
The exact theory includes the contribution from all possible
quantum pathways and their interference terms. Interference
among pathways physically explains the observed modula-
tion of photoemission current by the relative phase between
two-color lasers. Effects of two-color laser fields and DC
bias field on the weights of each pathway and interference
between them are explicitly demonstrated. It is found that
increasing the intensity ratio of the second harmonic to
fundamental lasers would result in more contribution from
multicolor pathway and the single-color pathway of ab-
sorption of 2ω photons, and therefore stronger interference
between them and increased visibility more than 95%. In-
creasing bias voltages opens out lower photon order channels
including photoassisted tunneling and direct tunneling, which
inhibits contribution from both single-color and multicolor
multiphoton absorption. Implied by the quantum pathways
interference model is that the lower-order photon-assisted and
direct tunneling processes are also incorporated in the differ-
ent pathways with the presence of the DC bias. As a result,
interferences through different pathways are sequentially de-
creased with the increase of DC bias voltage, leading to the
subsequent suppression of 4ω and then 2ω components in
the Fourier analysis of current modulation with respect to
the relative phase between the two-color lasers. This helps
explain the two peaks in the visibility as a function of bias
voltage.

Our study provides direct theoretical foundation to confirm
the coherent emission physics of replacing two funda-
mental photons with one second-harmonic photon despite
various possible pathways. Our quantum theory and the

corresponding pathways model are applicable to arbitrary
driving-laser frequency, intensity (below the material dam-
age threshold), and material properties. Our study provides
insights into two-color laser-induced photoelectron emission
dynamics and more general coherent control schemes of
quantum systems ranging from single atoms and molecules
[38,39], nano-objects [8,40], and material surfaces and inter-
faces [26,41–44]. Manipulating ionization pathways and the
corresponding quantum phases between pathways enable us
to develop methods for controlling excitation and ionization
processes in atoms, molecules, and materials under strong
laser fields [45–49]. Therefore, identifying and quantifying
quantum pathways and corresponding quantum phases are
fundamentally important to both the understanding of the pho-
toionization dynamics and the characterization of the atomic
and molecular structures. Our analysis using the exact analyt-
ical quantum model in combination with the Fourier analysis
can provide a systematic investigation into the parametric
dependence of each pathway as well as interference terms
among them. The parametric scaling of different pathways
would be helpful in the optimization of the input laser param-
eters to achieve coherent control through a specific pathway
in a given quantum system.
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APPENDIX

For completeness, we provide the expression for the key
results of our quantum model developed in Refs. [5,6]. More
details about the derivation of these results can be found in
Refs. [5] and [6]. With the assumptions listed in the main text,
the electron wave function ψ (x, t ) is solved exactly from the
1D time-dependent Schrödinger equation:

ih̄
∂ψ (x, t )

∂t
= − h̄2

2m

∂2ψ (x, t )

∂x2
+ φ(x, t )ψ (x, t ), (A1)

where h̄ is the reduced Planck constant, m is the electron
mass, x is the distance to the metal surface, and φ(x, t ) is the
potential barrier given in Eq. (1) in the main text.

The exact analytical solution for electron waves inside the
metal (x < 0) is

ψI (x, t ) = exp

(
−i

ε

h̄
t + ik0x

)
+

∞∑
l=−∞

Rl

× exp

(
−i

ε + l h̄ω

h̄
t − iklx

)
, x < 0, (A2)

where ε is the electron initial energy, k0 =
√

2mε/h̄2 and kl =√
2m(ε + l h̄ω)/h̄2 are the electron wave numbers, and Rl is

the reflection coefficient of the incident electron wave after
l-photon process.
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The exact analytical solution for the transmitted electron wave outside the metal (x � 0) is obtained using Truscott transforma-
tions [5,6,50] from Eq. (A1) and separation of variables, which reads

ψII (x, t ) =
∞∑

l=−∞
Tl exp

[
i

√
2mEl

h̄2

(
x + eF1 cos ωt

mω2
+ eF2 cos(2ωt + θ )

4mω2

)]

× exp

[
−i

ε + l h̄ω

h̄
t + i

x

h̄
L + i

e2

8h̄mω3
M − i

e2F1F2

4h̄mω2
N

]
, x � 0, (A3a)

when F0 = 0, and

ψII (x, t ) =
∞∑

l=−∞
Tl [Ai(−ηl ) − iBi(−ηl )] exp

[
−i

e2F0F1 sin ωt

h̄mω3
− i

e2F0F2 sin(2ωt + θ )

8h̄mω3

]

× exp

[
−i

ε + l h̄ω

h̄
t + i

x

h̄
L + i

e2

8h̄mω3
M − i

e2F1F2

4h̄mω2
N

]
, x � 0, (A3b)

when F0 �= 0, where El = ε + l h̄ω − V0 − Up1 − Up2 with

V0 = Weff + EF and ponderomotive energy Up1 = e2F 2
1

4mω2 and

Up2 = e2F 2
2

16mω2 due to fundamental and second-harmonic fields,
respectively, L = eF1 sin ωt

ω
+ eF2 sin(2ωt+θ )

2ω
, M = F 2

1 sin 2ωt +
F 2

2
8 sin[2(2ωt + θ )], N = sin(ωt+θ )

ω
− sin(3ωt+θ )

3ω
, ηl =

( 2meF0

h̄2 )
1/3

(ξ + El
eF0

) with ξ = x + eF1 cos ωt
mω2 + eF2 cos(2ωt+θ )

4mω2 ,
Ai and Bi are the Airy function of the first and second kind,
and Tl is the transmission coefficient.

Applying boundary conditions that ψ (x, t ) and
∂ψ (x, t )/∂x are continuous at the metal-vacuum interface
x = 0, we obtain the following relationship:

2k0δ(s) =
∞∑

l=−∞
Tl [ksPl (l−s) + Ql (l−s)]. (A4)

Here, δ is Dirac delta function, Pl (l−s) =
(1/2π ) ∫2π

0 pl (ωt )e−i(l−s)ωt d (ωt ) and Ql (l−s) =
(1/2π ) ∫2π

0 ql (ωt )e−i(l−s)ωt d (ωt ) are the (l−s)th Fourier
transform coefficients of pl (ωt ) and ql (ωt ) respectively:

pl (ωt ) = exp

[
i

√
2mEl

h̄2

(
eF1 cos ωt

mω2
+ eF2 cos(2ωt + θ )

4mω2

)]

× exp

[
i

e2

8h̄mω3
M − i

e2F1F2

4h̄mω2
N

]
, (A5a)

ql (ωt ) =
[√

2mEl

h̄2 + L

h̄

]
pl (ωt ), (A5b)

when F0 = 0, and

pl (ωt ) = [Ai(−αl ) − iBi(−αl )] exp

[
−i

e2F0F1 sin ωt

h̄mω3

−i
e2F0F2 sin(2ωt + θ )

8h̄mω3

]

× exp

[
i

e2

8h̄mω3
M − i

e2F1F2

4h̄mω2
N

]
, (A5c)

ql (ωt ) =
[

i

(
2meF0

h̄2

)1/3

[Ai′(−αl ) − iBi′(−αl )]

+L

h̄
[Ai(−αl ) − iBi(−αl )]

]
exp

[
−i

e2F0F1 sin ωt

h̄mω3

−i
e2F0F2 sin(2ωt + θ )

8h̄mω3

]

× exp

[
i

e2

8h̄mω3
M − i

e2F1F2

4h̄mω2
N

]
(A5d)

when F0 �= 0, where αl = ηl (x = 0).
With the electron transmission coefficient Tl solved from

Eq. (A4), the time-averaged probability of electron transmis-
sion from initial energy of ε through the l-photon process is
given as

wl (ε) =
{

1
k0

Im
[
i
√

2m
h̄2 El |Tl |2

]
, F0 = 0

1
k0

( 2meF0

h̄2

)1/3 1
π
|Tl |2, F0 �= 0

(A6)

and the total electron transmission probability for an initial
energy of ε is a sum of wl through all the l-photon processes,
which is Eq. (2) in the main text.
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