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Landau level collapse in graphene in the presence of in-plane radial
electric and perpendicular magnetic fields
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It is known that in two-dimensional relativistic Dirac systems placed in orthogonal uniform magnetic and
electric fields, the Landau levels collapse as the applied in-plane electric field reaches a critical value +E.. We
study this phenomenon for a distinct field configuration with in-plane constant radial electric field. The Dirac

equation for this configuration does not allow analytical solutions in terms of known special functions. The
results are obtained by using both the WKB approximation and the exact diagonalization and shooting methods.
It is shown that the collapse occurs for positive values of the total angular momentum quantum number, the hole
(electron)-like Landau levels collapse as the electric field reaches the value +(—)E./2. The investigation of the
Landau level collapse in the case of gapped graphene shows a number of distinctive features in comparison with

the gapless case.
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I. INTRODUCTION

It was Rabi [1] who solved the just-discovered Dirac
equation in a homogeneous magnetic field in the symmetric
gauge and showed that the energies of the free electrons are
quantized. This occurred two years before the corresponding
quantized levels were found in the nonrelativistic quantum
theory by Frenkel and Bronstein [2] and Landau [3]. How-
ever, the experimental exploration of the relativistic Landau
levels, in contrast to the nonrelativistic ones, in condensed
matter systems became possible almost 80 years later after the
discovery of graphene [4,5]. Naturally, the most exciting are
the properties of the relativistic Landau levels that do not have
their counterparts for standard electron systems and among
them is the Landau-level collapse phenomenon predicted in
Ref. [6] (see also Ref. [7]) and observed experimentally in
Refs. [8,9].

This phenomenon occurs when, in addition to a magnetic
field H applied perpendicular to the sheet of graphene, an
in-plane electric field E is present. It consists of the merging
of the Landau-level staircase when the applied electric field
reaches a critical value £F, with E. = (vg/c)H in CGS units,
where vf is the Fermi velocity.

There are several ways to understand the origin of the
collapse. The first one is based on the consideration of the
motion in crossed electric and magnetic fields [10,11], where
the motion of a quasiparticle having a dispersion £(p) in
crossed fields can be viewed as a motion of a particle in the
magnetic field only with the modified dispersion law,

E*(p) = E(p) — vop, (1
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with vo = cE x H/H? being the drift velocity for the motion
in the crossed fields. Then the quasiclassical spectrum follows
from the Lifshitz-Onsager quantization condition,

S(S*):Znhﬂ(n—i—yg), n=0,1,..., 2)
c

where S(E*) is the electron orbit area in the momentum space,
yp is the topological part of the Berry phase. For the quadratic
dispersion law & = p?/(2m) with m being the effective mass
and p the absolute value of the momentum, the areais S(£*) =
2améE*. Thus, one can see that in this case the electric field
does not change the distance between Landau levels.

The massive Dirac fermions with the dispersion & =
++/ v% p?> + A? are characterized by the area S(£) = n (2 —
A?)/v%, where A is the gap in the quasiparticle spectrum. The
Lifshitz-Onsager quantization condition Eqgs. (2) results in the
spectrum in the crossed fields [12]

E
& =E — hk—,
H

2nhvzeH A?
Ta—pyr

where k is the in-plane wave vector along the direction per-
pendicular to the electric field, 8 = vo/vr = cE/(vpH), the
phase yp = 0. For A = 0, the spectrum Egs. (3) reduces the
spectrum obtained by an exact solution of the problem [6,7].
The Landau level collapse occurring at || = 1 can be viewed
as a transition from the closed elliptic quasiparticle orbits
for |B] < 1 (Jug] < vF) to open hyperbolic orbits for |8]| > 1
(lvol > vp) [13].

E =+~ ,32)3/4\/ 3
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FIG. 1. Schematic figure for the electric and magnetic field con-
figuration. The radial electric field E is in the plane of the graphene
sheet and the uniform magnetic field H is perpendicular to this plane.

Another elegant way to understand the origin of the col-
lapse and even to derive the spectrum Egs. (3) is described in
Ref. [6] (see also Refs. [13,14]). One can employ the effective
Lorentz covariance of the equation of motion [see Eq. (8)
below], in which the graphene dispersion velocity vy plays
the role of the speed of light ¢, and consider the corresponding
Lorentz transformations for electromagnetic fields.

We assume that the magnetic and electric fields are directed
in the z and y directions, respectively. Then under a boost in
the x direction with velocity v, these fields transform as [15]

v
E| = y(Ey - ;HZ>, (4a)
, ve
H =y(H - 2E,), (4b)
Vg

where y = 1/+/1 — v?/v7. When the velocity v coincides
with the drift velocity vgp = cE/H in graphene, the electric
field disappears in the primed reference frame and the mag-
netic field becomes

H =\/1-BH. 5)

Here we assumed that in the original frame c|E| < vp|H| (or
|B] < 1). Since the Dirac equation is Lorenz covariant, the
energies of Landau levels in the primed frame are known:

£ = i\/znhv,%eH;/c A, 6)

The value A/vi plays the role of the mass in the Dirac
theory and remains invariant under Lorentz transformations.
Considering that the energy is the zeroth component of the
energy-momentum vector and doing the inverse boost trans-
formation one recovers the spectrum Eq. (3). The critical
value |B] = 1 corresponding to the collapse of all levels £ =
&/\/1 — B? is determined by the relationship Eq. (5) between
H]and H.

The purpose of this paper is to study the Landau levels and
their collapse in another field configuration with the magnetic
field H applied perpendicular to the infinite graphene’s plane
and the in-plane constant radial electric field E as shown
in Fig. 1. In practice, an approximately constant radial field
can be created inside a cylindric capacitor, where the electric
potential

V(r):Voan%V()(z—l), b<r<a (7
a a

with a and b being the external and internal radii, respectively.

Unlike the above-described case of orthogonal uniform
magnetic and electric fields, the present problem cannot be
solved exactly in a closed analytic form. Thus, to investi-
gate this problem, we employ the semiclassical WKB method
which leads to a transcendental equation for the spectrum.
These results are compared with the calculations performed
using the exact diagonalization and shooting methods. It turns
out that the WKB solutions are very close to the numerical
ones for practically all quantum numbers.

Following the above-mentioned arguments with the
Lorentz transformation, one may develop a qualitative under-
standing of the present problem. However, one should keep in
mind that because the electric field is radial rather than unidi-
rectional, the considered case rather resembles an explanation
of the origin of spin-orbit interaction in atomic physics. Thus,
the Thomas precession must be properly taken into account
(see, for example, Ref. [16]). One can see from the transfor-
mation Eq. (4a) that by doing a boost to the coordinate system
moving with the drift velocity vy = cE/H, it is possible to
remove the electric field locally.

We emphasize that due to Thomas precession it is not
sufficient to use the transformation Eq. (4b), and Eq. (5) has
to be replaced by a more complicated unknown relationship
H] = a(B)H. The Landau-level collapse would still be possi-
ble if an unknown function () goes to zero at some value
of 8. We later show that for the configuration of the fields in
Fig. 1, B = —1/2 for electrons and 8 = 1/2 for holes.

The paper is organized as follows. In Sec. II, the model
for a single layer of graphene with a magnetic field H applied
perpendicular to the layer and an in-plane constant radial elec-
tric field is introduced. Using the symmetry of the problem,
it is reduced to a system of radial equations. This system is
considered using the WKB method in Sec. III. In particular,
the transcendental WKB equation for the energy spectrum
is derived in terms of complete elliptic integrals for gapless
graphene. The technical details are provided in Appendices A
and B. In the absence of an electric field, the WKB approxima-
tion recovers the exact solution as discussed both in Sec. III A
and Appendix C. In Sec. IV, we obtain and discuss the energy
spectra obtained in the WKB approximation and compare
them with the results of numerical computations performed
using the exact diagonalization and shooting methods. The
gapped graphene case is considered using numerical methods
in Sec. IV B. In the Conclusion (Sec. V), we summarize the
obtained results and discuss their possible experimental ob-
servation.

II. MODEL AND MAIN EQUATIONS
We consider the stationary Dirac equation
[—hvp(01iDy + a2iDy) + Aaz + V(r) = E]¥(r) =0, (8)

which describes low-energy excitations in graphene (see, e.g.,
Ref. [17] for a review and notations) and eigenenergy &.
The 4 x 4 « matrices «; = 73 ® 0; and the Pauli matrices
7;, 0; (as well as the 2 x 2 unit matrices 7y, 0p) act on the
valley (K, with n = £) and sublattice (A, B) indices, re-
spectively, of the four component spinors W7 = (7, w7T) =
(Yak,, ¥k, » VK, Yak_ )

We consider both the massless Dirac-Weyl fermions in the
pristine graphene and the massive Dirac fermions with the
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mass A. We recall that a global A/B sublattice asymmetry gap
2A ~ 350K can be introduced in graphene [18-21] when it
is placed on top of hexagonal boron nitride (G/hBN) and the
crystallographic axes of graphene and hBN are aligned.

The orbital effect of a perpendicular magnetic field H =
V x A is included via the covariant spatial derivative D; =
0; + (ie/hc)A; with j =x,y and —e < 0, while the poten-
tial V (r) corresponds to the static electric field eE = VV (r).
The Zeeman interaction is neglected in this paper (see, e.g.,
Ref. [17]) and the spin index is omitted in what follows.

We consider the configuration of crossed magnetic and
electric fields, with the magnetic field applied perpendicular
to the infinite plane of graphene along the positive z axis
[22] and the corresponding vector potential is taken in the
symmetric gauge (A, A,y) = (H/2)(—y, x) and radial in-plane
electric field E with the potential V (r) = eEr (see Fig. 1).

It is clear that the solution at the K_ point is obtained
from the solution at the K, point by changing A — —A
and exchanging the spinor components ¥4 <> ¥p, so in what
follows we only consider the K, point.

Since the system has rotational symmetry, it is natural to
consider the problem in polar coordinates, where

. .0 10 ieHr
iDy £ D, =e™(i— + + . )

ar  ra¢  2hc
Accordingly, the total angular momentum J; is conserved and
we can represent W(r) in terms of the eigenfunctions of J, =
L,+0,/2=—id/d¢ + 0,/2 as follows:

i(G=1/2)¢
\IJ+ (I') = [fel(1+1/2)¢2§;§] B (10)

where j = +1/2,4£3/2, ... is the total angular momentum
quantum number. Then for the spinor x” (r) = (f(r), g(r)),
we obtain the following system of equations written in a
matrix form:

1
x'(r) = EN(r)x(r), a1
where the prime denotes the derivative over r and the matrix
RG=1/2) | elir _E+A-V(D)
_ r 2¢ vp
N = |: E—A-V(r) _RGH1/2) @:| (12)
vp r 2¢

For a constant electric field with V(r) = eEr, one can
rewrite the last equation in the form

A
x'(p)=N(p)x(p) = (; +B+Cp)x(p), (13)

where we introduced the dimensionless variable p = r/l with
| = \/hc/eH being the magnetic length; the prime now de-
notes the derivative over p, and the 2 x 2 p-independent
matrices A, B, C are, respectively,

CTi-102 0
A=1"0" —jicp)
0 _UE+A)
B = c-a o ]’
- hUF 0
[1/2
c= _/ﬁ _‘13/2]. (14)

The matrix C contains the important dimensionless parame-
ter B = cE/(vpH) that describes the strength of the electric
field relative to the magnetic field. In this paper, we restrict
ourselves to the | 8] < 1/2 case.

Comparing the system of Eq. (13) with the corresponding
system describing the Dirac fermions in the uniform magnetic
field and constant electric field in the x direction [6,7] (see
also Ref. [23]), one can see that the latter contains only two
matrices B + Cx. The problem in the crossed uniform fields in
the Cartesian coordinates is exactly solvable by diagonalizing
the matrix C, while the present problem with the radial electric
field cannot be solved analytically. The situation is similar to
the case of 2D Dirac fermions in a constant magnetic field
and Coulomb potential (see, e.g., Refs. [24-28]) and to the
parabolic potential V (r) ~ r? [29], which do not have analyt-
ical solutions in terms of known special functions.

Making in Eq. (13) the transformation of dependent vari-
able x(p) = U(p)&(p), where U(p) is a 2 x 2 matrix with
det U (p) # 0, we obtain a different system of equations,

&' (p) =M(p)E(p), (15)
with matrix N(p) related to matrix M (p) by the transforma-
tion

M(p) = U~ (pIN(p)U(p) =U~"(0)U'(p).  (16)

Choosing the matrix U proportional to the unit matrix U =
ooe /2 p*, one can see that matrix B does not change, while
matrices A and C become

[i-1/2-5s 0

A—[ 0 —j—l/2—s}’
_|1/2+a B

C—[ i —1/2+a:|' an

Different sets of parameters a and s are appropriate for the
consideration of the system Eq. (15), for example, choosing
a=1/2and s = —j — 1/2 one obtains the following second-
order differential equation for the lower component &,(p) of
the spinor £(p):

& - (ﬂ +p+ L)s’ +1(Bp—€) =812 =0
2\ TP Bp—ets)> P T
(18)

Here we introduced the dimensionless energy € = [£/(hvF),
and mass (gap) § = [A/(hivg). This equation has three sin-
gular points, two regular at p =0, p = (¢ —§)/B and an
irregular one at infinity. The singularity at p = (¢ — §)/8 is
apparent [it is absent in the system Eq. (15)]. The equation is
similar to the confluent Heun equation but the singularity at
infinity is more strong (with rank three according to the defi-
nition of the rank of singular points of differential equations in
Ref. [30]). The rank of the irregular singular point at infinity of
the confluent Heun equation is equal to two. Analytical results
for such type of equations are absent in the literature, thus it
is necessary to use another method to investigate the problem.

III. WKB METHOD

We employ the WKB method to study the spectrum of
bound states for the problem described by Egs. (15) and
(17). It is convenient to choose the exponent s = —1/2 and
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a =0 in Egs. (17), so the spinor &(r) = /rx(r). Restoring
the dimensional variables, we rewrite Eq. (15) as follows:

1
£'(r)= EME(F), 19)

where the matrix

J eHr _E+A-V()
M { Pt e o }

E—A-V()  _J _ eHr
vE r 2c
h Lys —e—36
:_[ s +5 ﬂpjfp}, (20)
IL-Bp—e+d —2—-4%

Here we denoted J = /ij in the first line. Equations (19)
and (20) are similar to the corresponding system written in
Refs. [24,26-29] (see Ref. [22]).

As one can see from the first line of Eq. (20), the system
Eq. (19) contains a small parameter 7 and it is possible to
use the standard scheme for solving asymptotically systems
of linear differential equations [31], which represents the base
of the WKB method. Notice that in matrix M, the energy &
and total angular momentum J are the conserved quantities.

Following Ref. [31], one writes

£(r) = p(r)exp [%S(r)], @1)
which gives

1 r
<P/(r)=ﬁ(M—iS'~Uo)<p(V), S(i’)=/ p(rydr.  (22)

Then one seeks the solution of system Eq. (19) as an asymp-
totic series in powers of 7 (see, e.g., Ref. [32]):

[ee] o]

pry=Y R'pu(r), @)=Y Ko™ (r). (23)

n=0 n=0

Substituting these expansions in Eqs. (22) and equating the
coefficients of equal powers of /i to zero, we obtain an infinite
system of recursive equations for the unknown scalar p,(r)
and vector ¢ (r) functions,

M — ipoD)e @ (r) = 0, (24a)

n

M — ipaDe" V() = 0™ () +i Y par119(r), (24b)
=0

where [ =0, 1,...n. It follows from Eq. (24a) that ipy and
©©(r) must be the eigenvalues and eigenvectors of the matrix
M. In particular, we find that po(r) = £p(r) with

h 1 2
pr) = 7\/62 — - (Z - ﬁ2>02 5= 2ep.
25)

Recall that p = r/I.

The WKB approximation for the 2D massless Dirac
fermions was discussed in detail in Ref. [26], so we di-
rectly proceed to the analysis of our problem. In particular,
the Bohr-Sommerfeld quantization condition for eigenener-
gies for the Dirac fermions was obtained in Ref. [26] both
by using Zwaan’s method and by considering the condition

of single valuedness of the WKB wave function (see also
Refs. [33,34]). It reads

I(e,j)z/; drp(r):nh(nBs—}—#), (26)

where a > b are positive turning points [roots of the equa-
tion p?(r) =0], ngs =0, 1,2, ... is the Bohr-Sommerfeld
quantum number, 6(—j) is the step function [22] whose
presence takes into account the spinor nature of the Dirac
quasiparticles and the existence of the lowest n = 0 Landau
level when the classically allowed region shrinks to a point.

A. WKB approximation in the absence of electric field

Let us recapitulate how the WKB method can be applied in
the absence of an electric field, E = 0. In this case, the integral
I (e, j) on the left hand side (LHS) of the Bohr-Sommerfeld
quantization condition Eq. (26) can be calculated:

. hm 2 2 . .
I(ﬁ])ZT(G =8 —=1jl=0- (27)

Solving Eq. (26) for the energy €, one recovers the well-
known Landau-level spectrum,

€ = £/ A2+ Qs + j + 1| + 1 — 0(—j)eH v} /e,

(28)
withngg = 0, 1, 2, .. .. Except for the asymmetric lowest Lan-
dau level, this result agrees perfectly with the exact solution of
the Dirac equation in the symmetric gauge (see Appendix D
of Ref. [35], where the final result is written in the form
identical to the spectrum obtained in the Landau gauge). For
Jj < 0, the spectrum Eq. (28) is consistent with the result in the
Landau gauge if one identifies the quantum number ngs and
the Landau-level index n = ngs. To reproduce the spectrum
for the j > O case, one should relabel the quantum numbers
2n = 2ngs +2j + 1, so n corresponds to the Landau-level
index and € = £+ A% + 2neHlv2 /c with n = 1,2, ... and
1/2 < j < n—1/2. Thus, one observes that in the absence
of an electric field, the WKB method reproduces well-known
exact results (see, for example, Ref. [26]).

B. WKB approximation in the radial electric field

Here we restrict ourselves to the gapless case, A = 0. Then
the expression Eq. (25) acquires the form

hy/1/4 — B2
P(r) = == ——V/=(0 = p)(p = p2)(p = p3)(p = 1),
(29)
where p; are the roots of the quartic equation p?(r) = 0:
_ —eF /e —2j(1-2p)
P12 = 1—28 ;
eTFJe2 —-2j(14+28)

= . 30
P3,4 1528 (30)

As one can see, there are always two positive and two nega-
tive roots. In particular, for the zero electric case considered
in Secs. III A and III C, the roots p; = —p4 and p, = —p;3.
This symmetry allows one to calculate the integral Eq. (27)
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using the contour integration in the complex plane (see the
corresponding integral in the textbook [36]).

Depending on the signs of € and j, these roots are ordered
as follows: for € > 0,

pr<p<0<p3<p4 for j>0O,

pr<p;<0<pp<py for j<O 31
and, for e < 0,

p3<ps<0<p <py for j>0,

p3<pp<0<ps<py for j<O. (32)

For B — F1/2 and € 2 0, the turning point p4 (02) moves to
infinity and some of the closed classical orbits transform into
open trajectories.

We relabel these roots a, b, ¢, and d and assume that
they obey the inequality @ > p > b > ¢ > d. Then the cor-
responding integral on the LHS of Eq. (26) can be expressed
in terms of complete Legendre elliptic integrals of the first,
K(k), second, E(k), and third IT(v, k), kinds. In Appendix A,
we obtain the following result:

N h 2 . 2
I(e, j) = _\/T—Mﬂ[ﬂeh —(e"— I +25°J-41, (33)
where
P S _(b— c)1'1<u k) —i—cK(k)]
T Va—ot-al a—c ’
(34a)
J, = 2 _C_bn<c(“_b) k)+lK(k)}
T JSa—ob=—a)| bc \bla—-c) c :
(34b)
| )
J = m _(—a(b —c)+cb+c)K(k)
T (a—c)b—d)E(k)
+(b—c)(a+b+c+d)l'l<a_b,k)}, (34c)
a—=c¢
with
2 — (a—Db)(c—4d) 35)

S (a—o)b—d)

The quantization condition Eq. (26) with the LHS given by
Eq. (33) represents a transcendental equation for energies of
bound states in terms of complete elliptic integrals. This com-
plicated equation cannot be solved explicitly for the energy.
However, they can be calculated efficiently with numerical
methods. It is shown in Appendix C that the spectrum in the
zero electric field, E = 0, limit can be directly derived from
Eq. (33).

IV. RESULTS

A. The gapless case, A =0

To develop a qualitative understanding, it is useful to rep-
resent the momentum Eq. (25),

h
p(r) = 7V et = Uit (36)

—_— =01 j=-1/2

2f ]

i — =01 j=-3/2 1

1L — c=-01 j=1/2 ]

= o ]
_1} 1

0 2 4 6 8 10

FIG. 2. The effective potential U.(p) versus p for § = 1/2 and
different values of € and j.

in terms of the effective WKB energy €. = €% (wesets = 0)
and the effective potential:

4

It is clear from Egs. (29)—(32) that the classically allowed
region is situated between the positive roots denoted above as
a > p > b > 0. One can see that a finite motion and quantized
energy levels are possible for |8| < 1/2 when the potential
Eq. (37) grows as p — oo. Furthermore, for § = +1/2 the
character of motion becomes dependent on the linear in p and
constant terms of the potential Eq. (37) (see Fig. 2). We return
to this point below.

For comparison, we recapitulate that for the problem with
the repulsive Coulomb potential V (r) = hvgg/r with dimen-
sionless coupling g [26] (see also Refs. [24,25,28]), the
effective potential

_ 1 2 2 j2 .
Uii(p)= |- —B"|p +2/36:0+p+1- (37

2 2ge 2 2

USi(o) =5 + % +2 ng
In contrast to the case considered in this paper, the effective
potential for the Coulomb interaction is always positive as
p — oo and the behavior of the system is determined by its
dependence for p — 0. The critical value of g when Ue%»(,o)
becomes negative turns out to be dependent on the absolute
value of total angular momentum quantum number j.

+J. (38)

1. Numerical solution in WKB approximation

The Bohr-Sommerfeld quantization condition Eq. (26)
with the LHS given by Eq. (33) represents the transcendental
WKB equation for the energy spectrum. Its numerical solution
describing the dependence of the energy £ in units €y = hvg /!
versus electric field in terms of the dimensionless parameter 8
is shown in Fig. 3. For better readability, we plotted the cases
j > 0and j < 0 on the separate left (a) and right (b) panels,
respectively.

For j > 0, we have done the relabeling of the Landau levels
as described below Eq. (28), so the notation n = 1,2,3,4
corresponds to the Landau-level index. The lowest n = 0 level
is present only for j < 0.
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FIG. 3. WKB and exact diagonalization (ED) spectra in units €y = /vy /[ versus electric field in terms of 8 = cE /(vpH) for the gapless
A = 0 case. Panel (a) shows positive values of j and panel (b) shows negative values of j. In both panels, solid lines show the results of the
WKB approximation and crosses show the results calculated using ED. The Landau levels with n = 0, 1, 2, 3, 4 are shown by the green, dark
purple, purple lines, red and orange lines, respectively. The levels with |j| = 1/2,3/2,5/2,7/2 are marked by the increasing thickness of the

lines.

First, we observe that the presence of a finite electric field
removes the degeneracy of the Landau levels with the differ-
ent total angular momenta |j| = 1/2,3/2,5/2,7/2 that are
marked by the increasing thickness of the lines, respectively.
As discussed below Eq. (28), for j > 0 to keep n being the
Landau-level index, one should set a restriction on the al-
lowed values of the total angular momentum quantum number
1/2 < j<n—1/2. Thus, for n =1 there is only one line
with j = 1/2; for n = 2 there are two lines with j = 1/2,3/2
and so on. On the other hand, there is no such restriction for
the negative values of j and we just restricted ourselves by
showing the lines with j = —1/2, —-3/2, —5/2, —7/2. The
apparent asymmetry in the allowed range of the values of j
reflects that circulating with positive j in the presence of a
magnetic field directed in the positive z direction costs energy
for an electron, whereas circulating with negative j does not
[37].

For E = 0, these levels become degenerate and their en-
ergies are in agreement with Eq. (28). One can see that the
dependencies €(f8) for the electronlike levels are symmetric
with respect to the coordinate origin, €(8) = —e(—p), as

compared to the corresponding dependencies €(f) for the
holelike levels in both panels [see Eq. (38)].

An interesting property of the presented results is that the
character of the dependence of the spectra on 8 turns out to
depend on the sign of j. The holelike Landau levels with
different values of j > 0 and given n are nondegenerate for
B = —1/2. Then, as B increases the distance between these
levels diminishes and they become degenerate as 8 reaches
zero. Then, as B becomes positive, the distance between the
levels starts to increase, but when 8 grows further the distance
between the levels diminishes and all levels with different
j>0and n > 1 collapse to zero energy for 8 = 1/2. The
behavior of the electronlike levels is consistent with above-
mentioned symmetry, so their collapse occurs as 8 decreases
from 1/2to —1/2.

This critical value 8 = 1/2 first appears in Ref. [27], where
Coulomb impurity spectra under external electric and mag-
netic fields were studied using the coupled series expansion
method. Although the main focus of Ref. [27] is on the
Coulomb impurity, it also contains some numerical results
corresponding to the field configuration considered here.
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The behavior of levels with j < 0 is drastically differ-
ent. First, these levels include the n» = 0 Landau level whose
energy depends linearly on the electric field. The holelike
levels for —1/2 < B < 0 behave similarly to the positive
j case. However, for 0 < 8 < 1/2 the level distances in-
crease and as B gets closer to 1/2 the levels with j =
—-7/2,—-5/2,—-3/2,—1/2 one by one cross zero and have
positive constant values at 8 = 1/2. There is no level col-
lapse in this case. The behavior of the electronlike levels is
consistent with the above-mentioned symmetry, so the level
distances increase and their energies become negative as f8
decreases from 1/2to —1/2.

The values of g for which the negative-j levels intersect
the zero energy line can be found analytically. Indeed, the
function I(e =0, j) defined by Eq. (26) acquires a rather
simple form,

2 )
I(e=0,j)= h/p dp\/—(1/4 - pHp? — # —J, (39
P1

with py = /(—2/)/(1 £2]B]). Evaluating the integral

Eq. (39) and substituting the result in Eq. (26), we arrive at the
equation that determines the intersection points 8 = B(e =
0, n, j), which can be solved explicitly:

. n(n + 17D

Bn, j)==% PR
Here we took into account that n = ngg for j < 0. Since the
nontrivial solutions Eqs. (40) exist for all allowed values of n
and j < 0, this proves that all corresponding levels cross zero
energy.

As mentioned above, the levels €(n, j, 8) approach the
bound-state energies €(n, j, 8 = 1/2) as B reaches the value
1/2. We have also obtained Eq. (B6) (see Appendix B) for
these energies €(n, j, 8 = 1/2) and found its approximate

analytic solution:
1/2
; 33l i
'é—'—,/—f;"' . il .

(41)

The numerical solution of Eq. (B6) for the eigenenergies
€(n, j, B = 1/2) versus the total angular momentum quantum
number j is shown in Fig. 4 by the large blue dots. The ap-
proximate solution Egs. (41) is plotted for comparison (small
green dots). One can see that the approximate solution has a
good agreement with the numerical one for large values of j.

As follows from Figs. 3, 4, and analytic consideration,
for B = 1/2 there are bound states for positive energies, ¢,
irrespective to the sign of j, and bound states are absent for
negative energies, €. To explain this, we plotted in Fig. 2 the
effective potential Eq. (37) for § = 1/2 and different values
of € and j.

As mentioned above for 8 = 1/2, the behavior of the po-
tential is governed by the last three terms of Eq. (37). For
€ > 0, the effective potential Ueg(p) grows linearly as p —
o0, so the quasiparticle orbits remain closed and correspond
to the bound states. For € < 0, the effective potential U (0)
decreases linearly as p — 00, so there are no closed orbits
and bound states. Since for j < 0 the solutions for 8 = 1/2

j<0, n=01,.... (40)

€, j,p=1/2)~

4r

r en—1 ,.*:-..-',

3l o Ngppr = 1 ._.-'°::." ’ ]

© 2: .....°..... ]
1? .o.. ... T
0}\..\ L L L \. L L L L Il L L Il L L L L Il L L L L \t

0 10 20 30 40 50

|1

FIG. 4. The WKB eigenenergies €(n, j, § = 1/2) versus the to-
tal angular momentum quantum number j for n = 1. Large blue dots
correspond to the numerical solution of Eq. (B6) and small green
dots are for the approximate solution Eqgs. (41).

have the positive energy and thus are the bound states, there is
no Landau-level collapse in this case.

On the other hand, for j > 0 all levels with negative energy
merge to one point and collapse (see Fig. 3 left panel). It
is important to stress that because for j > 0 the expression
under the square root in the integrand of Eq. (39) is negative,
Eqg. (26) does not have a solution in this case. Thus, in contrast
to the case of the crossed uniform magnetic and electric fields,
in the studied geometry the collapse points with € = 0 and
B = £1/2 do not belong to the spectra.

2. Diagonalization and shooting method

To verify the accuracy of the WKB approximation, we use
two numerical methods: discretization with exact diagonaliza-
tion and shooting method.

For the diagonalization method, we use the Hamiltonian
which one can obtain from Eq. (20). To do this, one should
rewrite Eq. (20) in terms of an eigenvalue problem multiplying
it by io, matrix. The first derivative (momentum) is discretized
using finite differences. In this way, the eigenvalue problem
can be solved on a 1D lattice with two orbitals, where the
momentum is turned into hopping terms and the other parts of
the Hamiltonian into on-site terms.

It is worth noting that the choice of grid spacing of the
lattice should correspond to the behavior of the on-site term
to reach all important values. To increase the efficiency, we
use a nonconstant grid with slowly increasing spacing, thus
obtaining more dots closer to zero, where our effective poten-
tial is singular.

To implement the discretization method, the KWANT [38]
Python package was used. With this package, we build the
Hamiltonian of a 2000-site-long chain and then numerically
diagonalize it.

It also should be noted that with such a method one can
obtain a fermionic-doubling effect [39], as we observe in our
numerical work. Although this effect is not clearly seen in
the gapless case, it immediately appears if one introduces a
nonzero gap, thus resulting in the spectra doubling.
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The shooting method is an integration process performed
on the system Eq. (20) with a guessed energy-parameter (for
more details, see Appendix D). Such a method does not result
in the fermionic doubling. Thus we can numerically solve the
corresponding equations for each K separately and prove
that the diagonalization method produces the results for the
two valleys together.

The exact diagonalization method is more efficient in a
sense of speed and precision in comparison with shooting.
Thus, we use the diagonalization as a main computation
method and the shooting method as an auxiliary one to dis-
tinguish different K. valleys.

The results of the numerical methods described above for
the gapless case are shown in Fig. 3 by crosses. The compar-
ison with WKB (solid lines in Fig. 3) shows that the WKB
approximation is in a good quantitative agreement with the
numerical calculations for the whole range of the values of 3,
Jj» and n. There are only small quantitative discrepancies in the
energies of the lowest, n = 0, Landau level seen in Fig. 3(b).
However, this deviation decreases with increasing |j|. The
gapped case was investigated using numerical methods only
and is considered in what follows.

B. The gapped case

Now we turn to the finite A case. A crucial feature is that
the fully quantum mechanical description of the problem, as
one can see from the second-order Eq. (18) [see also Egs. (11)
and (12)] is sensitive to the sign of A when B is nonzero.
As mentioned above Eq. (9), the solution at the K_ point is
obtained from the solution at the K point by changing A —
—A. Thus, for finite values of gap A and electric field E, the
results for the spectra are expected to be valley dependent.

On the other hand, one can see from Eq. (25) that even
for a finite § the WKB approximation does not distinguish the
valley because it contains only 8.

The fully numerical solution obtained using the methods
described in Sec. IV A 2 for the dependence of the energy
£ in units €y = hivg/l versus electric field in terms of the
dimensionless parameter § in the finite § case is shown in
Fig. 5. We used the same color and thickness scheme as the
one displayed in Fig. 3, but for clarity of the figure we do not
include the n = 4 level and |j| = 7/2 (see also Supplemental
Material [40]).

Similarly to Fig. 3, cases j > 0 and j < O are shown on the
separate (a) and (b) panels, respectively. However, in Fig. 5(a),
we selected a larger value of § = 3 to make more distinct
the difference between the gapped (solid lines) and gapless
(dashed lines) cases. In both cases, the levels with different
j > 0andn > 1 collapse to zero energy for || = 1/2.

One can see that in the contrast to the gapless case (see
Fig. 3), the dependencies €(8) for the energy levels levels are
no more symmetric with respect to the coordinate origin.

Yet, in the absence of an electric field the positive and
negative energy levels are symmetric with respect to the zero
energy except for the lowest n = 0 Landau level [35]. Since
as discussed below Eq. (28) for j > 0, the Landau-level index
takes the values n =1, 2, ..., the lowest level is absent in
Fig. 5(a), so for B = 0 all electron- and holelike levels are
symmetric with respect to the origin. The lowest Landau level

is present in Figs. 3(b) and 5(b). Notice that for the chosen K
point and direction of the magnetic field, the energy of this
level has to be —A for E = 0 [35]. This agrees with Fig. 5(b),
where the Landau levels for only the K, point are shown.
[Recall that Fig. 5(a) also contains the Landau levels for the
K, point and there is no difference between the K. points in
the gapless case considered in Sec. IV A.]

This asymmetry of the energy of the lowest Landau level
for B = 0 would disappear if one takes into consideration the
second K_ point with the lowest level having a positive energy
A for E = 0. Note that the general asymmetry between the
electron- and holelike levels with respect to the coordinate
origin for §, B # 0 would also disappear when the levels for
K_ point are considered. It is worth mentioning that as follows
from Eq. (3) this valley asymmetry is absent in the crossed
uniform magnetic and electric fields configuration.

To obtain Fig. 5(b), we took a smaller value of the gap
8 = /2 such that |j| < 82 for j = —1/2, —3/2 and | j| > &2
for j = —5/2. To resolve the €(8) dependencies in the vicin-
ity of B = 1/2, a zoom of this region is shown in Fig. 5(c).
One can see that the levels with j = —1/2, —3/2 collapse
to zero energy, while the levels with j = —5/2 cross zero
and approach positive constant values. The evolution of Lan-
dau levels with the increase of the gap is presented in the
Supplemental Material [40].

Generalizing the analysis of Eq. (39) for the finite § case,
one finds that the energy levels may cross the € = 0 line if
|j| > 82. The levels with |j| < 8 cannot cross this line and
thus approach the € = 0 point for |§]| = 1/2.

This behavior may also be understood qualitatively by con-
sidering Fig. 2 for the effective potential plotted for various
values of j. The classically allowed region is determined by
the points where U, (p) crosses the effective energy €. =
€2 — 82.For § = 0 and B = 1/2, the positive- j levels collapse
and the negative-j levels correspond to the bound states with
€ > 0. However, the presence of a finite § shifts down the
values of j < 0 allowed for the collapse by —§°.

Thus, the presence of the gap extends the values of j
allowed for the Landau level collapse from positive-j to the
negative- j levels with |j| < §2.

V. CONCLUSION

As already mentioned in the Introduction, the Landau-level
collapse was already observed experimentally [8,9]. For ex-
ample, in Ref. [9] the Shubnikov—de Haas-type resonances
arising from quantized states associated with closed orbits are
used to directly observe the competition between magnetic
confinement and deconfinement due to electric field. While
these observations were made in the rectangular geometry,
there are no limitations for repeating them in the circular
Corbino geometry considered in this work.

High-mobility Corbino devices in a dual-gated geometry
were recently studied in Ref. [41]. Bulk conductance measure-
ment outperforms previously reported Hall bar measurements
and allowed one to observe both the integer and fractional
QHE states. It should be technically possible to modify the
existing devices introducing the radial electric field by gat-
ing. Another way to apply the radial electric field might be
achieved by injecting a high-current density in the device [8].
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FIG. 5. Spectra for the K point obtained by the shooting method in units €y = hivg /I versus electric field in terms of § = cE /(vpH ) for
the finite gap, 8 = [A/(hvr), case. (a) Positive j: The solid lines are the solutions for § = 3 and the dashed lines are for § = 0. (b) Negative j:
The gap 8 = +/2. (c¢) The zoom of plot (b) in the vicinity of 8 = 1/2. The same color and thickness scheme as the one displayed in Fig. 3 is

used.

Since for nonzero electric field the degeneracy of the Landau
levels with different total angular momenta j is lifted, this
should be manifested in the transport measurements. Another
possibility to observe the predicted features is to employ scan-
ning tunneling spectroscopy that allowed one to observe Dirac
Landau levels in graphene [42].

Further increase of the electric field would allow one to
realize the Landau-level collapse in the geometry studied in

this paper. Moreover, the critical electric field required for
the collapse is £E./2 is twice smaller than the corresponding
field E. = (vr/c)H for the rectangular geometry that should
make its observation easier. In contrast to the rectangular
geometry, the collapse in the circular geometry is sensitive to
the sign of the electric filed, so the hole (electron)-like levels
collapse at +(—)E./2. One can estimate that for the magnetic
field H = 1 T and the Fermi velocity vy = 1 x 10°m/s, the
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critical electric field in the circular geometry is E, = 0.5 X
10* V/cm which should be possible to create by gating.

It should also be possible to investigate the collapse in the
gapped case by using graphene placed on top of hexagonal
boron nitride (G/hBN).

Another experimental setup that would allow one to re-
alize the Landau-level collapse by generating strain induced
either pseudomagnetic or electric fields was suggested in
Refs. [43,44], respectively. Although the corresponding ex-
periments were not done, it should be possible to make them
both in rectangular and Corbino geometries. Finally, it might
also be necessary to generalize the presented results with a
radial electric field for a finite-size Corbino disk [45].
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APPENDIX A: CALCULATION OF THE INTEGRAL I(e, j)
FOR FINITE B

We calculate the integral Eq. (33),

I(€, j) =+/1/4 — B8, (AD)
with
S /“ dxy(x)’ (A2)
b X

and y(x) = +/(a — x)(x — b)(x — ¢)(x — d). Here we intro-
duced notations of Ref. [46], where similar integrals are
calculated. Multiplying the numerator and denominator of the
integrand in Eq. (A2) by y(x), one obtains

§— /“ apx® + 4a;x* + 6arx + 4as + a4/x’ A3)
b y(x)
where y?(x) = agx* + 4a;x> + 6a,x> + 4aszx + a4 with
apg=-1, 4da=a+b+c+d,
6a, = —a(b+c) —b(c+d)—d(a+oc),
daz = acd + bcd + abc + abd, a4, = —abcd. (A4)

Accordingly, for the relabeled roots ps — a, p3 — b, p» —
¢, p1 — d (recall that we assumed that a > x > b > ¢ > d),
one obtains that

2Be 2(e* = )
ap = —1, 111:—1_4ﬁ2, 02:3(1_—4ﬂz),
42
(13:0, (14:—1_4132. (AS)
Defining the integrals
Iy = / X a=-101.23 (A6
b YX)

one can rewrite Eq. (A3) in the following form:
S = apJ; + 4ayJ, + 6axJy + 4azJy + asd . (A7)

To get rid of the integral J3 from Eq. (A7), we consider the
derivative

dy 2a0x> + 6a1x* + 6arx + 2a;3

I 5 (A8)
and integrating it b to a we obtain the identity
aogJs + 3a1J> + 3aJy + azJy = 0. (A9)
Hence
S = aJr + 3axJy + 3azy + asJ_, (A10)

and using the coefficients Eqs. (AS5) we arrive at the expres-
sion

S = —L[ﬂd — (2= I + 252701

=" 1_-2a 82 2 JM1 J J-1l.

The integrals J; and J_; given by Eqs. (34a) and (34b),
respectively, can be found in Ref. [47] [see Egs. (3.148.6)
and (3.150.4)]. The integral J, is considered, for example, in
Ref. [48], where it is rewritten in the form

2
= —
N CEnICET))

a—>b 2 a—>b
xII{ — k) +B—-0c)T k), (Al12)
a—c a—c
where

/2 d(p
TZ(V’k)=/ R R s S
0 (1 —vwsin“@)*y/1 —k?sin“ ¢

Evaluating the last integral (see Eq. (2.592.6) in Ref. [47]),
one obtains

(A11)

|:c2K(k) +2¢(b—c)

(A13)

1 v
B )

K23 —2v) 4+ v(v —2)
2(k2 —v)(1 —v)
Finally, substituting (A14) in Eq. (A12), we obtain Eq. (34c).

E(k)

(v, k). (A14)

APPENDIX B: CALCULATION OF THE INTEGRAL
I(e, j, B =1/2) AND ENERGIES €(n, j, § =1/2)

We provide below the results of the analytical consid-
eration of the B = 1/2 case. Formally, an equation for
the energies €(n, j, B = 1/2) is still given by the Bohr-
Sommerfeld quantization condition Eq. (26), but its LHS is
simpler than the generic expression in Eq. (33). Indeed, the
expression for the momentum Eq. (25) acquires a more simple
form than Eq. (29),

h
p(r) = EJ—e(p —p)(p — p2)(p —p3),  (Bl)

where the roots of the cubic equation p?(r) = 0 are

€+ /e —4j J
2

P12 = = (B2)
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Again, depending on the signs of € and j, these roots are
ordered differently.

The calculation of (e, j, B = 1/2) is rather similar to the
general case considered in Appendix A and we restrict our-
selves by showing the final result. We obtain

h (€2 —
( ’L1—12L1>, (B3)

I(e, j, p=1/2) = 7\ 3

where

(B4)

a>b>c,

L _/“ dxx"
" Va—0a-bx—c)

with n = —1, 1. Using Egs. (3.132.5) and (3.137.6) from
Ref. [47], we have

2c
L = mK(k) + 24/a — cE(k), (B5a)
2 a—>b
L, = amn< p ,k), (B5b)

with k> = (a — b)/(a — ¢).

In the considered € > 0 and j < O case, we have a =
p3 =1j|/€, b= p; and ¢ = p,. Substituting Eq. (B3) in the
quantization condition Eq. (26) we arrive at the following
transcendental equation for the eigenenergy €(j, n, 8 = 1/2):

£[(r F1SER) + (0 + Dt — V2 1 40K
3V/ts

— 6T k)] =T (B6)
Ll
where we introduced ¢ = €2 /|| and
s=2—t+Vi2+4, r=2—1—vi>+4,
t+ 12+ 4t
vzl—%, k2=f. (B7)
s

In the limit |j| — oo, Eq. (B6) has an exact solution ¢ =
1/2, so asymptotically € ~ 4/|j|/2. Expanding the LHS of
Eq. (B6) around the point # = 1/2 up to (t — 1/2)* term one
obtains the following equation:

2 (t 1)2_7111
3V3 2 Il

which leads to the expression Eq. (41) in the main text.

(B8)

APPENDIX C: LIMIT E = 0 FROM EQ. (33)

Here we show that the Bohr-Sommerfeld quantization con-
dition Eq. (26) with the LHS given by Eq. (33) in the absence
of an electric field produces the spectrum Eq. (28) with A = 0.
For B = 0, the first term of Eq. (33) disappears,

I(e.j. B =0)=hl( = D)y = 2j%I4],  (CD)
and as mentioned above Eq. (31), the arguments of J_; and
J1 have opposite values d = —a and ¢ = —b. Then Eqgs. (34a)

and (34b) are simplified to the form

2
= 20Tk b) = DK () (C2a)

=2 [%n(—k k) — lK(k)} (C2b)
T axb|b ’ b ’

with k = (a — b)/(a + b).
For definiteness, we choose the case € > 0, j > 0 corre-
sponding to the first line of Eq. (31) that gives

b=¢—/e2 -2j
€2 —2j

k=-———. (C3)
€

a=c¢€++er-2j,

Rewriting the relation Eq. (19.6.2) from Ref. [49] as

b4 1
M(+k, k) = ——— + =K(k), C4
( ) 4(1:Fk)+2() (C4)
one can verify that Eq. (C1) reduces to
I(e.j.p=0) = h(e* = 2), (&)

which agrees with Eq. (27) for § =0 and j > 0. This com-
pletes the proof that one can recover the spectrum (28) with
A = 0 from the quantization condition Eq. (26) with the LHS
given by Eq. (33) by setting 8 = 0.

APPENDIX D: SHOOTING METHOD

Equation (20) for the spinor components f(p) and g(p)
defined by Eq. (10) has the form

. .
J;(p) _ (1 N £>f(p)+ (Bo — ¢ — 8)(p).
p p 2
_ds(p) _ <1 " £>g(p) +(Bo—e+8)f(p). (D)
dp p 2

One can obtain from Egs. (D1) the derivative df /dg. It can be
integrated up to a constant which is taken to be equal to zero,
because the subsequent equation should have a trivial solution
f=g=0asp— oo:

fz(ﬂp—s+8)+2gf<%+§> +¢(Bp—e—38)=0.

(D2)
Thus, the ratio f(p0)/g(p) can be obtained. Using it, we can
guess the initial value for one function and then calculate the
initial value for the other one. The boundary values at p — co
are expected to be zero, since functions f(p), g(p) have to be
square integrable.

Now, when we know the initial and boundary conditions,
we perform an integration process on the system Eq. (D1)
setting the numeric value of ¢ from an interval of interest.
Such a method is called a shooting method; for more details
see Ref. [50]. To do the integration, we use the Runge-Kutta
sixth-order method. The boundaries for integration are p €
[0.001, 100], where the beginning of the interval replaces zero
(which is a point of singularity in the system) and the end
replaces the infinity (in this case, r = [p is comparable to the
length of the chain used in the diagonalization method).
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Shooting with energies from an interval of interest and
performing a numerical integration from some initial values,
one can obtain a dependence of f(p — 00) [or g(p — 00)]

on the energy ¢. Such a function goes through zero every time
the energy value is guessed correctly. This allows us to use a
bisection method on the mentioned dependencies to calculate
the energies.
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