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Enhanced valley splitting in Si layers with oscillatory Ge concentration
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The valley degeneracy in Si qubit devices presents problems for their use in quantum information processing. It
is possible to lift this degeneracy by using the wiggle well architecture, in which an oscillatory Ge concentration
couples the valleys. This paper presents the basic theory of this phenomenon together with model calculations
using the empirical pseudopotential theory to obtain the overall magnitude of this effect and its dependence
on the wavelength of the concentration oscillations. We derive an important selection rule which can limit the
effectiveness of the wiggle well in certain circumstances.
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I. INTRODUCTION

Silicon-based spin qubits enjoy many advantages for quan-
tum computing devices [1]. They have longer intrinsic spin
coherence times due to weak spin-orbit coupling. There is
also the possibility of eliminating decoherence from coupling
to nuclear spin because of the existence of an abundant spin
zero isotope. Scaling to many qubits presents difficulties in
all quantum computing platforms, but for Si there is at least
a technological infrastructure already in existence for related
purposes.

One disadvantage of Si is the presence of the valley degree
of freedom, a source of leakage of quantum information. This
creates a degeneracy that is sample dependent and notoriously
difficult to control. The degeneracy is split in real devices
and the energy difference is referred to as the valley splitting
(VS). The barriers that confine the electrons to the active Si
layer are known to do this, but the VS is sensitive to the
details of the barrier. As a result, the VS is experimentally
highly variable. It ranges roughly from 30 to 250 μeV in
SiGe/Si/SiGe structures [2–8], while in MOS structures it
tends to be considerably larger but still quite variable, with
values ranging from 300 μeV up to nearly 1 meV [9,10].
Overall, the barrier effects on the VS are reasonably well
understood theoretically, a major theme being that a strong
electric field perpendicular to the Si layer can push the wave
function up against the interface, which tends to increase the
VS [11,12].

An important goal of research in this field is to somehow
control the VS so that it is reliably larger than 200 μeV. One
recent approach is to insert an ultrathin layer of SiGe in a
Si/SiGe heterostructure, which increases VS by about a factor
of 2 [13]. Adding Ge at random positions in the Si layer is also
effective [14]. One may also add Ge to the Si layer in such a
way that the Ge concentration has an oscillatory profile in the
direction perpendicular to the layer [15]. This is called the
wiggle well (WW) architecture. It was shown that the added
Ge lowered the mobility of the structure but that this did not
preclude efficient device operation.

In this paper we describe in detail the basic ideas behind the
WW and we present calculations of the VS under various con-
ditions. The calculations support the conclusion that splittings
can be engineered to lie in the 5–15 meV range, well above
the values needed to eliminate leakage during qubit operation.
We also derive a selection rule that strongly affects the VS in
the device used in Ref. [15].

The physical basis of the WW is described in Sec. II, and
the details of our computational method in Sec. III. The selec-
tion rule is proved in Sec. IV. The results are given in Sec. V.
Section VI contains further discussion and a conclusion.

II. WIGGLE WELL

A. Valley structure

Silicon is an indirect band-gap semiconductor with a
valence band maximum at k = (0, 0, 0), and it has six degen-
erate conduction band minima along the (001) and equivalent
directions. This paper concerns the electron states in the
Si layer of a SiGe/Si/SiGe heterostructure or in a MOS
structure. In the Si layer there is strain or other anisotropies
present that reduce the degeneracy of the conduction band
minimum to two [16], at the k points ±k = ±(0, 0, k0) with
k0 = 0.84(2π/a) where a = 0.543 nm is the lattice constant
of Si. The z direction is perpendicular to the plane of the layer.

B. Hamiltonian

We take the electrons in our model to be confined to a
Si-rich layer. We shall deal with a two-dimensional electron
gas that has translational invariance in the x-y plane and apply
periodic boundary conditions in these directions. The total
Hamiltonian is

Htot = Hcr + Vtot(z) = Hcr + Vstr(z) + Vd (r) + Vosc(z). (1)

Here Hcr is the unperturbed bulk Si Hamiltonian. Hcr could
also include the effects of strain, particularly if we are dealing
with a SiGe/Si/SiGe system, but for simplicity we assume no
strain in this paper. This allows us to focus on the effects of
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FIG. 1. The smooth potential V (z) = Vstr(z) + Vosc(z) felt by an
electron in the proposed SiGe heterostructure, shown for an average
Ge concentration in the well of 0%, 10%, and 20%, and an electric
field F/ε = 8.5 mV/nm. The atomistic disorder potential Vd (r) is
not visible on this relatively coarse scale. The Si layer with Ge added
in a modulated fashion occupies the half space z < 0. The barrier
occupies the z > 0 region. The width of the barrier is 1 nm and its
height is 1 eV.

the oscillatory potential Vosc(z). Vd (r) is the atomistic disorder
potential produced by the Ge atoms in the well. We will
comment on this below, but again it is not the main focus.
Vstr(z) denotes the device structure potential, which we take to
have the form

Vstr(z) = Vb0[1 + tanh(z/w)]/2 − eFz/ε. (2)

The first term is a sharp steplike barrier potential and the
second represents electric potential from an applied electric
field F and a dielectric constant ε. We use Vb0 = 1 eV (a value
more typical for MOS structures), w = 1 nm, and ε = 11. The
electric field along the z direction keeps the electrons close to
the interface.

Vosc(z) stands for the oscillating potential. In the virtual
crystal approximation

Vosc(z) = V0 nGe[1 + cos(qz)], (3)

where nGe is the average fractional concentration of Ge in the
predominantly Si layer. We take V0 = −0.5 eV. This is the
value that gives the measured change in the energy of the con-
duction band minimum in the regime of low Ge concentration
in strained Si1−xGex layers [17].

We give a sketch of the potential Vstr(z) + Vosc(z) for vari-
ous Ge concentrations in Fig. 1.Vosc(z) is the defining feature
of the WW. It is created when the structure is grown by
depositing Ge atoms in a sinusoidal fashion. The effect of
Vosc(z) is to enhance the valley splitting, as will be explained
in the next section.

C. Perturbative picture

In this section we will treat the valley splitting in first-
order perturbation theory. At this order the wave functions
are calculated by setting Vtot = 0. Then the energies, including
the valley splitting, are computed as expectation values of the
unperturbed wave functions. This neglects the effect of Vtot

on the wave functions. It will be seen later that this is not
sufficient for accurate calculations. The reason for presenting
it here is that it allows us to illustrate the physical ideas behind
the WW and to determine the best candidate wavelengths for
the modulation of the Ge concentration in the Si layer.

The zero-order Hamiltonian Hcr is that of the pure bulk
material. In the conduction band we have the Schrödinger
equation

Hcrψk (r) = Hcr[uk(r)eik·r] = ε(k)ψk(r), (4)

that is, uk(r)eik·r are the eigenfunctions of Hcr, the Hamilto-
nian of the silicon crystal. uk(r) is the lattice-periodic part
of the Bloch function. ε(k) is the band energy of an electron
in the pure bulk system. Our interest is when k is near one
of the minima of the conduction band ±k0, so ε(±)(k) =
h̄2(k2

x + k2
y )/mt + h̄2(kz ± k0)2/mz. mt = 0.92me is the trans-

verse mass and mz = 0.19me is the longitudinal mass, where
me is the bare mass. Since uk(r) is periodic in the direct fcc
lattice, it has a Fourier expansion

uk(r) =
∑

K

c(K, k)eiK·r, (5)

where K runs over the bcc reciprocal lattice. c(K, k) depends
on k in general, but we will only need it when k ≈ ±k0. Thus
we define c±(K) = c(K,±k0), and later assume that c(K)
is not a rapidly varying function of k near ±k0. Note that
c±(K) = c∗

∓(−K). Saraiva et al. have used density functional
theory to calculate the c±(K) in pure bulk Si [18] which
provides a good benchmark for our work. The c±(K) are
modified by the presence of the added Ge in the Si layer. This
turns out to be an important effect, and we will discuss the
computation of the c±(K) in detail below.

The states at the conduction band minima are ψ±k0 (r) and
satisfy

Hcrψ±k0 (r) = ε0ψ±k0 (r). (6)

The two wave functions ψ±k0 (r) are degenerate.
In first-order perturbation theory the total valley splitting

� is [5,18]

� =2 | 〈ψ+k0 (r)|Vtot |ψ−k0 (r)〉 | (7)

=2
∣∣ ∑

K,K′
c∗
+(K)c−(K′)δKx,K ′

x
δKy,K ′

y
I (Kz − K ′

z )
∣∣, (8)

where the last factor stands for the integral

I (Kz − K ′
z ) =

∫ ∞

−∞
eiQzVtot(z)dz, (9)

with Q = Kz − K ′
z − 2k0. Note that the two sublattices in the

reciprocal lattice do not couple due to the delta functions.
The total valley splitting in the current approximation is

� = |�w + �b + �d |. (10)

Here �b is the barrier contribution. �d is the disorder contri-
bution which has been calculated recently [14]. �w is the WW
contribution, which is the subject of this paper. It is caused
by the oscillatory potential. The different contributions come
from the three terms in the potential in Eq. (10). They are
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complex valued in general so the magnitudes do not neces-
sarily add directly. We will discuss the relative contributions
of �w, �b, and �d in a quantitative fashion at the end of the
paper in Sec. VI. Until then we focus on �w. Thus

�w =2
∣∣ 〈ψ+k0 (r)|Vosc |ψ−k0 (r)〉 ∣∣ (11)

=2
∣∣ ∑

K,K′
c∗
+(K)c−(K′)δKx,K ′

x
δKy,K ′

y
Iw(Kz − K ′

z )
∣∣, (12)

with

Iw(Kz − K ′
z ) =

∫ ∞

−∞
eiQzVosc(z) dz (13)

and Q = Kz − K ′
z − 2k0.

Equations (11)–(13) are familiar from elementary solid-
state physics, specifically from the theory of the formation
of energy gaps at the surfaces of Brillouin zones. Let the
sinusoidal oscillations in Vosc(z) be characterized by a wave
vector ±q and regard I (Kz − K ′

z ) and therefore also �w and
� as functions of q. The sum over reciprocal lattice vectors
in Eq. (11), together with Eq. (13), means there are multiple
peaks in �(q), since I will peak strongly when

q = ±Q = ±(Kz − K ′
z − 2k0). (14)

This is the key idea for engineering the potential Vosc(z). In
principle, Eq. (14) has many solutions for q since K and K′
run over the reciprocal lattice. However, only a few represent
physical structures, since if q is too large the oscillation wave-
length is less than the atomic spacing.

A relative simple physical picture emerges from these
equations. We may think of the two valley minima as form-
ing the boundaries of a one-dimensional “Brillouin zone.” To
engineer the maximum band gap, we wish to have a potential
with a wave vector q = ±2k0. This then corresponds to the
term Kz − K ′

z = 0 in the sum. However, the Fourier transform
of the cell-periodic part of the Bloch function contains all the
reciprocal lattice vectors, so we can also get maxima when
q = ±2k0 is satisfied “modulo” a reciprocal lattice vector,
which then gives the more general Eq. (14).

Since Kz − K ′
z is an integral multiple of 4π/a, the

two shortest candidate wave vectors for the Ge oscilla-
tions from Eq. (14) are q1 = ±(4π/a − 2k0) and q2 =
±2k0. The corresponding wavelengths are λ1 = 2π/q1 =
1.80 nm = 13.3 monolayers and λ2 = 2π/q2 = 0.32 nm =
2.36 monolayers. They correspond to what we call the long-
wavelength WW and the short-wavelength WW, respectively.
The former was used in Ref. [15]. Structures with wavelengths
shorter than λ2 would be difficult to fabricate, and the concept
of envelope function that we use below would no longer be
applicable. These two possibilities are therefore the only ones
suggested by first-order perturbation theory. Below we shall
see that second-order effects give one additional candidate
wave vector.

III. COMPUTATIONAL METHOD

A. Introduction

It is evident that the perturbation theory of the previ-
ous section neglects important physical effects—clearly the

confinement of the electron by the electric field is not per-
turbative. Thus the interplay between the localization in the
z direction and the valley splitting is not properly taken into
account. Furthermore, there are three terms in the potential,
and they may not all be of comparable size, so to treat them
all on the same footing is not always realistic. To remedy
these defects in the simple picture, we develop a method in
this section that is designed for the purpose of calculating the
valley splitting in the presence of both the oscillating potential
and the structure potential.

The method has two parts: the modification of c±(K), the
Bloch function coefficients, from their bulk values; and the
calculation of the envelope functions.

B. Bloch function coefficients

A chief ingredient in the calculation of the VS in Eq. (7)
is the set of the c±(K) defined by Eq. (5). We compute these
coefficients using a pseudopotential method. This is partic-
ularly appropriate for Si-Ge systems since electron energies
and wave functions in both Si and Ge are known to be well
described using just a few parameters in this formalism [19],
particularly in the energy range near the conduction band min-
imum. We use the local version of the method for simplicity
and high throughput (which will turn out to be important). The
nonlocal version gives better bandwidths and optical matrix
elements [20] and might be preferable in future work that
needs higher accuracy. Spin-orbit coupling is also neglected.
This is reasonable since we are interested only in nonmagnetic
properties of states near the minima of the conduction band in
Si-rich materials.

The Schrödinger equation for the Fourier components of
the periodic part of the wave functions at the conduction band
minimum wave vectors ±k0 in a pure bulk system with no
perturbing potential is∑

K′
HK,K′ (k0) c±(K′) = ε c±(K). (15)

The sum runs over the bcc reciprocal lattice. In our numerical
work we keep 59 terms in the sum, corresponding to the in-
equality |K′| � 2

√
19π/a. Since we are only interested in the

solutions at k0, we will drop this argument in the remainder
of this section. ε are the energies of the different bands at
k0, each of which corresponds to an eigenvector c(K). The
Hamiltonian matrix is

HK,K′ = δK,K′
h̄2

2me
(k0 − K)2 + UK−K′ . (16)

U (r) is the crystal pseudopotential and

UK = 1

ν

∫
cell

U (r)eiK·rd3r, (17)

where ν is the volume of a two-atom primitive unit cell and
the integral runs over a unit cell.

In pure Si or Ge the two atoms in the unit cell are identical
at positions (0,0,0) and (a/4, a/4, a/4) and we have

UK = 2 cos(K · r0/2)
1

ν

∫
cell

V (r)eiK·rd3r, (18)
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where the first factor is the structure factor, V (r) is the pseu-
dopotential VSi for a single Si or VGe for a Ge atom, and
r0 = (a/4)(1, 1, 1) is the separation vector of the atoms in a
unit cell. We have taken the origin at the center of inversion
midway between the atoms in a unit cell. In these coordi-
nates the c±(K) are real. We have solved Eq. (15) for c+(K)
using empirical values of the Fourier coefficients of V (r)
from Ref. [19] and these agree with those calculated using
density functional theory [18] on average to within 0.26%, an
accuracy that is more than enough for our purposes. (We note
that Ref. [18] takes the origin at an atomic position and the
resulting c±(K) are complex.)

To model the system with added Ge, the simplest option
would be to use the standard virtual crystal approximation
(VCA):

H = (1 − x)HSi + xHGe. (19)

For a unit cell with one Si atom and one Ge atom, Eq. (18)
becomes

UK = 2 cos(K · r0/2)V K ∓ i sin(K · r0/2)δVK, (20)

where V K is the average of the Si and Ge pseudopotentials VSi

and VGe and δVK is the difference VSi − VGe. The relative sign
of the two terms in UK is ∓ for the Si atom at ∓r0/2 in the unit
cell. In the disordered system for each unit cell with exactly
one Si atom and exactly one Ge atom these two configurations
are equally probable.

The standard VCA replaces the potential of every atom
with a linear combination of the potentials of a Si atom and a
Ge atom. This has the disadvantage that it artificially enforces
an inversion symmetry (equal atomic potentials in the unit
cell) that is not present in the real disordered system. This
turns out to be insufficient for the calculation of the VS for the
long wavelength WW. To remedy this deficiency, we sample
an ensemble of systems in which the positions of the Si and
Ge atoms in the unit cell are random. This is done as follows.
In a Si1−xGex system the fraction of unit cells with exactly
one Si atom and one Ge atom is 2x(1 − x) while cells with
two Si atoms have probability (1 − x)2 and two Ge atoms
with probability x2. We treat the disordered system using an
extended VCA Hamiltonian

H (s) = (1 − x)2HSi + x2HGe + 2x(1 − x)Ha(s). (21)

In this equation HSi and HGe are the Hamiltonians for pure
silicon (using only VSi) and pure germanium (using only VGe),
respectively. Ha(s) is the alloy Hamiltonian. The alloy is
represented by a density matrix whose classical probability
density comes from the fact that the unit cells have Si and Ge
in different (and random) positions. Each realization of the
atomic disorder is labeled by an index s. The potential matrix
elements in the 59 × 59 matrix Ha(s) have the form of those in
Eq. (20). For each s, half of the elements are given a plus sign
and half are given a minus sign, but the positions of the signs
are chosen uniformly at random. Since we can only sample a
subset of these choices, we take the probability of a given s
be P(s) = 1/N0 and for our calculations we fix N0 = 300. We
then compute the density matrix

ρK,K′ =
∑

s

P(s)c∗
+(K, s)c−(K′, s)δKx,K ′

x
δKy,K ′

y
, (22)

where c±(K, s) are the coefficients belonging to a wave func-
tion at the bottom of the conduction band calculated using
the Hamiltonian Eq. (21) at a fixed s. ρK,K′ will be a key
ingredient of the computation of the VS.

C. Envelope function

The localization of the electron by Vstr(z) changes the wave
functions ψ+k0 (r). The widths of the wave functions in po-
sition and momentum space are important for computing the
VS, an effect that was neglected in the derivation of Eq. (9).
The formalism we use to remedy these problems is a modifi-
cation of the classic envelope method of Kohn [21].

The ordered part of the potential is

V (z) = Vstr(z) + Vosc(z) (23)

and the total wave function �(r) satisfies

H�(r) = (Hcr + V )�(r) = E�(r). (24)

In this section we neglect the disorder potential. We will
comment on this below.

We seek solutions in the form

�(r) =
∑

k

Akuk(r)eik·r. (25)

The envelope function itself is

F (r) =
∑

k

Ake−ik·r. (26)

Substituting Eq. (25) into Eq. (24) and using Eq. (4) we obtain
the Schrödinger equation in momentum space

εkAk +
∑

k′
Vk−k′Ak = EAk. (27)

Vk−k′ is the matrix element of the smooth potential between
Bloch functions:

Vk−k′ =
∑
K,K′

ρK,K′

∫
d3r ei(K′−K+k′−k)·rV (r), (28)

where Eqs. (5) and (22) have been used.
So far this is quite general. The special feature of our

problem is that the wave function in momentum space is
concentrated in the regions near k = ±(0, 0, k0) = ±k0. So
we write

F (r) = F+(r) + F−(r) =
∑
k≈k0

A+
k e−ik·r +

∑
k≈−k0

A−
k e−ik·r.

(29)
Here A±

k represents the function A±
k near ±k0. More precisely,

A±
k=±k0+p = 0, unless |p| ≈ 1/Zw << 1/a, where Zw is the

width of the envelope function in real space.
We deal for the moment only with systems that have trans-

lational invariance in the x and y directions, so V (x) = V (z).
Hence we may also write F (r) = F (z). This excludes the
possibility of treating lateral inhomogeneities such as steps in
the barrier. The current method is applicable to such problems
with certain modifications, but we do not pursue this direction
in this paper.

In the presence of the oscillatory potential, Vk−k′ , consid-
ered as a function of k and k′, has two important regions in k
space.
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Region 1: k ≈ k0 and k′ ≈ −k0. Then

V +−
k−k′ =

∑
K,K′

ρK,K′

∫
d3r ei(K′−K+k′−k)·rV (Z )

= δ(kx − k′
x )δ(ky − k′

y)

×
∑
K,K′

ρK,K′

∫
dzei(k′

z−kz−2k0 )zV (z).

(30)

Region 2: k ≈ −k0 and k′ ≈ k0. We have the simplifica-
tion

V −+
k−k′ = (V +−

k−k′ )∗, (31)

which enables us to write

Vk−k′ = V +−
k−k′ + V −+

k−k′ . (32)

V +−
k−k′ and V −+

k−k′ are the parts of the potential that govern
intervalley coupling and they determine the valley splitting.
They depend on the density matrix ρK,K′ from Eq. (22).

This procedure now allows us to decompose momentum
space into positive and negative kz and separate the two val-
leys. Equation (27) now gives

εkA+
k +

∑
k′≈−k0

V +−
k−k′A−

k = EA+
k (33)

and

εkA−
k +

∑
k′≈k0

V −+
k−k′A+

k = EA−
k . (34)

E is the total energy that includes both the barrier and the WW
contributions to the valley splitting.

Finally, transforming Eqs. (33) and (34) back to real space
using Eq. (26) gives a set of coupled equations for the enve-
lope functions:

Henv

(
F+(z)
F−(z)

)
= E

(
F+(z)
F−(z)

)
, (35)

with

Henv =
(

− h̄2

2mz
∇2 + V (z) Vc(z)

[Vc(z)]∗ − h̄2

2mz
∇2 + V (z)

)
. (36)

Here mz is the longitudinal mass. Vc(z) is the inverse Fourier
transform of V ±

k−k′ :

Vc(z) =
∑
K,K′

ρK,K′V (z)ei(K ′
z−Kz−2k0 )zδKx,K ′

x
δKy,K ′

y
. (37)

F± are the envelope functions for the ±k0 valleys. Equa-
tions (35) and (36) are the basic results of this section.

The difference in the two lowest eigenvalues is the valley
splitting, which now includes both barrier and WW effects.
The eigenfunction belonging to the lowest eigenvalue deter-
mines the ground state envelope function F (z) = F+(z) +
F−(z).

IV. SELECTION RULES

So far the picture expected is that �w(q) should have
peaks of comparable sizes when q = ±(Kz − K ′

z − 2k0) for
reciprocal lattice vectors K and K′ and for no other values

of q. It turns out, however, that this picture needs to be mod-
ified because of a selection rule that suppresses the peak at
q = 3.7 nm−1 (the long-wavelength WW). The suppression
is complete if the system is considered to have the inversion
symmetry in each unit cell, as would be the case in pure Si,
pure Ge, or the Si1−xGex alloy in the standard VCA.

This rule is derived in this section.
As we have seen, the WW part of the VS as a function of q

satisfies

�w(q) ∝ ∣∣ ∑
K,K′

c∗
+(K)c−(K′)δKx,K ′

x
δKy,K ′

y
δKz,K ′

z+2k0+q

∣∣, (38)

where q is the wave number of the Ge concentration oscilla-
tion.

We first note that for the short wavelength WW there is no
selection rule. It has q = −2k0 so Kz = K ′

z and substituting in
Eq. (11) yields

�w(q = −2k0) ∝
∑

K

|c+(K)|2 > 0, (39)

which is nonzero. We have used the fact that c−(K) = c+(K).
For the long wavelength WW, we define G = (4π/a)ẑ so

G = 4π/a and we have

�w(G − 2k0) ∝ ∣∣∑
K

c∗
+(K)c−(K + G)

∣∣. (40)

The selection rule question boils down to the possible vanish-
ing of the sum, which after some rearrangement is

S =
∑

K

c∗
+(K + G)c+(K). (41)

We now demonstrate that S = 0 for the ordered diamond
structure, i.e., for pure Si, pure Ge, or for Si1−xGex in the
standard VCA.

In this section it is more convenient to choose the origin
at the position of an atom, which means that the c(K) are not
necessarily real.

The symmetry group for wave vectors in the direction from
� to X in the Brillouin zone is �, written in bold to distinguish
it from the valley splitting. The conduction band belongs to
the �1 representation. This is the identity representation for
�, meaning that the lattice-periodic part of the Bloch function
uk (r) is invariant under all the operations U of �. Hence

uk0 (r) = uk0 (Ur), (42)

which in turn implies that

c(UK) = c(K). (43)

The “+” subscript will be dropped in this section for brevity,
since we are only concerned with the point +k0 and indeed
only the conduction band.

U is a product of a rotation (which may be proper or
improper) and a translation. Since there is a glide plane in Si
there are symmetries that involve a translation T through the
vector (a/4)(1, 1, 1) that does not belong to the fcc Bravais
lattice. We define T r = r + (a/4)(1, 1, 1) and let C4 be the
rotation through π/2 about the z axis. The eight values of
U are the identity E , C2

4 , R, and R′, which are reflections
in the x = y and x = −y plane, respectively, T × R × C4,
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T × R′ × C4, T × C4, and T × C−1
4 . The group � is isomor-

phic to C4v, which is the group of the wave vectors along
the x axis in a simple cubic lattice, but the action of the
group elements on the coordinates is specific to the diamond
structure.

Let W be a pure point operation. Then in the �1 represen-
tation we have the simple result that

c(K) = c(WK) (44)

for these operations. For the four mixed operations T × W
and we find

c(K) = exp[i(a/4)(WK) · (1, 1, 1)] c(WK). (45)

These transformation properties mean that once c(K) is given
for a certain value of K = (Kx, Ky, Kz ) in the reciprocal lattice,
then c(K′) is determined for all other values in the orbit of K
under the group �, which means all K′ = (K ′

x, K ′
y, K ′

z ) with
K ′

z = Kz and K ′2
x + K ′2

y = K2
x + K2

y .
An important consequence of these rules is that some of the

c(K) unexpectedly vanish. We choose any U , set Kx = Ky =
0, and we have that

c((0, 0, Kz )) = eiKza/4c((0, 0, Kz )). (46)

For Kz = 4π/a this is only possible if c((0, 0, 4π/a)) =
−c((0, 0, 4π/a)) = 0. However, if Kz = 8π/a the equation is
an identity and we expect c((0, 0, 8π/a)) �= 0. These patterns
are evident in the results given in Ref. [18].

We now let G = (0, 0, 4π/a) and compute the sum

S =
∑

K

c∗(K + G)c(K). (47)

The orbits in K space consist of points with fixed Kz and
fixed K2

x + K2
y . They have either one element if the orbit is

the origin, four elements if the K points are on the Kx and Ky

axes or on the Kx = Ky and Kx = −Ky diagonals, and eight
elements for all points not on these axes or diagonals. Since
the orbits O exhaust all of K space, we can write

S =
∑

O

∑
K∈O

c∗(K + G)c(K), (48)

where the sum over O runs over all orbits. We will show that
in fact ∑

K∈O

c∗(K + G)c(K) = 0 (49)

for all O, from which the selection rule S = 0 follows.
We can classify the orbits by dividing the bcc reciprocal

lattice into the A sublattice K = (4π/a)(nx, ny, nz ) with the
ni integers and the B sublattice K = (4π/a)(nx + 1/2, ny +
1/2, nz + 1/2) with the ni integers. It will save writing hence-
forth to use only the integers nx, ny, and nz to label the c
coefficients so we take a = 4π and then c(K) = c(nx, ny, nz )
on the A sublattice and c(K) = c(nx + 1/2, ny + 1/2, nz +
1/2) on the B sublattice.

The point operations of the � group keep Kz fixed, so
they also do not mix A and B. Overall, we find seven classes
of orbits. In A we have A1 with nx = ny = 0 (one element),
A2 with (nx, ny) on the nx and ny axes so (nx, ny) = (nx, 0)
or (nx, ny) = (0, ny) (four elements), A3 with (nx, ny) on

the nx = ±ny diagonals (four elements), and finally A4 with
(nx, ny) in general position (eight elements). In B the origin
and the axes are missing, and there are only three classes, B1,
B2, and B3, with four, eight, and eight elements, respectively.

The computation of the orbit sums is somewhat lengthy, so
we give only the simplest example of the A1 orbit sum here
and relegate the other six orbit sums to the Appendix.

The A1 class is of the form K = (4π/a)(0, 0, nz ) and the
orbit sum is

SA1 =
∑

K∈A1

c∗(0, 0, Kz + 4π/a) c(0, 0, Kz )

=
∞∑

nz=−∞
c∗(0, 0, nz + 1) c(0, 0, nz ).

Equation (46) gives c((0, 0, n)) = eiπnc((0, 0, n)) and so
c((0, 0, n)) = 0 if n is odd. In any term in the sum either nz or
nz + 1 is odd, so we find c∗((0, 0, nz + 1)) c((0, 0, nz )) = 0.
Every term in the sum vanishes so SA1 = 0.

V. RESULTS

The envelope function is computed by discretizing the two-
component one-dimensional Schrödinger equation (36) and
solving it numerically. This gives a nonperturbative answer for
the valley splitting. The results can be qualitatively understood
by noting that the main consequence of the calculation is to
modify the integral for �w by inserting the envelope function
in the integrand so that we have

�w(q) ∝ Iw(Kz − K ′
z ) =

∫ ∞

−∞
|ψ (z)|2 eiQze−iqzdz. (50)

The function |ψ (z)|2 = |F+(z)|2 + |F−(z)|2 has a finite spa-
tial which then translates to peaks in �(q) with corresponding
widths in wave number space.

The results for the envelope function for the long wave-
length WW (q = 3.7 nm−1) are shown in Fig. 2 for nGe = 0,
0.1, and 0.2.

The details of the envelope function depend on which de-
vice is under consideration. However, there is a basic pattern
that we expect to be universal, which is that as nGe increases,
the initial single peak in |ψ (z)|2 experiences increasing mod-
ulation at the period given by q = 3.5 nm−1. In this example,
by the time nGe hits the rather high value 0.2, these modula-
tions are strong enough that there are several peaks in |ψ (z)|2.

The theory we have now developed allows us to plot �w

versus q = 2π/λ, where λ is the wavelength of the Ge con-
centration oscillations versus nGe, the average fractional Ge
concentration in the well. The results are shown in Fig. 3.

The peak at small q (long wavelength WW) is the one
expected from the perturbative picture given above. Its height
is far smaller than that of the peak at large q (short wavelength
WW). This is entirely due to the selection rule. The fact that
there is a peak at all at small q is due to the fact that the
disorder violates the selection rule. The noise in �w(q) near
q = 3.7 nm−1 is due to sampling error.

In first-order perturbation theory |ψ (z)|2 has a single peak
and no other structure. Hence the Fourier transform of |ψ (z)|2
in Eq. (50) that yields �w(q) should peak only at q = ±(Kz −
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FIG. 2. Envelope functions of the ground state |ψ (z)|2 =
|F+(z)|2 + |F−(z)|2, plotted for nGe = 0 (a), 0.1 (b), and 0.2 (c) at
q = 3.7 nm−1. These are the solutions of Eq. (36).

K ′
z − 2k0) and the peak heights are proportional to nGe. How-

ever, the wave function itself develops an oscillatory structure
as nGe increases, as shown in Figs. 2(b) and 2(c). Referring
to Eq. (50) and the discussion in Sec. II C we see that the
envelope wave function oscillations themselves will give sub-
sidiary peaks in �(q) when q is one-half of the short WW
value. Thus the peak at intermediate q is expected in second-
order perturbation theory, when the effects of changes in wave
functions first manifest themselves in the energy.

To complete the physical picture, we would like to verify
the correctness of our contention that the physics involved
in each of the three peaks shown in Fig. 3 is significantly
different. This can be done by looking at the peak height as

FIG. 3. The WW contribution to the valley splitting �w , plotted
as a function of the wave vector of the Ge concentration q = 2π

λ
.

nGe = 0.05 (blue curve), 0.10 (yellow curve), 0.15 (green curve),
and 0.20 (red curve). The first (3.7 nm−1) and third (19.6 nm−1)
peaks correspond to the long-wavelength WW and short-wavelength
WW, respectively. The intermediate peak near q = 9.8 nm−1 is due
to a second order effect in nGe. The electric field applied is F = 0.1
V/nm.

a function of nGe. Every peak has a linear term in nGe due
to the fact that the WW potential itself is proportional to
nGe. The small q peak is disorder induced, implying a second
factor of (nGe)1/2, since the disorder potential results from a
random walk in potential space. Hence we expect the peak
height to be proportional to (nGe)3/2. The intermediate q peak
is proportional to (nGe)2 because it requires wave function
modifications that are also linear in nGe, a standard perturba-
tion theory argument. The peak at large q needs no subsidiary
effects for its existence so its height is linear in nGe. Of course
this linearity also accounts for its much greater height. In
Fig. 4 we show the heights for each peak as a function of nGe

in a log-log plot. The slopes of the lines confirm the overall
picture very well.

VI. DISCUSSION AND CONCLUSION

The valley splitting has three contributions: the barrier
part �b, the disorder part �d , and the WW part �w adding
as in Eq. (10) to give the total valley splitting �. As this
equation shows, the total valley splitting � depends not only
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FIG. 4. The logarithms of the height for each peak plotted as
as a function of nGe. The heights for q = 3.7 nm−1, q = 9.8 nm−1,
and q = 19.6 nm−1 are shown by blue circles, blue squares, and red
circles, respectively. The data points are connected by a guide to
the eye. Note that the points for q = 19.6 nm−1 are referred to the
vertical scale on the right. Linear fits to the data give slopes of 1.42,
1.98, and 0.99, which agrees very well with the expected values 1.5,
2, and 1.

on the magnitudes but also on the phases of �b, �d , and
�w. The phase of �d is intrinsically random since it comes
from disorder. The phase of �w will generally depend on the
starting point (in z) of the oscillations, a parameter difficult
to control. Finally, symmetry considerations imply that �b

depends on several parameters but most importantly on the
applied electric field; it may therefore be tunable [22,23]. Thus

� is much more likely to be given by � =
√

�2
d + �2

w + �2
b

than by � = |�d | + |�w| + |�b|.
As we defined it, �b includes all structural effects and is

the only nonzero contribution when nGe = 0. It depends on
the type of device and is generally sample dependent as well.
In practice it varies roughly from a few tens of μeV to nearly
1 meV with the high end in MOS devices. �d has recently
been calculated and measured in Ref. [14]. �d ranged from
30 to 200 μeV in the experiments, with theory indicating that
this could be increased to several hundred μeV by increasing
the Ge concentration, particularly if the Ge atoms are inside
the well. �d is of course strongly random, it being a disorder
effect. Furthermore, since the positions of the Ge atoms in
Vd (r) are random, the Fourier transform of this function is
flat, and any valley splitting from this source is independent
of q.

Comparison with Fig. 3 then shows that �w for the
long wavelength WW has a value that is comparable to
but not greater than other contributions for 0 < nGe < 0.2.
The second-harmonic peak at q = 10 nm−1 is a little higher
and it would be interesting to investigate devices designed
with this wave vector. The most important result is the large
magnitude of the valley splitting of the short wavelength
WW. The results show that �w(q = 20 nm−1) will domi-
nate the other contributions even at Ge concentrations at the
level of nGe << 0.05. It does not depend on randomness
for its existence and sample dependence can be expected
to be minimal. The short-wavelength WW architecture is
promising for devices in which large valley splitting is
important.
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APPENDIX: ORBIT SUMS FOR SELECTION RULE

In this Appendix we classify the orbits and show that each
orbit sum vanishes.

The classification proceeds by dividing the bcc reciprocal
lattice into the A sublattice K = (4π/a)(nx, ny, nz ) with the
ni integers and the B sublattice K = (4π/a)(nx + 1/2, ny +
1/2, nz + 1/2) with the ni integers. It will save writing hence-
forth to use only the integers nx, ny, and nz to label the c
coefficients so we take a = 4π and then c(K) = c(nx, ny, nz )
on the A sublattice and c(K) = c(nx + 1/2, ny + 1/2, nz +
1/2) on the B sublattice.

The point operations of the � group keep Kz fixed, so they
also do not mix A and B. Overall, we find seven classes of
orbits.

In A we have A1 with nx = ny = 0 (one element), A2
with (nx, ny) on the nx and ny axes so (nx, ny) = (nx, 0)
or (nx, ny) = (0, ny) (four elements), A3 with (nx, ny) on
the nx = ±ny diagonals so (nx, ny ) = (nx, nx ) or (nx, ny) =
(nx,−nx ) (four elements), and finally A4 with (nx, ny) in gen-
eral position (eight elements).

In B the origin and the axes are missing, while the group
operations preserve the parity of nx + ny. There are only three
classes: B1 with (nx, ny) on the diagonals (four elements), B2
with |nx| �= |ny| and nx + ny even (eight elements), and B3
with |nx| �= |ny| and nx + ny odd (eight elements)

Here we give the remaining orbit sums required to derive
the selection rule, that is the vanishing of the sum in Eq. (41).
The orbit decomposition of the sum is

S = SA1 + SA2 + SA3 + SA4 + SB1 + SB2 + SB3, (A1)

where

SO =
∑
K∈O

c∗(K + G)c(K)

and O is any of the orbits.
A sublattice: We have shown that SA1 = 0 in the main text.

Now we show that the other six vanish as well.
A2: Let A2 be the orbit of a vector K = (4π/a)(0, ny, nz ).

For a fixed nz this set has four elements:

A2 = {(0, ny, nz ), (−ny, 0, nz ), (0,−ny, nz ), (ny, 0, nz )},
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where we have a adopted a notation in which a = 4π . For a
fixed nz the summands in SA2 have the form

c∗(0, ny, nz + 1)c(0, ny, nz ) + c∗(−ny, 0, nz + 1)

× c(−ny, 0, nz ) + c∗(0,−ny, nz + 1)c(0,−ny, nz )

+ c∗(ny, 0, nz + 1)c(ny, 0, nz ). (A2)

We now apply Eqs. (44) and (45). If ny + nz is even, then

c(0, ny, nz ) = c(−ny, 0, nz ) = c(0,−ny, nz ) = c(ny, 0, nz ),

while if ny + nz is odd, then

c(0, ny, nz ) = c(−ny, 0, nz )

= c(0,−ny, nz ) = c(ny, 0, nz ) = 0.

Hence in each of the four terms in Eq. (A2) one of the factors
vanishes and hence SA2 = 0.

A3: A3 is the orbit of a vector K = (4π/a)(nx, nx, nz ) and
consists of K vectors on the nx = ±ny diagonals at a fixed nz.
Letting n = nx, these sets have four elements:

A3 = {(n, n, nz ), (−n, n, nz ), (−n,−n, nz ), (n,−n, nz )}.
The summands in SA3 for a fixed nz have the form

c∗(n, n, nz + 1)c(n, n, nz ) + c∗(−n, n, nz + 1)c(−n, n, nz )

+ c∗(−n,−n, nz + 1)c(−n,−n, nz )

+ c∗(n,−n, nz + 1)c(n,−n, nz ). (A3)

We now apply Eqs. (44) and (45). If nz is even, then

c(n, n, nz ) = c(−n, n, nz ) = c(−n,−n, nz ) = c(n,−n, nz ),

while for nz = odd,

c(n, n, nz ) = c(−n, n, nz )

= c(−n,−n, nz ) = c(n,−n, nz ) = 0.

Hence in each of the four terms in Eq. (A3) one of the factors
vanishes and hence SA3 = 0.

A4: A4 is the orbit of a general vector K =
(4π/a)(nx, ny, nz ) with 0 �= nx �= ±ny �= 0. It consists of
K vectors with fixed K2

x + K2
y and fixed nz. These sets have

eight elements:

A4 = {(nx, ny, nz ), (−nx, ny, nz ), (−nx,−ny,

× nz ), (nx,−ny, nz ),

× (ny, nx, nz ), (−ny, nx, nz ), (−ny,−nx,

× nz ), (ny,−nx, nz )}.
The summands in SA4 for a fixed nz have the form

c∗(nx, ny, nz + 1)c(nx, ny, nz ) + c∗(−nx, ny, nz + 1)c(−nx, ny, nz )

+ c∗(−nx,−ny, nz + 1)c(−nx,−ny, nz ) + c∗(nx,−ny, nz + 1)c(nx,−ny, nz )

+ c∗(ny, nx, nz + 1)c(ny, nx, nz ) + c∗(−ny, nx, nz + 1)c(−ny, nx, nz )
(A4)

+ c∗(−ny,−nx, nz + 1)c(−ny,−nx, nz ) + c∗(ny,−nx, nz + 1)c(ny,−nx, nz ).

For nz even and nx + ny even we have

c(nx, ny, nz ) = c(nx,−ny, nz ) = c(−nx, ny, nz ) = c(ny,−nx, nz )

= c(−ny, nx, nz ) = c(−nx,−ny, nz ) = c(ny, nx, nz ) = c(−ny,−nx, nz ).

while for nz odd and nx + ny even we have

c(nx, ny, nz ) = −c(nx,−ny, nz ) = −c(−nx, ny, nz ) = −c(ny,−nx, nz )

= −c(−ny, nx, nz ) = c(−nx,−ny, nz ) = c(ny, nx, nz ) = c(−ny,−nx, nz ).

Thus the eight terms in Eq. (A4) will completely cancel. The sum with nx + ny odd is similarly zero so we have SA4 = 0.
B sublattice: On the B sublattice we need to consider c(K) = c{[(4π )/a)(nx + 1/2, ny + 1/2, nz + 1/2]} which we abbreviate

as c′(nx, ny, nz ).
B1: This is the orbit of a point with nx = ny. The orbit has four elements:

B1 = {(nx, nx, nz ), (−nx, nx, nz ), (nx,−nx, nz ), (−nx,−nx, nz}.
The summands in SB1 have the form

c′∗(nx, nx, nz + 1)c′(nx, nx, nz ) + c′∗(−nx,−nx, nz + 1)c′(−nx,−nx, nz )

+ c′∗(nx,−nx, nz + 1)c′(nx,−nx, nz ) + c′∗(−nx, nx, nz + 1)c′(−nx, nx, nz ).
(A5)

If nz is even we have

c′(nx, nx, nz ) = c′(−nx,−nx, nz ) = −ic′(nx,−nx, nz ) = −ic′(−nx, nx, nz ),

while if nz is odd, then

c′(nx, nx, nz ) = c′(−nx,−nx, nz ) = −ic′(nx,−nx, nz ) = −ic′(−nx, nx, nz ).

Substitution in Eq. (A5) then shows that the orbit sum is zero.
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B2: This is the orbit of a point with 0 �= nx �= ±ny �= 0 and nx + ny even. The orbit has eight elements:

B2 ={(nx, ny, nz ), (nx,−ny, nz ), (−nx, ny, nz ), (ny,−nx, nz ),

(−ny, nx, nz ), (−nx,−ny, nz ), (ny, nx, nz ), (−ny,−nx, nz )}.
The summands in SB2 have the form

c′∗(nx, ny, nz + 1)c′(nx, ny, nz ) + c′∗(nx,−ny, nz + 1)c′(nx,−ny, nz )

+ c′∗(−nx, ny, nz + 1)c′(−nx, ny, nz ) + c′∗(ny,−nx, nz + 1)c′(ny,−nx, nz )

+ c′∗(−ny, nx, nz + 1)c′(−ny, nx, nz ) + c′∗(−nx,−ny, nz + 1)c′(−nx,−ny, nz )

+ c′∗(ny, nx, nz + 1)c′(ny, nx, nz ) + c′∗(−ny,−nx, nz + 1)c′(−ny,−nx, nz ).

(A6)

If nz is even we have

c′(nx, ny, nz ) = c′(nx,−ny, nz ) = c′(−nx, ny, nz ) = c′(ny,−nx, nz )

= c′(−ny, nx, nz ) = c′(−nx,−ny, nz ) = c′(ny, nx, nz ) = c′(−ny,−nx, nz ),

while if nz is odd, then

c′(nx, ny, nz ) = −c′(nx,−ny, nz ) = −c′(−nx, ny, nz ) = −c′(ny,−nx, nz )

= −c′(−ny, nx, nz ) = c′(−nx,−ny, nz ) = c′(ny, nx, nz ) = c′(−ny,−nx, nz ).

Substitution in Eq. (A6) then shows that SB2 = 0.
B3: This is the orbit of a point with 0 �= nx �= ±ny �= 0 and nx + ny odd. The orbit has eight elements. The elements and the

typical term in SB3 are the same as for B2 but the transformation properties are different.
If nz is even we have

c′(nx, ny, nz ) = −c′(nx,−ny, nz ) = −c′(−nx, ny, nz ) = −c′(ny,−nx, nz )

= −c′(−ny, nx, nz ) = c′(−nx,−ny, nz ) = c′(ny, nx, nz ) = c′(−ny,−nx, nz ),

while if nz is odd, then

c′(nx, ny, nz ) = c′(nx,−ny, nz ) = c′(−nx, ny, nz ) = c′(ny,−nx, nz )

= c′(−ny, nx, nz ) = c′(−nx,−ny, nz ) = c′(ny, nx, nz ) = c′(−ny,−nx, nz ).

Also in this case, substitution of these relations into Eq. (A6) shows that SB3 = 0.
This completes the proof.
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