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Band lineup at hexagonal SixGe1−x/SiyGe1−y alloy interfaces
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The natural and true band profiles at heterojunctions formed by hexagonal SixGe1−x alloys are investigated by
a variety of methods: density-functional theory for atomic geometries, approximate quasiparticle treatments for
electronic structures, different band-edge alignment procedures, and construction of various hexagonal unit cells
to model alloys and heterojunctions. We demonstrate that the natural band offsets are rather unaffected by the
choice to align the vacuum level or the branch point energy, as well as by the use of a hybrid or the Tran-Blaha
functional. At interfaces between Ge-rich alloys we observe a type-I heterocharacter with direct band gaps, while
Si-rich junctions are type-I but with an indirect band gap. The true band lineups at pseudomorphically grown
heterostructures are strongly influenced by the generated biaxial strain of opposite sign in the two adjacent
alloys. Our calculations show that the type-I character of the interface is reduced by strain. To prepare alloy
heterojunctions suitable for active optoelectronic applications, we discuss how to decrease the compressive
biaxial strain at Ge-rich alloys.
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I. INTRODUCTION

Silicon (Si) grown in the diamond structure is the key
material of modern micro- and nanoelectronic devices and in-
tegrated circuits. However, it is an indirect semiconductor, like
other group-IV elements as germanium (Ge). Active optoelec-
tronic devices, such as light-emitting diodes and lasers, cannot
be produced using Si and Ge [1,2]. Therefore, optical intra-
chip communication cannot be realized within the Si-based
complementary metal-oxide-semiconductor (CMOS) technol-
ogy, that avoids the combination with III–V compounds,
because of possible unintentional doping.

The semiconductor Ge possesses a direct gap only slightly
above the indirect gap energy [3]. Various strategies to make
Ge a direct-gap semiconductor, therefore suitable for Ge-
on-Si optoelectronics, have been explored [4]. One favored
manipulation of Ge is the application of uniaxial or biax-
ial strains [5–8]. Another approach is the use of hexagonal
polytypes nH (n = 2, 4, 6) [9], in particular the 2H crystal
structure, also called lonsdaleite, of Si [10] and Ge [11].
Indeed, these latter crystals can be grown in form of nanowires
[12–14]. Crystalline 2H-Ge has a direct fundamental gap but
is a pseudodirect semiconductor, since its lowest-energy op-
tical transitions only show a negligible dipole strength [11].
Tensile uniaxial strain parallel to the c axis of the lons-
daleite geometry is predicted to lead to a conduction band
inversion and therefore to strong optical transitions [15]. In
general, structural and chemical perturbations to the ideal
bulk crystal tend to make 2H-Ge suitable for optoelectronic
applications [16]. Indeed, alloying hexagonal Ge with Si to
2H-SixGe1−x gives rise to strong photoluminescence, whose
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photon energy shifts toward higher energies with increasing Si
composition [14]. Both effects have been also predicted theo-
retically [17,18].

The energy-light conversion in light-emitting diodes
(LEDs) and lasers can be improved by quantum confinement
effects, e.g., in quantum-well LEDs and lasers [19,20]. In
addition, quantum confinement leads to a decrease of the
emission wavelength. Confinement and its effect depend on
the band alignment at interfaces, which can produce dis-
continuities between well and barrier materials. Moreover,
during pseudomorphic growth, due to the different lattice con-
stants, biaxial strain is induced in the quantum well system,
which also modifies the quantum confinement and the light
emission. The combination of these effects may also help
to increase the light emission efficiency of SixGe1−x alloy
systems. However, its understanding and control require the
detailed knowledge of band discontinuities �Ec and �Ev

of the conduction band minimum (CBM) and valence band
maximum (VBM), respectively, at the interface of two alloys
forming the heterostructure, namely 2H-SixGe1−x and 2H-
SiyGe1−y (x < y), resulting in so-called band lineups. To this
end, the chemical effects due to the different Si contents x
and y and the strain effects due to biaxial growth have to
be studied. For the corresponding diamond Si and Ge alloys,
theoretical studies of band discontinuities have been carried
on several decades ago [21] and have been refined over the
years [22,23]. In the hexagonal case, only in a very recent
paper the first investigation for alloys has been proposed [24].

In this paper, we perform accurate ab initio calculations
to investigate hexagonal SixGe1−x/SiyGe1−y heterostructures.
We combine density functional theory (DFT) with a semilocal
exchange-correlation (XC) functional, which we use for the
optimization of the atomic geometry, with a meta-GGA and a
hybrid functional for the determination of the electronic band
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structure. Moreover, we consider different band alignment
methods and evaluate their performance. The resulting natural
band discontinuities are analyzed and compared with values
for the cubic case. The occurrence of realistic pseudomor-
phic interfaces is simulated using short-range superlattices
composed by two different alloys. The accompanying biaxial
strain is modeled by means of the calculated elastic constants
and atomic distances in the constrained materials. At last, we
present and compare two methods to compute band offsets
based on the band deformation potentials.

II. METHODS

A. Structural, elastic, and electronic properties

The atomic configurations, lattice constants, and elas-
tic coefficients are optimized with DFT as implemented in
the Vienna Ab-initio Simulation Package [25,26] using the
projector-augmented wave method [27] and a plane-wave
cutoff of 500 eV. The Ge3d electrons are treated as va-
lence electrons. The Perdew-Becke-Ernzerhof XC functional
PBEsol revised for solids [28] is applied. For hexagonal
four-atom unit cells the Brillouin zone (BZ) integration is per-
formed using a �-centered 12 × 12 × 6 k-point grid. Atomic
geometries are relaxed until the Hellmann-Feynman forces are
below 1 meV/Å.

All electronic structure calculations include the spin-orbit
interaction. The Kohn-Sham band structures [29] obtained
using the DFT-PBEsol functional are known to significantly
underestimate the band-gap and interband-transition energies,
inducing consequent uncontrollable errors in the band offsets
�Ec and �Ev [30]. Accurate quasiparticle band structures
are therefore required. To avoid the numerical effort associ-
ated to QP calculations within the GW approximation [30],
we apply two approximate DFT approaches for quasiparticle
band structures that are known to yield high-quality results
[31]. The first approach relies on the XC potential of Tran
and Blaha [32,33] that combines a modified Becke-Johnson
(MBJ) exchange potential [34] with the local density ap-
proximation (LDA) correlation [29] to give the MBJLDA
functional. The MBJLDA functional is known to yield ex-
cellent QP band energies around the fundamental gap for
cubic and hexagonal Si and Ge crystals [11,15,16,18,35]. The
second approach relies on the hybrid XC functional of Heyd,
Scuseria, and Ernzerhof (HSE06) [36,37]. The band energies
resulting for 2H-Ge agree very well with the MBJLDA results
[11,15,16].

B. Alloys and superlattices

Calculating band alignments for disordered-alloy super-
cells would imply to perform a large number of expensive
total energy and electronic-structure calculations. To avoid
this bottleneck, we simulate hexagonal SixGe1−x alloys, in
first approximation, using ordered four-atom hexagonal unit
cells SinGe4−n (n = 0, 1, . . . , 4). Although this choice makes
it possible to directly study only three intermediate compo-
sitions x = n/4 (n = 1, 2, 3), beside pure Si and pure Ge, it
is a good compromise to speed up calculations and allow for
the comparison of different methods. We are confident that
this model gives a reliable, although simplified, description
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FIG. 1. (a) The side view is shown for three possible symmetry-
inequivalent bond stackings and atomic configurations C1, C2, and
C3 of the hexagonal Si2Ge2 alloy. (b) The crystal structure of three
different atomic arrangements of hexagonal Si2Ge2 alloys (C1, C2,
and C3 configurations) as heterointerface with Si1Ge3 to simulate
Ge-rich junction. The yellow and gray balls represent Si and Ge
atoms, respectively. The nominal interfaces are indicated by dashed
horizontal lines between two unit cells stacked in c axis direction.

of the electronic band structure of the alloy, thanks to our
previous studies on bulk SiGe alloys [14,18,38]. In particular,
in Refs. [18,38] we applied the generalized quasichemical ap-
proximation and obtained accurate thermodynamic averages
of electronic band structures and optical spectra. Those calcu-
lations were performed using all nonequivalent eight atoms
clusters and give access to the whole composition range.
Comparing those accurate calculations with the present calcu-
lations we can confirm that the four-atom approach gives good
results for electronic band structures, quantitatively similar to
the results of more accurate alloy thermodynamic averages.

The atomic arrangements of the four-atom cells with n
Si and (4 − n) Ge atoms (n = 0, . . . , 4) are equivalent by
symmetry, apart from the case of Si2Ge2, for which three
different bonding configurations, indicated with C1, C2, and
C3 in Fig. 1(a), have to be investigated. In C1 and C2 cells,
SiGe bonds are stacked along the [0001] direction so that Si
and Ge atoms are aligned (C1), or alternate (C2). In the C3
cell the stacked bonds consist of alternating Si-Si and Ge-Ge
pairs. The structure C2 has the highest symmetry, because
the vertical bonds in the [0001] direction are always equal
Si-Ge pairs and is the most energetically favorable. While
the lonsdaleite systems Ge4 and Si4 possess the space group
P63/mmc (C4

6v), the symmetry is reduced to P3m1 (C1
3v) for

all considered hexagonal SixGe1−x ordered alloys, irrespective
of the chosen inequivalent configuration of the Si2Ge2 alloy
[see Fig. 1(a)]. The structural, elastic, and energetic parame-
ters needed to construct and discuss the electronic structures
and the band lineups between two SiGe alloys are listed in
Table I. All the values exhibit a monotonous variation in the
composition range from pure Ge to pure Si. Complete band

085303-2



BAND LINEUP AT HEXAGONAL … PHYSICAL REVIEW B 106, 085303 (2022)

TABLE I. Structural parameters (lattice parameters a, c, and u), elastic parameters (bulk modulus B, its pressure derivative B′, and biaxial
strain modulus Y ), and total energy Etot for the seven chemically or symmetry-inequivalent hexagonal compounds SinGe4−n with respect to
2H-Ge. The values of Y are taken from Ref. [38]. In the case of Si2Ge2, values for the three atomic configurations in Fig. 1 are listed together
with their arithmetic averages.

Configuration a (Å) c (Å) u B (GPa) B′ Y (GPa) Etot (eV/cell)

Ge4 3.9960 6.5920 0.3743 68 4.76 171 0.000
Si1Ge3 3.9464 6.5150 0.3742 74 4.69 189 −0.760
Si2Ge2 (C1) 3.8944 6.4375 0.3740 81 4.51 203 −1.592
Si2Ge2 (C2) 3.9002 6.4376 0.3746 81 4.54 203 −1.606
Si2Ge2 (C3) 3.9002 6.4377 0.3737 81 4.52 201 −1.596
Si2Ge2 (average) 3.8981 6.4376 0.3741 81 4.52 202 −1.598
Si3Ge1 3.8626 6.3828 0.3740 87 4.38 216 −2.398
Si4 3.8264 6.3272 0.3739 94 4.24 225 −3.249

structures of the SinGe4−n cells obtained using the MBJLDA
functional can be found in Refs. [14,16,19]. For 2H-Ge and
Si1Ge3 a comparison of HSE06 and MBJLDA band energies
is presented in Refs. [11,16].

III. NATURAL BAND DISCONTINUITIES

A. Vacuum-level alignment

Natural band discontinuities can be predicted from the
bulk band structures of two semiconductors and/or insulators
that constitute an heterointerface. Such a prediction, however,
asks for a method to align the energy scales of the adjacent
materials. The electron affinity rule [39,40] is based on the
vacuum-level alignment. The known electron affinities A1 =
−E1

c and A2 = −E2
c of the two nonmetals j = 1, 2 in contact,

with E j
c as the lowest CBM measured with respect to the

vacuum level, define the conduction band discontinuity as

�Ec = A1 − A2. (1)

The QP gaps E j
g = I j − Aj and the resulting ionization en-

ergies with respect to the vacuum level I j = −E j
v yield the

valence band discontinuities as �Ev = I2 − I1.
The procedure to calculate band energies E j

c and E j
v with

respect to the vacuum level [41] is illustrated in Fig. 2(a) for
the examples of hexagonal polytypes Ge4 and Si4 but also
SinGe4−n alloys and the cubic polytypes 3C-Ge and 3C-Si.
First, the electrostatic potentials V (z), averaged over the plane
perpendicular to the z axis, have to be extracted from the
single-particle potential of the generalized Kohn-Sham equa-
tion. To define the vacuum level, the tail of V (z) at a surface is
needed. We studied the (0001) surfaces by investigating slabs
of eight atoms, i.e., two hexagonal unit cells, in the [0001]
direction, separated by vacuum layers as thick as 12 Å. The
oscillations of V (z) inside the material slabs are compared
with the electrostatic potential of the bulk calculation. The
comparison allows the determination of Ec, but also E ind

c ,
and Ev with respect to the vacuum level (see Table II). The
alignment gives rise to the band lineups displayed in Fig. 2(b).

For the alloy, the potential V (z) at the surface depends on
the surface termination, i.e., the distribution of the Si and Ge
atoms in the four-atom cells and hence in the surface atomic
layer. In comparison to the values in Table II and Fig. 2(b),

obtained for Si1Ge3 and a termination with the Si layer as
the second one beneath the surface, other terminations induce
small variations of 58 to 61 meV for Ev , −28 to 90 meV
for Ec, and −26 to 84 meV for E ind

c . These numbers prove
for Si0.25Ge0.75 that, fortunately, the termination has a neg-
ligibly small influence on the vacuum-level position. Table II
gathers several other interesting results. The ionization energy
I = −Ev is rather constant for Ge-rich alloys. Its increase to
the larger value of 2H-Si, and finally to 3C-Si, Table II, begins
for alloys with at least a 50% Si content.

The absolute values of the ionization potential for the
hexagonal allotropes, I = 4.48 eV (2H-Ge) and I = 4.88 eV
(2H-Si), are, however, significantly smaller than the experi-
mental values for the cubic phases 4.5–4.8 eV (3C-Ge) and
5.10–5.33 eV (3C-Si), respectively [40,42]. An increase of the
theoretical values to I = 4.54 eV and I = 5.22 eV occurs for
3C-Ge and 3C-Si, respectively, indicating not only the agree-
ment with measured ionization energies but also the predictive
power of the MBJLDA functional. Other calculations using
the HSE or other screened exchange XC functionals for 3C-Si
give rise to even larger values [41,42]. Full GW calculations
deliver I = 5.46 eV (3C-Si) and I = 5.05 eV (3C-Ge) when
(111)2×1 surfaces are investigated [43]. The good agreement
of measured and MBJLDA values for I and A confirm the
validity of the vacuum-level alignment for the determination
of natural band offsets. The latter values �Ev , �Ec, and �E ind

c
are also listed in Table II.

B. Branch point alignment

A completely different alignment concept is based on the
determination of the charge neutrality level (CNL) or branch
point (BP) energy EBP [40,42,44]. The use of such universal
reference level has been first suggested by Frensley and Kroe-
mer [45]. Apart from empirical tight-binding descriptions of
the BP energies [44,46], three different methods, which can be
combined with electronic structure calculations based on DFT
and QP approaches, have been applied in the past few decades:
a Green function method [47], a determination through the
zero of the integral of the density of states [42,48], and the
calculation from an approximate weighted sum of conduction-
and valence-band energies [49]. All these treatments require
only bulk calculations. Here we apply the third method, where
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FIG. 2. Alignment procedure and resulting band lineup for heterostructures consisting of hexagonal SixGe1−x alloys. For comparison also
results for the 3C polytypes oriented in [111] direction are given. The MBJLDA framework is used for the electronic structure calculations.
(a) Averaged electrostatic potentials (black curves) plotted along the c axis, i.e., the [0001] direction. The positions of the bulk band extrema
Ec (in red), E ind

c (in gray) and Ev (in blue) are also given. (b) The band lineups resulting with the electron affinity rule. The vacuum level is
taken as energy zero.

the BP is computed as an average over the BZ and bands [49]:

EBP = 1

2N

∑
k

[
1

NCB

NCB∑
c=1

εc(k) + 1

NVB

NVB∑
v=1

εv (k)

]
, (2)

where N is the number of k points, and for a 2H unit cell the
number of conduction bands is fixed to NCB = 2 and that of
valence bands to NVB = 4.

Band alignment obtained using the branch point method
of (2) are listed in Table III and displayed in Fig. 3. Besides
the hexagonal SixGe1−x alloys, results are also shown for
3C-Ge and 3C-Si for comparison. For the cubic crystals we
applied two different numerical descriptions of the electronic

structure and BP energy. We studied the primitive diamond
cell, with the resulting fcc BZ and halved number of bands in
(1), as well as the same atomic arrangement described using a
nonprimitive hexagonal cell together with the corresponding
hexagonal BZ. The two procedures are indicated by 3C and
3C(hex), respectively. The first description is more appro-
priate for free-standing diamond crystals, while the second
one, 3C(hex), better accounts the situation of band lineups at
cubic [111]/hexagonal [0001] interfaces. We can conclude,
first, that both approximate QP methods for band structures,
namely MBJLDA and HSE06, can be applied with compa-
rable results. Apart from the case of 3C-Si, the deviations
are in fact smaller than 0.1 eV. This latter value can be used

TABLE II. Positions of band extrema, Ev , Ec, and E ind
c , as determined via the electron affinity rule for SixGe1−x(0001) surfaces. For

comparison the values of 3C-Ge(111) and 3C-Si(111) are also listed. The natural band discontinuities �Ec = E lower
c − E upper

c (1) and �Ev =
E upper

v − E lower
v as well as that for the indirect CBM �E ind

c are also given. Because of the three configurations C1, C2, and C3 and the average
one, four offsets are displayed for either Si0.25Ge0.75/Si0.5Ge0.5 or Si0.5Ge0.5/Si0.75Ge0.25 heterostructures. All energies in eV.

Interface/alloy SixGe1−x Orientation Ev Ec E ind
c �Ev �Ec �E ind

c

3C-Ge (111) −4.535 −3.879 −3.910 −0.060 −0.283 0.070
2H-Ge (0001) −4.475 −4.162 −3.840 0.056 0.198 0.043
Si0.25Ge0.75 (0001) −4.531 −3.964 −3.797 0.152 0.317 0.029

0.170 0.324 −0.023
Si0.5Ge0.5(C1) (0001) −4.683 −3.647 −3.768 −0.026 0.101 −0.053
Si0.5Ge0.5(C2) (0001) −4.701 −3.640 −3.820 0.099 0.248 −0.015
Si0.5Ge0.5(C3) (0001) −4.505 −3.863 −3.850 0.052 0.033 −0.059
Si0.5Ge0.5(average) (0001) −4.630 −3.716 −3.812 0.034 0.026 −0.007

0.230 0.249 0.023
0.105 0.102 −0.015

Si0.75Ge0.25 (0001) −4.735 −3.614 −3.827 0.142 0.449 −0.021
2H-Si (0001) −4.877 −3.165 −3.848 0.343 0.195 −0.121
3C-Si (111) −5.220 −2.970 −3.969

085303-4



BAND LINEUP AT HEXAGONAL … PHYSICAL REVIEW B 106, 085303 (2022)

TABLE III. Energies of the band extrema Ec and Ev at the � point with respect to the BP position, taken as energy zero as computed with
MBJLDA and HSE06 functionals (values given in parenthesis). In addition, the conduction band minimum at the U point on the LM line, E ind

c ,
is listed if the alloy is an indirect semiconductor. The natural band discontinuities �Ec = E lower

c − E upper
c (1) and �Ev = E upper

v − E lower
v , as well

as the discontinuity for the indirect CBM �E ind
c are also given. Because of the three possible configurations C1, C2, and C3 and their average,

four offsets are displayed for either Si0.25Ge0.75/Si0.5Ge0.5 or Si0.5Ge0.5/Si0.75Ge0.25 heterostructures. The lowest and highest values describe
the 2H-Si/3C-Si and 3C-Ge/2H-Ge band lineups, respectively. Thereby, we distinguish between the band positions of 3C obtained using the
diamond primitive cell with the fcc BZ for the BP determination (3C) or the equivalent hexagonal representation with the BP determination by
integration over the smaller hexagonal BZ (denoted by 3C(hex)). The uppermost (lowest) two lines describe band offsets between 3C (in one
of the two versions) and 2H. All energy values are in eV.

alloy/polytype Ev Ec E ind
c �Ev �Ec �E ind

c

3C-Ge 0.221(0.300) 0.929(0.943) 0.877(0.935)L −0.039(0.095) −0.363(−0.443) 0.011(−0.115)
3C-Ge(hex) 0.027(0.061) 0.683(0.692) 0.652(0.645)L −0.233(−0.144) −0.117(-0.192) 0.236(0.175)
2H-Ge 0.260(0.205) 0.566(0.500) 0.888(0.820)U −0.006(-0.005) 0.230(0.263) 0.158(0.143)
Si0.25Ge0.75 0.266(0.200) 0.796(0.763) 1.046(0.963)U 0.183(0.002) 0.323(0.450) −0.048(0.085)

0.146(−0.042) 0.385(0.520) −0.045(0.104)
Si0.50Ge0.50(C1) 0.083(0.198) 1.119(1.213) 0.998(1.048)M −0.03(−0.148) 0.142(0.233) −0.095(0.042)
Si0.50Ge0.50(C2) 0.120(0.242) 1.181(1.283) 1.001(1.067)U 0.100(−0.045) 0.283(0.456) −0.063(0.077)
Si0.50Ge0.50(C3) 0.296(0.348) 0.938(0.996) 0.951(1.005)M 0.029(0.008) 0.235(0.236) −0.036(−0.036)
Si0.50Ge0.50(average) 0.166(0.262) 1.079(1.164) 0.983(1.040) 0.066(0.052) 0.173(0.166) −0.039(−0.055)

0.242(0.158) 0.416(0.453) 0.011(0.007)
0.112(0.072) 0.275(0.285) −0.028(−0.021)

Si0.75Ge0.25 0.054(0.190) 1.354(1.449) 0.962(1.012)M 0.165(0.190) 0.246(0.238) −0.045(−0.058)
2H-Si −0.111(0.000) 1.600(1.687) 0.917(0.954)M 0.241(0.307) 0.298(0.243) −0.019(−0.124)
3C-Si(hex) −0.352(−0.307) 1.898(1.930) 0.898(0.830)M 0.155(0.115) −1.313(−1.493) −0.067(−0.061)
3C-Si −0.266(−0.115) 2.913(3.180) 0.984(1.015)X

to define the uncertainty in the determination of the natural
band discontinuities �Ev , �Ec, and �E ind

c of heterostructures
between systems with the smallest difference in composition
(for the exact values see Table III). For low (high) Si content
the MBJLDA band edges are higher (lower) than the HSE06
ones. Nevertheless, the results in Fig. 3 and Table III show that
both approximate QP procedures can be applied to the SiGe
systems with qualitatively similar results. Since, however,
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FIG. 3. Band lineups applying unstrained bulk positions of the
band extrema, the VBM at � (Ev), the CBM at � (Ec), and the CBM
at the LM line (E ind

c ). The conduction band edges are displayed in red
(Ec) or yellow (E ind

c ), while the top of the valence bands is shown in
blue. The black horizontal line defines the BP, the energy zero. Solid
(dashed) lines are computed in the MBJLDA (HSE06) framwork. In
the Si0.5Ge0.5 case only averaged energies (see Table III) are plotted.

minor numerical efforts are necessary to perform MBJLDA
calculation, we will apply in the following only this approach
to describe the true band lineups.

From a qualitative analysis of Fig. 3 and Table III we can
identify a clear tendency for a type-I heterostructure [40,50]
when hexagonal SixGe1−x and SiyGe1−y alloys with x < y are
combined. Quantum wells are formed in the layer with the
lower Si content for both electrons and holes. However, for
Ge-rich alloys the heterostructure type is not very clear. The
position of the top of the valence band is weakly dependent on
the composition. In general, see Table III, the absolute values
of the valence band offsets are smaller than the conduction
band ones. Our results agree qualitatively with the predictions
of Wang et al. [24]. More precisely, we can compare the
minimum fundamental gaps of 2H-SixGe1−x, calculated using
MBJLDA (HSE06), Eg or E ind

g = 0.31 (0.30), 0.53 (0.56), 0.82
(0.78), 0.91 (0.82), with 1.03 (0.95) eV from Table III and the
values Eg or E ind

g = 0.30, 0.65, 0.90, 0.94, and 1.06 eV from
Ref. [24]. The trends on the band-edge position are also very
similar. Only the fact, visible in Fig. 3, that Ev is above the BP
energy for the SixGe1−x alloys (apart from the 2H-Si case) is
less pronounced in Ref. [24].

Interesting byproducts of the band lineups in Fig. 3 and
Table III are the band offsets between the 3C and 2H poly-
types of Ge and Si. We can see that the description of the
cubic polytypes using the diamond cell, 3C, or the hexagonal
representation strongly influences the resulting natural band
offsets. Low conduction-band states at 2/3 �L (diamond) are
mapped onto the � (hexagonal representation) point. For Si a
drastic lowering of the direct CBM in 3C(hex) occurs by about
1 eV compared to the 3C case. This can be understood by the
simple band-folding arguments that the second CBM at � of
3C-Si(hex) at 3.179 eV almost agrees in energy with the first
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CBM at � in 3C-Si, see Table III. It is also worth to mention
that the CBM near M in 3C-Si(hex), located at 2.15 eV, agrees
with the position of the indirect CBM near X in 3C-Si. In Ge
the energy positions vary on an absolute scale because of the
resulting different BPs. The BP in 3C-Ge(hex) is about 0.2 eV
higher in energy compared to the BP of 3C-Ge but still below
the VBM, independently of the chosen QP approximation. In
close agreement to the vacuum-level alignment, the BP align-
ment starting from MBJLDA and HSE06 electronic structures
leads to similar heterostructure characters for 2C/2H junc-
tions. However, the absolute values, and sometimes also the
signs, of the band discontinuities depend on the choice of the
structure, 3C(hex) or 3C, and the direct or indirect nature of
the gap. We focus the discussion on the heterocharacter of
2H/3C on the lowest conduction bands at � (outside �) for
Ge (Si) and identify the conduction band discontinuities by
�Ec (�E ind

c ).
Using MBJLDA (HSE06), as we can deduce from

Table III, delivers �Ec = −0.36 (−0.44) or −0.12 (−0.19)
and �Ev = −0.04 (0.10) or −0.23 (−0.14) eV for Ge 2H/3C
or 2H/3C(hex) heterostructures, while the corresponding val-
ues for Si heterostructures are �Ec = −0.02 (−0.12) or
−0.07 (−0.06) eV and �Ev = 0.24 (0.31) or 0.16 (0.12) eV
for 2H/3C(hex) or 2H/3C. Consequently, the heterojunction
character varies somewhat with the selected QP approxima-
tion and the choice of the unit cell for the calculation of the
approximate BP energy. Within the MBJLDA approximation,
the heterocharacter tends generally toward type-I. Only the
Si-based 2H/3C(hex) junction exhibits a type-II character.
These findings are qualitatively similar to the results using
the vacuum-level aligment shown in Fig. 2. Using the HSE06
functional for the determination of the band structures, the
2H/3C(hex) Ge junction has a type-I lineup, while a type-II
interface results for the Si case. These findings are in agree-
ment with other HSE06 calculations for “true” band offsets
using supercells [51].

The uncertainties in the prediction of the type of 2H/3C
or 2H/3C(hex) interfaces using the natural band lineup re-
member similar findings for InP and GaAs [52]. Due to
fluctuations in the bond stacking during growth of GaAs
quantum wires indeed such quantum wells appear, where,
however, the heterostructure type I and II is under discussion
[53,54]. The same statement is valid for other calculations of
the heterocrystalline interface 2H/3C of silicon using several
approaches. The band alignment method tends to type-II band
lineup [24,55,56], whereas the hexagonal/cubic Si superlat-
tice (see also below) shows type-I band offsets [9,51,57].
In the case of Ge the situation is more difficult because of
the metallic character of the material in DFT [9]. Moreover,
the band alignment method (type-II) [24] and the superlattice
method (type-I) [51] again suggest opposite heterostructure
characters.

For the BP position using the VBM as an energy zero we
find EBP = −0.22 (−0.30), −0.03 (−0.06), −0.26 (−0.21),
0.11 (0.00), 0.35 (0.31), and 0.27 (0.12) eV for 3C-Ge, 3C-
Ge(hex), 2H-Ge, 2H-Si, 3C-Si(hex), and 3C-Si, respectively,
using MBJLDA (HSE06). In the case of 3C-Si, there is a
good agreement with other calculations of EBP = 0.29 [41],
0.16 [43], 0.03 [44], 0.36 [47], and 0.2 eV [48]. The BP
positions in 3C-Ge are EBP = −0.28 [43], −0.28 [44], 0.18

[47], and 0.1 eV [48]. Despite similarities with the gap re-
sults of Wang et al. [24], a clear discrepancy appears for
the positions of the CNL with respect to the VBM for both
3C- and 2H-Ge. In the latter references SOC has not been
included. The tendency predicted here to find negative BP
values for Ge is confirmed both by ab initio GW [43] as well
as empirical tight-binding calculations [44]. Such a prediction
of a BP energy in a band may have significant consequences
for the occurrence of p-type accumulation at Ge surfaces,
as demonstrated for the surface electron accumulation of In
compounds, e.g., In2O3 [58]. The BP positions allows us to
define a natural valence band discontinuity �Ev between 3C-
Ge and 3C-Si or 3C-Ge(hex) and 3C-Si(hex) of �Ev = 0.49
(0.42) eV or 0.38 (0.37) eV (see Fig. 3). These values are
close to that �Ev = 0.38 eV of GW calculations [43] and that
�Ev = 0.34 eV measured by photoemission [59].

C. Comparison of alignment methods

Tables II and III, as well as Figs. 2(b) and 3, show the nat-
ural band discontinuities �Ev , �Ec, and �E ind

c of MBJLDA
band structures, derived with different alignment procedures,
namely the vacuum-level alignment and the BP alignment.
The resulting heterojunction behaviors agree qualitatively but
exhibit quantitative differences. The smallest deviations occur
for the offsets of the VBM. For Ge(Si)-rich alloy heterostruc-
tures the two �Ev values differ by −9 meV (23 meV). The
differences increase toward 88 meV (−81 meV) including
alloys with the same numbers of Si and Ge atoms in the
heterojunction. The discrepancies are similar for the CBM
offsets and increase for the CBMind offsets. For more Ge-
rich heterostructures the direct CBM offsets vary by −19 or
−52 meV, while for Si-rich junctions the indirect CBM offsets
deviate by 81 or −24 meV. All these deviations are smaller
than the accuracy of the underlying approximate QP methods
for the gaps, which we estimate to be smaller than 0.1 eV [30].

Interestingly, both alignment procedures also nearly give
the same natural band lineups for the two heteropolytypic
structures 3C/2H [see Figs. 2(b) and 3, as well as Tables II
and III]. Results of both alignments tend toward a type-I hete-
rocharacter with deep electron and flat hole quantum wells in
the region of the 2H polytype. In the Si case the agreement is
complete for �Ev and �Ec. Only the positions of the indirect
CBM differ by 81 meV. In the Ge case small deviations of
only 39 meV (�Ev), 31 meV (�Ec), and 31 meV (�E ind

c )
are visible. The minor deviations of the band discontinuities
between two polytypes 3C and 2H, as well as between two
hexagonal alloys suggest the applicability of both alignment
procedures. Nevertheless, we focus in the following on the
BP alignment because it relies only on bulk calculations.

IV. TRUE BAND LINEUP

A. Interfacial biaxial strain

A heterostructure 2H-SixGe1−x/2H-SiyGe1−y (x < y) may
be fabricated by controlled growth in the direction of the
c axis. For not-too-large differences in the x and y lattice
parameters, pseudomorphic epitaxial growth should be possi-
ble. Neglecting the interface mixing of regions with different
compositions, the main effect of the pseudomorphic growth
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TABLE IV. Energies of band extrema Ev , Ec, and E ind
c measured to the BP position of SiGe alloys and polytypes under biaxial strain −1,

0, +1%. The MBJLDA approach is applied. The deformation potentials resulting from the strain-induced band displacements are also given.
All values are in eV.

Material Compressive Zero Tensile Resulting
biaxial strain −1% biaxial strain 0% biaxial strain 1% deformation potential

SixGe1−x Ev Ec E ind
c Ev Ec E ind

c Ev Ec E ind
c �v �c �ind

c

3C-Ge 0.248 1.197 1.031 0.221 0.929 0.877 0.195 0.656 0.715 −2.65 −27.15 −15.80
3C-Ge(hex) 0.05 0.834 0.676 0.027 0.683 0.652 0.004 0.525 0.628 −2.30 −15.45 −2.36
2H-Ge 0.321 0.788 0.876 0.260 0.566 0.888 0.213 0.364 0.897 −5.40 −21.15 1.07
Si0.25Ge0.75 0.334 1.003 1.088 0.266 0.796 1.046 0.223 0.647 1.003 −5.55 −17.83 −4.25
Si0.50Ge0.50(C1) 0.132 1.354 1.045 0.083 1.119 0.998 0.034 0.899 0.949 −4.90 −22.75 −4.80
Si0.50Ge0.50(C2) 0.173 1.412 1.046 0.120 1.181 1.001 0.067 0.965 0.959 −5.30 −22.40 −4.30
Si0.50Ge0.50(C3) 0.360 1.124 1.012 0.296 0.938 0.951 0.231 0.744 0.895 −6.45 −19.00 −5.85
Si0.50Ge0.50(average) 0.221 1.296 1.034 0.166 1.079 0.983 0.110 0.869 0.934 −5.55 −21.38 −5.00
Si0.75Ge0.25 0.126 1.573 1.023 0.054 1.354 0.962 −0.005 1.139 0.906 −6.55 −21.68 −5.95
2H-Si −0.043 1.827 0.975 −0.111 1.600 0.917 −0.170 1.372 0.859 −6.35 −22.75 −5.80
3C-Si(hex) −0.346 2.116 0.906 −0.352 1.898 0.898 −0.360 1.673 0.910 −0.68 −22.13 0.17
3C-Si −0.236 2.945 0.951 −0.266 2.913 0.984 −0.293 2.880 1.000 −2.85 −3.30 2.45

will be biaxial strain at the junction, resulting in compressive
strain of the alloy with lower Si content and tensile strain
of the Si-richer mixed crystal. Since the maximum lattice
mismatch f = 2 a(x)−a(y)

a(x)+a(y) amounts to 4.3% (see Table I), the
resulting mismatch of SinGe4−n/Sin+1Ge3−n (n = 0, 1, 2, 3)
interfaces is approximately 1%, i.e., still in the validity range
of Hooke’s law. Setting the in-plane lattice constant of the het-
erojunction equal to a, assuming pseudomorphic growth, the
resulting biaxial strain on the two sides of the heterointerface
SixGe1−x/SiyGe1−y amounts to

ε‖(x/y) = a − a(x/y)

a(x/y)
, (3)

where a(x) and a(y) are the lattice constants of the two bulk
alloys. The band energies are shifted from the values Ev , Ec,
and E ind

c for the unstrained alloys to the values Ev (ε‖), Ec(ε‖),
and E ind

c (ε‖). In the framework of the validity of the Hooke’s
law [50] a linear strain dependence holds (ν = v, c, cind):

Eν (ε‖) = Eν + �νε‖. (4)

The band deformation potentials listed in Table IV have been
computed from the MBJLDA band energies of the unstrained
and strained alloys given in the same table. Thereby, an
arithmetic average of the deformation potentials arising for
ε‖ = ±0.01 is used in order to avoid nonlinear effects beyond
the Hooke’s law. Since the band energies are computed with
respect to the BP energy (2), the resulting deformation poten-
tials have to be interpreted as the deformation potentials of the
energy difference between band extrema and BP energy.

The general effects of a biaxial strain on the band edges,
measured with respect to the BP energy zero, are illustrated
in Fig. 4. In the limit of compressive strain, the a-lattice
constant is shortened and the band gaps at � are increased,
although, in addition to the CBM, Ec, also the VBM, Ev , is
shifted away from the BP. In the case of tensile strain the
opposite shifts are visible; in particular, the gaps get shrunk.
Interestingly, the conduction band minima along the LM line
hardly vary with strain, at least with respect to the BP used for

band alignment. Test calculations for 2H-Ge show the same
tendency when the vacuum-level alignment is imposed. While
the positions of the CBM and VBM at � vary with biaxial
strain, the CBM along the LM line remains rather constant.
Moreover, the character of the heterostructure (type I or II) is
rather independent of the biaxial strain. The type-I character
of the 2H/3C heterostructures (with MBJLDA) with 2H as
quantum-well and 3C as barrier material, known from the
natural band lineup, is conserved. The indirect character of
the band gap is more pronounced under compressive strain
but disappears for tensile strain.

To predict “true” band discontinuities by estimating the
biaxial strain at SixGe1−x/SiyGe1−y interfaces, we use the
band deformation potentials in Table IV. However, they are
calculated with respect to the BP, which cannot be measured
directly. For comparison with measurements it is better to
study the deformation potentials of the gaps, Eg = Ec − Ev

and E ind
g = E ind

c − Ev . In the cubic limit biaxial deformation
potentials � = −13.15 (−21.45) eV and �ind = 0.06 (0.85)
eV result for 3C-Ge (3C-Si) but using the hexagonal BZ to
describe the high-symmetry points �, L, and M. Our esti-
mates of deformation potentials of 3C-Ge at the � and L
points of the fcc BZ deliver �(�) = −24.5 eV and �(L) =
−13.15 eV. Because of the projection of the L point in the
fcc BZ onto the � point of the hexagonal BZ, the indirect
gap value in the cubic case �(L) should be comparable with
the � = −13.15 eV value estimated for the direct gap of
3C-Ge, using a hexagonal k-point sampling. Independently
of the description, in diamond-Si the indirect gaps possess
positive deformation potentials of 5.30 eV for 3C-Si and
0.85 eV for 3C-Si(hex). Our estimates approach measured
deformation potentials at the zone boundaries [60]. In the
hexagonal alloys the deformation potentials � for the direct
gaps relatively weakly vary with the composition around � =
−21 eV. Only for x = 0.25 a slightly smaller absolute value
with � = −17.83 eV is estimated. The situation is completely
different for the deformation potential of the lowest indirect
gap. Because of similar values of the CBM with mixed sp
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FIG. 4. Band lineups of SixGe1−x alloys and polytypes under compressive, zero and tensile biaxial strain, ε‖ = −0.01, 0.00, and 0.01,
drawn with respect to the BP as energy zero. Ec (red), E ind

c (gray), and Ev (blue). In the Si0.5Ge0.5 case energies averaged over the three
configurations shown in Fig. 1 are displayed.

character and the p-like VBM the gap deformation potentials
remain small. An exception appears for 2H-Ge, for which the
indirect gap deformation potential tends to be small of 6.5 eV
but positive.

B. Interface influence

The band lineups of conduction and valence bands can be
simulated for supercells containing an interface between the
two materials, forming a heterostructure. In general, the the-
oretical modeling of interfaces is difficult because of possible
lattice mismatches, crystal structure misfits, heterovalencies,
chemical and structural disorder, and presence of defect states.
In the case of hexagonal SixGe1−x alloys, grown pseudo-
morphically on top of each other, one can focus on the
lattice mismatch and the configuration of Si and Ge atoms
on the atomic sites at the heterointerface. A powerful tool is
the superlattice method with superlattice structures based on
hexagonal SixGe1−x/SiyGe1−y heterostructures in the [0001]
direction building a superlattice unit cell.

In the simplest case we can match two hexagonal unit
cells of SinGe4−n and Sin+1Ge3−n (n = 0, 1, 2, 3), joining the
surfaces perpendicular to the c axis to create a hexagonal su-
percell of (SinGe4−n)1 (Sin+1Ge3−n)1(0001) with an in-plane
lattice constant a and a c-lattice constant that is approximately
twice the value of the corresponding lattice constant of the iso-
lated hexagonal alloys. The resulting superlattice represents a
hexagonal crystal with eight atoms, (2n + 1) Si and (7 − 2n)
Ge atoms in the unit cell with the lattice parameters a and c.
The highest complexity of the atomic arrangements in such
a superlattice cell appears if a stoichiometric alloy Si2Ge2

is included. Because of the existence of the three configura-
tions C1, C2, and C3 [see Fig. 1(a)] several arrangements are
possible at the interface. We consider three different atomic

arrangements at the heterointerface of Si2Ge2 with Si1Ge3 to
simulate Ge-rich junctions, as shown in Fig. 1(b). We start
with a minimum Si-Si bond distance along the c axis, e.g.,
configuration C1, and then we consecutively move out one of
the Si atoms in order to generate a maximum of Si-Si atomic
separations, e.g., configuration C3 from Fig. 1(b). Although
the difference between these atomic configurations is very
small in terms of the resulting lattice parameters, the actual
atomic arrangement has a strong impact on the band-gap en-
ergy and the position of the CBM in k space. A direct-indirect
gap crossover occurs in the set of (Si1Ge3)1(Si2Ge2)1(0001)
superlattices. If we consider the interface with an ordered
alloy of type C1 (see upper left panel of Fig. 1), then the
band discontinuity slightly varies depending on the position
of the Si atomic layer of the interface with Si1Ge3, i.e., the
distance of the Si layer in Si1Ge3 with respect to the Ge and Si
atomic layers in the ordered Si2Ge2 alloy. A similar procedure
is applied for the (Si2Ge2)1(Si3Ge1)1(0001) superlattices.
For the two other superlattices (Ge4)1(Si1Ge3)1(0001) and
(Si3Ge1)(Si4)1(0001) only one configuration has to be stud-
ied. All these short-period superlattice geometries have to be
optimized by atomic relaxations and minimization of the total
energy. The resulting lattice parameters a and c are listed in
Table V. In the cases of presence of Si2Ge2 alloys we only
list the average values. These a parameters, together with the
a-lattice constants in Table I, allow us to define the biaxial
strain ε‖ (3) at the interface between two alloys.

The lattice constants and strains found for short-period
superlattices should be evaluated in comparison with results
of calculations for heterostructures with thicker layers. For
thicker layers of SixGe1−x and SiyGe1−y, with thicknesses
D(x) and D(y) the macroscopic elasticity theory can be ap-
plied. Because of the assumed pseudomorphic growth of the
two hexagonal alloys on each other the common in-plane
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TABLE V. Results of the superlattice approach and the macroscopic treatment using elastic moduli for four different heterostructures.
Lattice constants a and c (in Å), biaxial strain ε‖ (in %), and band energies Ev , Ec, and E ind

c (in eV) estimated with the deformation potentials
in Table IV. For the Si2Ge2 alloys energies are computed for the configurations C1, C2, and C3 and their average. Therefore, four different
sets of band energies appear for Si1Ge3/Si2Ge2 and Si2Ge2/Si3Ge1 heterostructures.

Hetero- Super. app. Macro. app. Super. app. Macro. app.

structure a c ε‖ a ε‖ Ev Ec E ind
c Ev Ec E ind

c

Ge4 −0.96 −0.65 0.319 0.763 0.875 0.300 0.710 0.880
Ge4/Si1Ge3 3.9577 13.0676 3.969
Si1Ge3 0.29 0.60 0.253 0.777 1.033 0.240 0.720 1.020
Si1Ge3 −0.77 −0.61 0.316 0.944 1.078 0.307 0.918 1.019
Si1Ge3/Si2Ge2 3.9161 12.9289 3.922
Si2Ge2 0.41 0.57 0.063 1.020 0.977 0.055 0.992 0.969

0.097 1.070 0.983 0.089 0.976 0.977
0.268 0.791 0.927 0.257 0.821 0.918
0.143 0.960 0.962 0.133 0.930 0.955
0.117 1.241 1.022 0.115 1.236 1.021
0.154 1.311 1.024 0.153 1.292 1.023
0.334 1.035 0.982 0.336 1.031 0.981

Si2Ge2 −0.52 −0.50 0.202 1.195 1.009 0.201 1.186 1.008
Si2Ge2/Si3Ge1 3.8796 12.8128 3.880
Si3Ge1 0.44 0.47 0.026 1.259 0.937 0.024 1.249 0.935
Si3Ge1 −0.49 −0.48 0.090 1.459 0.993 0.087 1.452 0.992
Si3Ge1/Si4 3.8435 12.7039 3.844
Si4 0.45 0.46 −0.137 1.501 0.892 −0.139 1.487 0.891

lattice constant a can be determined by minimization of the
total elastic energy. In each superlattice layer with composi-
tion x the elastic energy is given as Eelast = V (x)Y (x)ε‖2(x)
with volume V (x) ∼ D(x), biaxial modulus Y (x) = C11(x) +
C12(x) − 2C2

13(x)/C33(x), and in-plane strain ε‖(x) = [a −
a(x)]/a(x) [50]. The result of the minimization procedure
with respect to a is

a = D(x)Y (x)a(x) + D(y)Y (y)a(y)

D(x)Y (x) + D(y)Y (y)
, (5)

using the parameters of the two alloys, especially the in-plane
lattice constants a(x) and a(y). This condition defines biaxial
strain of the two materials forming the heterostructure,

ε‖(x) = D(y)Y (y)

D(x)Y (x) + D(y)Y (y)

a(y) − a(x)

a(x)
,

ε‖(y) = D(x)Y (x)

D(x)Y (x) + D(y)Y (y)

a(x) − a(y)

a(y)
. (6)

In the case of equal thicknesses D(x) = D(y), the mismatch in
the elastic properties Y (x) �= Y (y) destroys the almost (apart
from sign) symmetric distribution ε‖(x) ≈ −ε‖(y). If one
layer is much thicker than the other one, e.g., D(y) � D(x),
then it holds that a = a(y), ε‖(x) = a(y)−a(x)

a(x) , and ε‖(y) = 0.
In the case D(x) = D(y), employing the a and Y parameters
from Table I, expressions (5) and (6) deliver similar common
lattice constants and biaxial strains in Table V as in the case
of short-period superlattices. The common lattice constant of
the heterostructure (5) and the strains on both sides of the
interface (6) tend, indeed, to approach the symmetric case
a = 1

2 [a(x) + a(y)] and ε‖(x) ≈ −ε‖(y).

C. Band edges and confinement in strained heterostructures

The ab initio calculations of the atomic geometry of
the (SinGe4−n)1/(Sin+1Ge3−n)1(0001) (n = 0, 1, 2, 3) super-
lattices can be also combined with MBJLDA calculations of
the electronic structure. However, the resulting band struc-
tures in k space cannot be immediately related to the band
edges Ev , Ec, and E ind

c versus a real-space coordinate along
the layer stacking direction. An approximate approach to the
band-edge profiles through the heterointerface in the z direc-
tion is possible by calculating the local site-projected density
of states (PDOS). The PDOS is estimated by projection of
the DOS onto each atom and by plotting the band edges
around the local fundamental gap versus the z coordinate of
the atomic layer [61–63]. Unfortunately, the calculations for
the four short-period superlattices do not show constant en-
ergies inside the two material layers, as expected for bulklike
behavior. Therefore the projection technique is not applicable.
The superlattice layers are too thin. They mainly consist of
interface regions, so that nearly constant band-edge positions
on both sides of an interface cannot be determined.

For that reason we also studied superlattices with sig-
nificantly thicker layers. A method described in detail in
Ref. [64] is applied. The electronic structure results are dis-
played in Figs. 5 and 6 for superlattices with 32 atomic
layers, more precisely 16 atomic layers on each side of an
interface, in one superlattice unit cell. In other words hexag-
onal (SinGe4−n)4(Sin+1Ge3−n)4(0001) superlattices with n =
0, 1, 2, 3 are studied. The resulting band structures are shown
in Fig. 5 together with a background that illustrates the band
regions of the projected band structure of the hexagonal bar-
rier materials consisting of Sin+1Ge3−n four-atom unit cells.
The BP alignment is applied to align the superlattice and the

085303-9



BELABBES, BOTTI, AND BECHSTEDT PHYSICAL REVIEW B 106, 085303 (2022)

−3

−2

−1

0

1

2

3

M

Ge/Si
0.25

Ge
0.75

Si
0.25

Ge
0.75

/Si
0.5

Ge
0.5

Si
0.5

Ge
0.5

/Si
0.75

Ge
0.25

Si
0.75

Ge
0.25

/Si

E
n

er
g

y
 (

eV
)

K MK MK MK

FIG. 5. Band structures of hexagonal (SinGe4−n)4(Sin+1Ge3−n)4(0001) superlattices. The VBM is taken as energy zero. The shaded regions
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projected band structures in each panel of Fig. 5. The VBM of
the superlattices is used as energy zero for all superlattices.

The direct gaps at � of the four superlattices are 0.43 (n =
0), 0.74 (n = 1), 1.26 (n = 2), and 1.55 (n = 3) eV larger than
the direct gaps of the hexagonal SinGe4−n materials given in
Table III. This observation indicates the presence of quantum
confinement of electrons and holes at � in the Ge-richer su-
perlattice layers, or type-I heterostructure behavior of carriers
in these regions, in agreement with the natural band lineups

of Fig. 3. For the indirect gaps, we report a gap increase of
0.62 (n = 0), 0.77 (n = 1), 0.94 (n = 2), and 1.00 (n = 3) eV
for the CBM at the M point of the superlattice BZ, showing
that confinement is less pronounced. Electron confinement is
present in the direct-gap n = 0 and n = 1 superlattices, while
the indirect-gap n = 2 and n = 3 superlattices tend to smaller
values, clearly visible for the (Si3Ge1)4(Si4)4(0001) super-
lattice, where the projected bulk Si band structure is below
the superlattice CBM at M. These findings are in agreement
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FIG. 6. Wavefunction squares of the lowest empty, i.e., CBM, and highest occupied, i.e., VBM, at � together with two parallel (112̄0)
superlattice planes for hexagonal (SinGe4−n)4(Sin+1Ge3−4)4(0001) superlattices (n = 0, 1, 2, 3). Ge (Si) atoms are indicated by gray (yellow)
circles. The 2H bond stacking is clearly visible.
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FIG. 7. Band lineups at the interfaces of the hexagonal SinGe4−n/Sin+1Ge3−n (n = 0, 1, 2, 3) heterostructures as calculated by means of
expression (4) and the energies and deformation potentials in Table IV using the biaxial strains (3) from (a) the superlattice and (b) the
macroscopic approach in (6). The resulting strain values are listed in Table V.

with Fig. 3, which clearly suggests hole confinement in the
Ge-rich regions when the MBJLDA approach is applied. We
observe that the energy distance between the band extrema
of the superlattice bands and the projected band structure are
somewhat smaller than the values found for the natural band
discontinuities in Fig. 5 and Table III. The hole confinement in
the Si-poorer alloy regions of all superlattices is visible. From
the distance to the shaded region one may conclude that the
deepness of the corresponding hole quantum well increases
with rising Si composition in the superlattice. For electrons
the situation is more complex. For Si-poor compositions the
superlattices are direct semiconductors and localized electron
states appear at �. This behavior at � continues in Si-richer
superlattices. However, the true conduction band minima ap-
pear at M in the superlattice BZ. The confinement of electrons
at � in the Ge-richer layers is hardly visible. Summarizing,
the band structures of the Ge-rich superlattices clearly show a
type-I heterobehavior using MBJLDA bands, as suggested by
the natural band lineups in Fig. 3. The situation for lower Ge
contents is less clear.

This tendency for type-I heterobehavior is not only in-
dicated by the lowest conduction band and highest valence
band in the fundamental gap of the barrier material in the Ge-
richer direct-gap superlattices in Fig. 5. A pronounced type-I
(type-II) heterostructure behavior of the Ge-rich (Si-rich) su-
perlattices is also demonstrated by the wave-function squares
of the superlattice Bloch functions of the lowest conduction
and highest valence band, as shown in Fig. 6. In Ge-richer
superlattices both wave functions, for electrons and holes at �,
are localized in the Ge-rich layer of the superlattice structure,
clearly representing a type-I behavior. One may speak about
a multiquantum well structure with electron and hole wells
in the Ge-rich layers, while Si-richer layers form barriers for

both carrier types. There is a complete change in Fig. 6 for the
Si-richer superlattices. Hole and electron wave functions are
now localized in different regions of the superlattice. A type-II
heterojunction behavior is suggested by the wave-function lo-
calization. The holes remain localized in the Si-poorer layers,
while electrons are more likely to be in Si-richer layers.

In order to determine the pure effect of the biaxial strain on
the band lineups between the two different materials, biaxial
strains are extracted for short-period superlattices with layers
of equal thickness in the unit cell and listed in Table V.
These strains (3), together with the deformation potentials
of Table IV, lead to band-edge positions (4) with respect to
the BP as energy zero. They lead to the plots of Fig. 7 for
the band positions and band discontinuities. We note that
in Fig. 7(a) the strains directly extracted from the ab initio
optimized geometries of the short-period superlattice are used,
while the biaxial strains (6) estimated by means of the elastic
moduli Y and the in-plane lattice constants a of the unstrained
alloys, both in Table I, are applied in Fig. 7(b). Qualita-
tively, both Figs. 7(a) and 7(b) show the same band lineups
with pronounced quantum wells for holes in the Ge-rich ma-
terial layer. However, in the light of the goal to fabricate
hexagonal SixGe1−x heterostructures, which are suitable for
active optoelectronic devices, Fig. 7 exhibits a somewhat more
pronounced tendency for hole confinement compared to the
natural band lineups in Fig. 3. The conduction band offsets
guaranteeing a type-I heterostructure are generally reduced
and all the heterojunctions with more silicon mixed-in into
the well, as well as barrier material, exhibit a clear tendency to
become indirect semiconductors, with the lowest conduction
band minimum located at the LM line in k space or M point
in the superlattice BZ. Only the hexagonal Ge/Si0.25Ge0.75

heterojunction, and perhaps also the Si0.25Ge0.75/Si0.5Ge0.5
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FIG. 8. Zoom to heterostructures with layer compositions x =
0.25 or y = 0.5. Besides the average result already displayed in Fig. 7
also band lineups for the defined atomic configurations C1, C2, and
C3 of the Si2Ge2 cells are plotted. The different biaxial strains used
in (a) and (b) are estimated as described in Fig. 7.

interface, represents a type-I heterostructure; however, with
two deficiencies. (i) The barrier for the electrons and therefore
their quantization in the pure 2H-Ge or Si0.25Ge0.75 layer is
much smaller compared to the result for natural alignment in
Fig. 3. (ii) The lowest-energy optical transitions inside 2H-Ge
still possesses only a small oscillator strength [16]. In order to
improve the situation for the construction of a heterostructure
laser based on a hexagonal SixGe1−x/SiyGe1−y alloy system,
one has to find a way to reduce the compressive biaxial strain
in the Ge-richer layer. One option to do so is to increase the
thickness D(x) compared to D(y). Then, according to (6),
the compressive strain |ε‖(x)| can be reduced in comparison
to the tensile strain |ε‖(y)|. Together with the condition to
have a reasonable strength of the optical transitions [16], the
heterostructure Si0.25Ge0.75/Si0.5Ge0.5 could be a promising
system if, indeed, a larger thickness of the Ge-rich layer is
reached. In Fig. 7 average values are presented in the Si2Ge2

case. Figure 8 shows the band lineups for a situation where in
the heterostructures the alloy with y = 0.5 is realized by only
one configuration, C1, C2, or C3 (see Fig. 1). The hole wells
appear to be in the Ge-rich regions independent of the atomic
configuration. However, the position of the CBM varies with
the atomic distribution corresponding to the Si-richer layer.
A type-I (with C1 and C2) or type-II (with C3) heterostruc-
ture character appears in dependence of the actual atomic
configuration.

V. SUMMARY AND CONCLUSIONS

The electronic properties of heterostructures made of
hexagonal SixGe1−x alloys have been studied by means
of ab initio calculations of atomic geometries, based on
density-functional theory and using approximate quasiparticle
approaches for the band structures. Two different alignment
procedures to construct natural band lineups are tested, to-
gether with the direct calculation of various hexagonal unit
cells to describe alloys and heterojunctions. We applied the
elastic theory to model the influence of biaxial strain, in par-
ticular in the case of pseudomorphically grown heterosystems.

The natural band lineups have been investigated comparing
the branch point and vacuum-level alignments. Moreover, the
influence of the underlying approximate quasiparticle method,
namely the MBJLDA or HSE06 functionals, is considered.
We can conclude that the selection of one of these approxi-
mation has a negligible effect in terms of the general accuracy
of the band offsets �Ec and �Ev . The different alignment
methods lead also to similar results, so that we decided to
choose the branch point alignment that only requires bulk cal-
culations. Calculations for diamond Si and Ge allowed us to
validate the values of the branch point energies and the natural
band discontinuities, comparing with experiements and previ-
ous calculations. Consequences of the negative branch points
in Ge-rich alloys have been predicted for carrier accumulation
at hexagonal Ge and alloy surfaces.

The true band offsets appearing at almost pseudomorphic
heterointerfaces have been investigated for different thick-
nesses of the alloy layers composing the heterojunction. The
limit of thin layers has been studied within a superlattice
approach. It gives rise to compressive (tensile) biaxial strains
of order of ±0.5% in the Ge-richer (less Ge-rich) alloys. How-
ever, for larger thicknesses, but always in the range of validity
of elastic theory, similar strains result from the minimization
of the elastic energy of the junction. The strain profiles with
compressive strain at the Ge-richer side and tensile strain at
the Si-richer side tend to deepen the hole quantum wells and
flatten the electron quantum wells in the Ge-poorer layers.
Also the type-I character of the heterostructures is reduced, as
demonstrated within the MBJLDA functional. This tendency
is accompanied by a transition of the heterostructure from a
direct semiconductor to an indirect one with rising Si com-
position. These results are confirmed by electronic structure
calculations of the band structures and the wave functions,
performed for superlattices with thicker layers. Consequently,
we propose to achieve a reduction of the compressive strain at
the Ge-rich side to make the pseudomorphic heterojunctions
suitable for active optoelectronic applications.
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