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Exciton localization on p − i − n junctions in two-dimensional crystals
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We consider a neutral exciton localized on a model p − i − n junction defined in a two-dimensional crystal,
MoSe2 and phosphorene, using a variational approach to the effective mass Hamiltonian. The variational solution
to the problem with nonseparable center of mass provides the exciton density in the real space and accounts for
the kinetic energy due to the exciton localization. For low values of the potential step across the junction, the
exciton occupies an area which is much larger than the nominal width of the junction. Localization of the exciton
within the junction area is accompanied by the appearance of the dipole moment induced by the local electric
field. The induced dipole moment becomes a linear function of the potential step only when the step is sufficiently
large. In consequence, the energy dependence on the step value is nonparabolic. We demonstrate that the exciton
gets localized not exactly at the center of the junction but on the side which is more energetically favorable for
the heavier carrier: electron or hole.

DOI: 10.1103/PhysRevB.106.085305

I. INTRODUCTION

Reduction of dimensionality and large carrier effective
masses in monolayer transition-metal dichalcogenides [1,2]
and phosphorene [3,4] result in large exciton binding en-
ergies [5–12] exceeding by two orders of magnitude the
corresponding values in bulk semiconductors. Large binding
energy allows for tuning the exciton line in the luminescent
spectrum by the Stark effect induced by an in-plane elec-
tric field [9] which leads to a redshift of the electron-hole
recombination energy due to the interaction of the intrinsic
or induced exciton dipole moment with the field. The Stark
effect was studied for states in quantum wells [13,14] or quan-
tum dots [15–18] where the quantum confinement stabilized
the weakly bound exciton against dissociation by the electric
field. Conversely, the Stark effect for strongly bound excitons
in a transition-metal dichalcogenide has recently been used to
trap the excitons on the electric field at the p − i − n junc-
tion [19].

The purpose of the present work is to describe the exci-
ton confinement in a model of the p − i − n junction by a
numerical albeit exact solution of the two-particle problem.
The trapping mechanism was explained [19] as due to an
effective potential for the exciton that contains a term due
to the electric field Veff (x) = − 1

2αp|Fx(x)|2, where Fx is the
electric field at the junction and αp is the polarizability of
the exciton, which for the homogeneous electric field can be
determined by the solution of the electron-hole problem in
the relative electron-hole coordinates [9,10,19]. The electric
field in the junction [19] is not homogeneous and the motion
of the center of mass of the exciton does not separate from
the eigenproblem in the relative coordinates. Therefore, the
center of mass requires treatment on equal rights with the
relative electron-hole coordinates which we provide in this
work. The solution accounts for the kinetic energy due to the
exciton confinement at the junction and provides information

on the exciton localization: its mean position and the extent
of its wave function in the real space. We find that the range
of exciton confinement depends strongly on the value of the
potential step at the junction, and for a low value of the step
the confinement range can largely exceed the nominal width
of the junction. Then, the wave function is present in a region
with a widely changing electric field that makes the homoge-
neous field solution not directly adequate to a local field case.
In particular, the electric field at the center of the junction is
a linear function of the potential step at the junction, but the
induced dipole moment is not and the reaction of the exciton
energy on the step is not parabolic as for Stark effect in the
homogenous electric field.

II. THEORY

We work with the effective band Hamiltonian for the
electron-hole pair at the junction
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with my/x
e/h standing for the electron or hole mass along the x or

y direction. We use the model potential of the p − i − n junc-
tion in the form V (x) = − 2V0

π
arctan( x

d ) where V0 defines the
scale of the potential step along the junction and the variation
rate is given by d . The model potential is plotted in Fig. 1
for the electron [V (x); red line] and the hole [−V (x); black
line]. The potential pushes the noninteracting carriers away
from the junction center. In Eq. (1) Veh(reh) is the effective 2D
interaction given by the Keldysh potential [7–12,19–22],

Veh(r) = e2

4πε0

π

2εr0
[H0(r/r0) − Y0(r/r0)], (2)
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FIG. 1. (a) The model potential of the p − i − n junction V (x) =
− 2eV0

π
arctan( x

d ) for the electron (red curve) and −V (x) potential for
the hole (black curve) for d = 15 nm and V0 = 100 meV. (b) The ex-
citon density as a function of the center-of-mass position for d = 15
nm and three values of V0 for the lowest-energy bound exciton state.
(c) The probability density as a function of the electron-hole distance
in the x direction xeh for V0 = 0 (black line) and V0 = 200 meV (red
line). MoSe2 parameters are applied.

where H0 and Y0 are the Struve and Bessel functions of the
second kind, r0 is the screening length that is a measure
of the polarizability of the 2D semiconductor, and ε is the
dielectric constant. At large electron-hole distances r � r0

the interaction potential tends to the 3D Coulomb form 1/r. At
small electron-hole distances r � r0, Veh acquires a logarith-
mic singularity of the 2D Coulomb potential. For evaluation
of the interaction potential we use the method of Ref. [22].
The intrinsic area where the exciton confinement occurs in the
experiment [19] has a length of several dozens of nanometers.
Here we discuss the results with the parameter d ranging from
15 nm to 60 nm. The variation of the potential by V0 and 1.5V0

occurs at lengths of 2d and 2.4d , respectively. In the exper-
imental situation [19] the carriers are additionally confined
by the space-charge density outside the intrinsic region. Here
we assume that the depletion region is arbitrarily wide for a

description of the exciton binding purely on the local electric
field.

Using the center-of-mass coordinates X = mx
e xe+mx

hxh

Mx
, Y =

my
eye+my

hyh

My
, with Mx = mx

e + mx
h, My = my

e + my
h and the rela-

tive electron-hole coordinates xeh = xe − xh and yeh = ye −
yh, the Hamiltonian is written as
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with the reduced masses μx = mx
emx

h/Mx and μy = my
emy

h/My.
The motion of the center of mass along the junction separates
from the rest of the coordinates, and we assume that the wave
function over Y has the form of a plane wave with a zero wave
vector. For a constant electric field oriented along the x direc-
tion, studied for the discussion of the Stark effect [9,10,19],
the center-of-mass coordinate X also separates, but this is not
the case for the present problem with the nonlinear potential
of the junction V .

The exciton states are determined using a variational ap-
proach [8] with Gaussian basis

�(xeh, yeh, X )

=
∑
i jk

ci jkφi jk (xeh, yeh, X )

=
∑
i jk

ci jk exp

(
− (xeh−κi )2

α
− (yeh−γ j )2

β
− (X −ηk )2

γ

)
,

(4)

where ci jk are the linear variational coordinates determined by
solving the generalized eigenvalue problem Hc = ESc, with
the matrix elements Hi′ j′k′,i jk = 〈φi′ j′k′ |H |φi jk〉 and Si′ j′k′,i jk =
〈φi′ j′k′ |φi jk〉. The centers of the Gaussian are distributed on
a 3D mesh with κi = i�xeh , γ j = j�yeh , and ηk = k�X , with
i, j, and k being integers ranging from −N to N . The total
number of Gaussians used in the basis is (2N + 1)3. The
values of � select the region in space to be described by the
variational wave function. The spacings � and the localiza-
tion parameters of the Gaussian α, β, and γ are determined
as nonlinear variational parameters by minimization of the
energy estimate. Separate parameters for xeh and yeh are
needed for phosphorene with its strongly anisotropic effective
masses [23,24] but also for the case of isotropic effective
masses applied for MoSe2 due to the external potential acting
only in the x direction. Convergence of the results for the pa-
rameters of MoSe2 is given in Table I for V0 = 0 and Table II
for V0 = 300 meV and d = 15 nm. As the energy convergence
is reached with increasing N the average electron-hole dis-
tance

√
〈r2

eh〉 (Table I, Table II) and the relative electron-hole
displacement along the local electric field 〈xeh〉 grow (Table II)
but the range of the exciton localization �X decreases
(Table II). Reference [19] with the MoSe2 parameters applied
in Tables I and II indicates −217 meV as the ground-state
energy of the free exciton (V0 = 0; Table I). For the rest of
the paper we adopt N = 8, i.e., 17 Gaussians describing the
wave function in each coordinate, i.e., for the total number of
173 = 4913 Gaussian functions used in the basis. The basis
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TABLE I. Convergence of the Gaussian basis for a free exciton
(V0 = 0) for MoSe2 parameters. The first column lists the parameter
N defining the number of basis elements. The second column gives
the ground-state energy estimate and the third column the average
electron-hole distance calculated as the square root of the mean value
of the squared electron-hole distance.

N E (meV)
√〈r2

eh〉 (nm)

1 −213.035 1.0932
2 −216.038 1.1310
3 −216.502 1.1546
4 −216.784 1.1525
5 −216.902 1.1567
6 −216.953 1.1588
7 −216.974 1.1600
8 −216.981 1.1607
9 −216.983 1.1611

(4) is flexible enough to account for both the bound excitons
and dissociated electron-hole pairs (see below).

III. RESULTS AND DISCUSSION

A. MoSe2

We first consider the material where the exciton trapping at
the junction was accomplished [19], MoSe2, the transition-
metal dichalcogenide for which an isotropic effective mass
model can be adopted with mx

e = my
e = 0.7m0 [19,25] and

mx
h = my

h = 0.6m0 [19,26]. We take the dielectric constant
ε = 4.4 and the screening length r0 = 0.886 nm after
Ref. [19].

Figure 1(b) shows the lowest bound exciton state density
calculated as ρX (X ) = ∫ ∞

−∞ dxeh

∫ ∞
−∞ dyeh |�(xeh, yeh, X )|2 for

d = 15 nm. The exciton is localized near the area where
the potential gradient is maximal, and the exciton localiza-
tion increases with V0. The center of the exciton is localized

TABLE II. Convergence of the Gaussian basis for a junction with
V0 = 300 meV and d = 15 nm. The first column gives the parameter
N that defines the size of the Gaussian basis. The second column
contains the energy estimate of the lowest state bound at the junction.
The third column lists the average electron-hole distance. The fourth
column provides the range of exciton localization at the junction
calculated as �X = 〈(X − 〈X 〉)2〉1/2 and the last one is the relative
displacement of the electron and hole due to the electric field at the
junction. For V0 = 0, as in Table I, �X is infinite and 〈xeh〉 = 0.

N E (meV)
√〈r2

eh〉 (nm) �X (nm) 〈xeh〉 (nm)

1 −213.277 1.0972 9.5629 0.06053
2 −216.038 1.1392 9.1612 0.07356
3 −216.838 1.1546 9.0222 0.07984
4 −217.135 1.1627 8.8809 0.08315
5 −217.262 1.1674 8.8063 0.08509
6 −217.319 1.1704 8.7565 0.08637
7 −217.344 1.1721 8.7270 0.08714
8 −217.353 1.1731 8.7089 0.08768
9 −217.357 1.1737 8.6980 0.08794

(a)V0 = 50 meV

(b)V0=100 meV

(c)V0=200 meV

FIG. 2. Cross section of the lowest-energy bound wave function
taken at yeh = 0, �(xeh, yeh = 0, X ) for d = 15 nm and MoSe2

parameters.

off the center of the junction on the side of the junction
where the heavier carrier—here the electron—has a lower
potential energy (see below). Figure 1(c) shows the den-
sity over the horizontal electron-hole distance ρxeh (xeh) =∫ ∞
−∞ dX

∫ ∞
−∞ dyeh |�(xeh, yeh, X )|2. The potential of the consid-

ered range produces only a small shift of the density to a more
positive xeh, with the electron shifted to a more positive x and
the hole to a more negative x position. The electron and hole
densities calculated from the total wave function (not shown)
are nearly identical to the exciton density ρX due to the large
extent of ρX and the relative strong localization of the pair.

Figure 2 displays the cross section of the lowest-energy
bound electron-hole wave function taken at yeh = 0 for V0 =
50 meV, 100 meV, and 200 meV. The range of the localization
changes radically with V0 only in the X coordinate and not in
xeh.

The process of exciton localization at the junction is illus-
trated in Fig. 3 where we considered several junction width
parameters d . The energy decrease with V0 in Fig. 3(a) is a
signature of the carrier separation by the electric field which,
as we find, does not start at zero V0 [Fig. 3(a)]. The exciton
localization in the region of a large electric field is associated
with the cost of additional kinetic energy. For larger values of
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FIG. 3. (a) Energy of the lowest bound exciton state as a function
of V0 for varied values of the width of the junction d for MoSe2. The
dashed line shows the results for the junction potential replaced by its
linear approximation Vl (x) = − 2V0

π

x
d for d = 30 nm. (b) The average

shift of the electron and hole position along the direction of the
junction xeh. The dashed line corresponds to the linear approximation
as in (a). (c) The exciton localization width calculated from the
wave function as �X = 〈(X − 〈X 〉)2〉1/2. (d) The average position
of the exciton center of mass. The line is plotted for V0 where �X
falls below 500 nm. The results correspond to the lowest-energy
bound exciton state. (e) The square root of the average square of
the electron-hole distance for the lowest-energy state localized at the
junction (blue line) and the corresponding values for xeh (black line)
and yeh (red line) coordinates for d = 15 nm.

d the electric field at the junction is lower, but the extent of
exciton localization at the junction is decreased. The energy
shift in the homogenous electric field falls with the square
of the field [9,10] which for the present potential implies
a −1/d2 dependence while the exciton confinement energy
depends on the localization as 1/d2. The two effects seem to
cancel each other out in the constant energy range of small
V0. We observe that a nonzero value of the potential step is
necessary to induce a significant dipole moment [Fig. 3(b)].
As nonzero V0 is introduced the range of exciton localization
[Fig. 3(c)] becomes finite. However, for low V0 most of the
exciton stays outside of the action range of the local electric
field (potential gradient) at the junction. For all studied d
values, the exciton size in terms of �X = 〈(X − 〈X 〉)2〉1/2

becomes equal to double the width parameter �X = 2d for
V0 	 100 meV. Only once the exciton is localized at the junc-
tion does the electron-hole system energy start to decrease
visibly.

For comparison in Figs. 3(a) and 3(b) we plot with the
dashed red line the results for the homogenous electric field,
i.e., for the potential of the junction replaced by its linear
approximation: Vl (x) = − 2V0

π
x
d , for d = 30 nm. For Vl (x) po-

tential the dipole moment grows linearly with V0 [Fig. 3(b)]
starting from V0 = 0. The linear dependence of the dipole mo-
ment via its interaction with the field produces the parabolic
E (V0) dependence [the dashed line in Fig. 3(a)]. For the junc-
tion potential V (x), the growth of the dipole moment with V0

follows after a delay. For all d considered the dipole moment
starts to grow for V0 � 20 meV and becomes a linear function
of V0 only above 	 100 meV.

The results for the homogeneous electric field given by the
dashed line in Fig. 3(a) are obtained for the Hamiltonian that is
equivalent to Eq. (10) of the Methods section of Ref. [19]. The
Stark energy shift that we obtain with our variational wave
function for the constant electric field of 10 V/μm, 20 V/μm,
and 30 V/μm is equal to −0.415 meV, −1.708 meV, and
−4.076 meV. These shifts are in very good agreement with
Fig. 10(a) of the Extended Data of Ref. [19].

Figure 3(d) shows that the center of mass of the exciton
approaches the center of the junction only in the V0 → ∞
limit, and for finite V0 it stays on the positive side of the center
of the junction. We return to this point for phosphorene, where
the effect is more pronounced.

The experiment of Ref. [19] studied the diamagnetic shift
of the exciton energy that is related to the average square
of the electron-hole distance. In Fig. 3(e) we plot the square
root of this quantity by the blue line for the junction width of
d = 15 nm. The black and red lines indicate the components
due to the xeh and yeh components, respectively. The two last
values are multiplied by

√
2 for presentation. The local elec-

tric field produces the electron-hole displacement [Fig. 3(b)]
that is consistent with the dependence of 〈x2

eh〉 of Fig. 3(e).
The separation of the carriers in the xeh direction reduces the
mutual attractive potential that implies an increased distance
also in the yeh direction. Nevertheless, the dependence of the
quantities of Fig. 3(e) on V0 is weak and they remain very
small barely exceeding 1 nm. Reference [19] stated that the
diamagnetic shift of the 1s exciton state is too small to be re-
solved experimentally and indicated 1 nm as the approximate
exciton Bohr radius.
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FIG. 4. The lowest energy estimate for d = 15 nm with V0 =
100 meV (red line) and 300 meV (black line) for fixed �X =
18 nm [see the description of the variational wave function given
by Eq. (4)], as a function of �xeh . For this plot we keep �yeh = �xeh

and the Gaussian localization parameters α = �2
X

1.5 and β = γ = �x2
eh

1.5 .
The minimum near �xeh = 0.8 nm corresponds to the bound exciton.
The results for large �xeh limit tend to −2V0 and correspond to the
dissociated exciton.

The dissociated electron-hole pair for the present model
potential has minimal energy equal to −2V0. Therefore, the
dissociated electron-hole pair appears in the ground state for
V0 roughly exceeding Egs(0)/2. In fact, the value of V0 that
allows for the dissociation is somewhat larger than Egs(V0 =
0)/2 since the exciton energy decreases with V0. The criti-
cal value of the potential that allows for the dissociation is
defined as Egs(V0) = −2V0. For d = 60 nm, 30 nm, 15 nm,
and 5 nm we find the following values of the critical po-
tential V0 = 108.491 meV, 108.494 meV, 108.504 meV, and
108.58 meV. The dependence of the critical potential values
on d becomes significant only for very low junction width d .
In the experimental conditions the d value cannot be made
much smaller than 5 nm; hence Egs(0)/2 is a good estimate
for the critical potential value that allows for the formation of
the dissociated ground state.

For V0 above Egs(0)/2 the bound hole pair is not the ground
state of the system, similarly to the studies of the Stark effect
for a nonzero homogeneous electric field [9,10,19]. The ap-
plied basis resolves two separate minima for the bound and
dissociated exciton. The results of the Hamiltonian diagonal-
ization as a function of �xeh = �yeh are given in Fig. 4, with
the lower energy state corresponding to the bound exciton
or the dissociated pair for V0 = 100 meV and 300 meV, re-
spectively. Here, we discuss only the properties of the bound
electron-hole state for both V0 below or above the dissociation
threshold. The gradient minimalization method applied for
optimization of the nonlinear variational parameters tends to
the closest energy minimum, so one can choose between the
dissociated or bound exciton states.

B. Phosphorene

The effective masses in phosphorene exhibit strong
anisotropy with larger (smaller) values in the zigzag (arm-
chair) crystal direction [23,24]. For monolayer black phos-
phorous, we adopt the values of effective masses derived
by fitting the results of the single-band approximation to
the results of the atomistic tight-binding [27] modeling for
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FIG. 5. (a) Energy of the lowest bound exciton state as a func-
tion of V0 for monolayer phosphorene with the direction defining
the p − i − n junction x aligned to the zigzag (“z”; black line) or
armchair (“a”; red line) crystal direction. (b) The average shift of
the electron and hole position along the direction of the junction xeh.
(c) The exciton localization width �X . (d) The average position of
the exciton center of mass.

the harmonic oscillator confinement potential of Ref. [28].
That is, we take me

a = 0.17037m0, me
z = 0.85327m0 for the

electron masses in the armchair and zigzag directions [28],
respectively. For the hole we take mh

a = 0.18972m0 for the
armchair direction [28]. The hole mass in the zigzag direc-
tion was not adopted from Ref. [28] but set to 2.8m0. The
literature values for the zigzag mass of the hole vary from
	 1.13m0 [24,29] to 	 5 [30] or 	 6 [31]. The selected choice
of the effective masses provides the electron-hole pair reduced
masses that agree with the ones given in Table II of Ref. [4]
for monolayer phosphorene. For the interaction potential we
take the screening length of r0 = 1.079 nm and the effective
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(a)z, V0 = 100 meV

(b)z, V0 = 200 meV

(c)a, V0=100 meV

(d)a, V0=200 meV

FIG. 6. Cross section of the wave function taken at yeh = 0,
�(xeh, yeh = 0, X ) for d = 15 nm and phosphorene parameters. In
(a) and (b) the p − i − n junction is defined along the zigzag crystal
direction. Armchair direction is chosen in (c) and (d).

dielectric constant of ε = 2.4 after the Supporting Informa-
tion to Ref. [4].

In calculations for phosphorene we fix the junction width
parameter to d = 15 nm. We keep the junction potential vari-
ation along the x axis that we align with either armchair or
zigzag crystal direction. The reaction of the exciton energy
to the external potential is prompter for the junction defined
along the armchair direction [Fig. 5(a)], and the induced
dipole moment [Fig. 5(b)] is also larger in this direction where
the masses are lighter. This finding is consistent with the
conclusions of Ref. [9] for the case of a homogeneous electric
field in phosphorene.

(a)a

(b)z

FIG. 7. Potential landscape V (xe) − V (xh ) at the junction for
d = 15 nm, V = 100 meV for phosphorene parameters and the junc-
tion defined along the armchair (a) and zigzag (b) crystal direction.

The cross sections of the wave function for yeh = 0 are
plotted in Fig. 6 for the zigzag [(a), (b)] and armchair [(c),
(d)] orientation of the wave function. The orientation of the
junction has a pronounced effect on the exciton localization
along the X axis with the total mass Mx = 0.36m0 for the
armchair orientation and MX = 3.65m0 for the junction de-
fined along the zigzag crystal direction. The reduced mass
in the xeh direction is 0.089m0 for the armchair and 0.65m0

for the zigzag orientation, hence the varied localization along
the vertical axis of Fig. 6. Figure 5(c) indicates that the width
of the exciton wave function becomes equal to 2d for V0 	
100 meV (V0 	 210 meV) for the junction defined along the
zigzag (armchair) direction.

For phosphorene, the center of the exciton density is shifted
to the left of the junction center [Fig. 6 and Fig. 5(d)]. The
shift is smaller for the armchair orientation of the junction
[Figs. 6(c), 6(d)] and large for the zigzag-oriented junction
[Figs. 6(a), 6(b) and Fig. 5(d)]. As a general rule, the shift
is large when one of the carriers is much heavier than the
other and the shift appears in the direction of lower poten-
tial energy in the V (x) potential for the heavier carrier. In
the results for MoSe2 (precedent subsection), the shift was
observed to the positive side of the junction and the electron
was slightly heavier. For phosphorene, the hole is heavier
and the center of mass is shifted to the negative side of the
junction. For the zigzag orientation, the mass difference is
very pronounced—hence, the strong shift, much larger than
the average electron-hole distance. The shift is directly related
to the potential landscape at the junction. In Fig. 7 we plot the
external potential for both carriers, i.e., V (xe) − V (xh) on the
(X , xeh) plane. The anisotropy of the masses translates to a
shift of the potential minimum to the negative side of X , which
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produces the pronounced asymmetry for the zigzag orienta-
tion of the junction. The interaction potential of Hamiltonian
(3) is independent of X and creates a valley along xeh = 0
of depth that depends on yeh. The displacement of the wave
function to positive xeh is not very pronounced [see Fig. 6
and Fig. 5(b)] since the strong interaction potential keeps the
carriers close to one another. Instead, the wave function is
shifted to the negative side of the junction where the minimum
of the potential landscape is closer to the xeh = 0 axis. The
effect is particularly well seen in Figs. 6(a) and 6(b) [see also
Fig. 5(d)]. Note that for a homogeneous electric field, only
the reduced masses and not the separate masses of the elec-
tron and hole matter for the properties of the bound exciton
states [9].

IV. SUMMARY AND CONCLUSIONS

We have studied bound electron-hole pairs at a p − i − n
junction defined within a two-dimensional crystal using a
model with a finite spatial range and potential step V0 across
the junction with the electric field in the center of the junction
proportional to V0. The problem was solved with a variational
calculation using the basis of Gaussians centered on a grid
spanned by the relative coordinates of the carriers and the
center of mass, which is not separable in the inhomogeneous

electric field. The appearance of the dipole moment induced
by the local electric field at the junction is accompanied by
a buildup of the exciton kinetic energy as a result of the
localization at the junction. The compensation of the two
contributions leads to a range of values of the potential step of
the junction V0 that has a negligible influence on the exciton
energy. For MoSe2 and phosphorene, localization of the ex-
citon wave function in a range comparable with the junction
length requires a potential difference across the junction of
the order of V0 	 100 meV. For lower V0 values, the carriers
occupy the region in space where the electric field is much
smaller than at the center of the junction. The induced dipole
moment dependence on the potential step V0 deviates from
linear, which is expected for the Stark effect in a homoge-
nous electric field. In consequence, the exciton energy is not
a parabolic function of V0. We have demonstrated that the
localized exciton is shifted off the center of the junction in
the direction in which the junction potential energy for the
heavier carrier is lower.
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