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Superballistic boundary conductance and hydrodynamic transport in microstructures
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It is shown that the ideal boundary between a perfectly conducting electrode and electron liquid state
acts as a contact whose conductance per unit area is higher than the fundamental Sharvin conductance by
a numerical coefficient 2α, where α is slightly smaller than unity and depends on the dimensionality of the
system. If the boundary has a finite curvature, an additional correction to the boundary conductance appears,
which is parametrically small as a product of the curvature by the electron-electron mean free path length.
The relation of the normal current density to the voltage between the electrode and electron liquid represents
itself a hydrodynamic boundary condition for current-penetrable boundary. Calculations of the conductance and
potential distribution in microstructures by means of numerical solution of the Boltzmann equation show that
the concept of boundary conductance works very good when the hydrodynamic transport regime is reached. The
superballistic transport, when the device conductance is higher than the Sharvin conductance, can be realized in
Corbino disk devices not only in the hydrodynamic regime, although requires that the electron-electron scattering
rate must be higher than the momentum-relaxing scattering rate. The theoretical results for Corbino disks are
consistent with recent experimental findings.
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I. INTRODUCTION

In the last years, there is a large progress in the studies
of the hydrodynamic transport regime for electron gas in
solid state conductors, when electron motion resembles the
dynamics of viscous fluids[1–10]. This regime takes place
under condition that the mean free path length with respect to
momentum-conserving electron-electron (ee) scattering le is
much smaller than the other characteristic lengths of the sys-
tem, namely the transport mean free path length ltr describing
momentum-relaxing (electron-impurity and electron-phonon)
scattering and the lengths relevant to the conductor geometry.
Since le rapidly decreases with temperature, le ∝ T −2, the
hydrodynamic regime can be reached by increasing electron
temperature in high-mobility two-dimensional (2D) electron
gas, where ltr is minimized. Some important manifestations
of the hydrodynamic behavior include unusual temperature
dependence of electrical resistance [11–13], viscous magne-
toresistance and Hall viscosity effects [14–17], and nonlocal
transport phenomena caused by collective hydrodynamic mo-
tion [18–23]. Substantial modifications of the current and
potential profiles, with corresponding influence on the resis-
tance, occur in mesoscopic conductors under a transition from
the ballistic to the hydrodynamic transport regime [24–30]. It
has been also found [31–35] that in the hydrodynamic regime
the conductance of microcontacts can be higher than the
conductance in the ballistic transport regime. This property,
often called as superballistic transport, has been experimen-
tally verified in narrow 2D constrictions (point contacts) with
widths of the order of one micron, based on graphene [32]
and GaAs heterostructures [33]. Recently, the signatures of
possible superballistic behavior have been also detected in

high-quality graphene Corbino disks of several micron size
[35].

The fundamental upper bound of the ballistic conductance
is given by the Sharvin conductance equal to the conduc-
tance quantum e2/2π h̄ multiplied by the number of quantum
channels able to carry the electrons through the contact (open
channels). In the case of classical transport, this number is
large and proportional to the area of the contact. The ideal
ballistic Sharvin contact can be viewed as a hole in a thin
nonpenetrable wall separating two regions where electron gas
stays in quasiequilibrium characterized by different electro-
chemical potentials U1 and U0 [36]. A similar setup is realized
in a point contact representing a smooth constriction between
two regions, so the hole is identified with the narrowest place
of this constriction. The Sharvin contact can be also created
by placing a thin conducting layer, where electrons move bal-
listically, between two perfectly conducting electrodes, also
called below as leads, as shown in Fig. 1(a). It is assumed
that the boundaries between the leads and the layer are ideal
so that electrons pass them without backscattering. All such
systems are characterized by the Sharvin conductance GS =
I/U , where I is the total current passing through the contact
and U = U1 − U0 is the applied voltage. For the systems
with uniform current-penetrable boundaries (Fig. 1), it is also
convenient to introduce the normal current density jn and
the Sharvin conductance per unit square of the contact area
(for 2D case, per unit length), GS = jn/U . This conductance
depends on the electron energy spectrum, electron density n,
and temperature T .

The theoretical explanation of the superballistic transport
in constrictions [31,32,34] is based on the fact that in the
hydrodynamic regime the motion of electrons is collective
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FIG. 1. (a) A thin conducting layer, where electrons move ballis-
tically, is sandwiched between two perfectly conducting electrodes
with fixed electrochemical potentials, forming the Sharvin contact.
(b) The contact between the electrode and the electron liquid staying
at electrochemical potential V spreads over the Knudsen layer (bright
yellow), where the potential changes rapidly. The normal current
flowing through the contact is indicated by the red arrow. [(c),(d)]
Devices of flat geometry and Corbino geometry with the contacts
described above.

and differs from the individual electron motion in the ballistic
(Knudsen) regime. The Landauer interpretation of the con-
tact conductance in the form given above is no longer valid
for such hydrodynamic flow, though the concept of quantum
channels still remains [34]. The number of these channels
varies along the constriction, dropping down to the number
of open channels in the narrowest place. In the process of
motion, electron-electron scattering transfers carriers from the
terminated channels, in which the ballistic electrons would
scatter back, to the open channels, thereby helping them to
pass the contact. To summarize, although the number of open
channels remains the same, the electrons in the hydrodynamic
regime use these channels more often than in the ballistic
regime, so the conductance increases. The theory [31,34] pre-
dicts that the conductance increases over the Sharvin one by
a factor proportional to the constriction length divided by le.
Thus, it was concluded [34] that, in terms of parameters, the
conductance can be made arbitrary large.

The superballistic transport in the systems with sharp con-
tact boundaries (Fig. 1) requires a different explanation. The
main goal of this paper is to describe the transport mechanism
in such systems and to find a specific conductance associated
with the presence of the boundary and below referred to as
the boundary conductance. The results are also applied to
transport in microstructures. The consideration is based on
the concept that the interface between the electrode and the
electron liquid can be viewed as a quasiballistic Sharvin-like
contact. Indeed, the hydrodynamic state away from the bound-
ary is characterized by its own electrochemical potential V
and current density j governed by the continuity equation and
the Navier-Stokes equation. The spatial variation of these
quantities occurs on a much larger scale than the width of
the Knudsen layer separating the hydrodynamic state from the
lead, Fig. 1(b). The linear relation between the normal inward
current density and the potential drop �U between the lead

and the electron liquid is written as

jn = G�U . (1)

The conductance per unit area of the boundary G is considered
in Sec. II. It is shown that the upper bound of G is equal
to 2GS , while the numerical calculations based on the Boltz-
mann equation formalism show that the ratio G/GS is slightly
smaller than 2. The result depends on dimensionality as well
as on the model of electron-electron collision integral. Thus,
the contact between the lead and the electron system in the hy-
drodynamic state is superballistic. However, in contrast to the
constriction described above, such a contact cannot provide
arbitrary large conductance. Section III contains calculations
of the conductance and potential profile for the devices of
highly symmetric geometries shown in Figs. 1(c) and 1(d)
for different transport regimes. In particular, it is shown that
the Corbino disk devices can demonstrate the superballistic
conductance caused by strong electron-electron interaction,
and not only in the hydrodynamic regime. Connection of
the presented theory to the recent experiment [35] is also
discussed. Concluding remarks are given in Sec. IV.

II. BOUNDARY CONDUCTANCE

Since the interface between the perfectly conducting elec-
trode and the hydrodynamic electron state spreads over the
Knudsen layer width, which is much smaller than any other
hydrodynamic length parameter of the system, it is suffi-
cient to consider a homogeneous flat contact boundary and
a constant normal current density jn, as shown in Fig. 1(b).
The current density is constant according to the continuity
equation ∇ · j = 0. A tangential current density can also be
present in the system, but it is not relevant for calculations
of the boundary conductance because the tangential current
does not affect the normal current and potential distribution
on the scale of the Knudsen layer width estimated as le. This
statement remains true even in the presence of a magnetic field
parallel to the boundary if this field is sufficiently weak so the
cyclotron radius is much larger than le.

The Knudsen layer exists because the distribution of elec-
tron momenta at the boundary is affected by injection of the
electrons from the lead and, therefore, is different from the
one in the hydrodynamic state. Thus, some space is needed
to accommodate this distribution to the hydrodynamic form,
which is achieved owing to electron-electron interaction. De-
scription of the transport within the Knudsen layer requires
solution of the Boltzmann kinetic equation for the distribution
function of electrons in the system, fp(r), where p is the
electron momentum and r is the coordinate. The energy spec-
trum of electrons, ε = εp, is assumed to be isotropic, although
the results presented in the paper are applicable for arbitrary
electronic dispersion εp. In the linear transport regime, it is
convenient to present the distribution function as

fp(r) = fε + δ fp(r) = fε − [gp(r) − e�(r)]∂ε f , (2)

where fε is the equilibrium Fermi-Dirac distribution, ∂ε f ≡
∂ fε/∂ε and �(r) is the electrostatic potential that is equal
to zero in equilibrium. The function gp(r) describes the
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nonequilibrium response. In particular, the current density is

j(r) = e
∫

dεDεvpgp(r)(−∂ε f ), (3)

where Dε is the density of states and vp is the group velocity.
The overline symbol denotes averaging over the angles of
momentum. The nonequilibrium part of electrochemical po-
tential V (r) is determined by the isotropic part of gp, denoted
below as g,

eV (r) = 〈
gp(r)

〉 = 〈g(r)〉. (4)

Here and below, the average of an arbitrary function F over
energy is defined as

〈F 〉 ≡
∫

dεDεvε pε(−∂ε f )Fε/nd,

in view of the identity nd = ∫
dεDεvε pε(−∂ε f ), where v and

p are the absolute values of the group velocity and momen-
tum, and d is the dimensionality of the system. Equation (4) is
consistent with the definition V (r) = δμ(r)/e + �(r), where
δμ(r) is the nonequilibrium part of the chemical potential. In
the hydrodynamic regime, when δ fp(r) = −δμ(r)∂ε f , g(r) is
energy independent and g(r) = eV (r). For degenerate elec-
tron gas, the average over energy fixes the energy variable
at the Fermi energy, ε = εF , so eV (r) is equal to g(r) taken
at the Fermi energy. It is important to emphasize that, in the
static linear response regime considered in this paper, both
the electrochemical potential and the current density are deter-
mined by gp(r) found from the kinetic equation [see Eq. (11)
below] that does not contain modified electron density and
electrostatic potential �.

The function gp(r) can be expanded in series of angular
harmonics as

gp = g + gαcα + Qαβ (cαcβ − δαβ/d ) + . . . , (5)

where α and β are the Cartesian coordinate indices (the re-
peated indices, by convention, imply summation over them),
and c = p/p is the unit vector along the momentum. The
vector gα = dcαgp and the tensor Qαβ depend on energy and
coordinate. They are related to the drift velocity uα = jα/en
and to the momentum flux density tensor 
αβ as uα = 〈gα/p〉
and 
αβ = 2n〈Qαβ〉/(d + 2). In the hydrodynamic regime,
gα = puα and Qαβ = −pvτ 1

2 (∇βuα + ∇αuβ ), where τ is the
relaxation time of the second angular harmonic of the distribu-
tion function, while the higher-order terms, denoted in Eq. (5)
by the dots, should be neglected. The quantity −
αβ de-
scribes the viscous stress tensor, −
αβ = η(∇βuα + ∇αuβ ),
where η = n〈pvτ 〉/(d + 2) is the dynamic viscosity.

Below, the axis normal to the boundary is chosen as Oy
and the boundary is placed at y = 0, Fig. 1(b). The electrons
moving to the right and to the left are described by the distri-
bution functions f +

p = fp|py>0 and f −
p = fp|py<0, respectively,

defined in the momentum half-space py = p sin ϕ > 0. The
functions g±

p are introduced in a similar way. The boundary
condition at the left side, y = 0, is written as

g+
p

∣∣
y=0

= eU1, (6)

which corresponds to representation of f +
p as an isotropic

Fermi-Dirac distribution characterized by the quasi-Fermi

level of the left electrode. This is a particular case of
the in-flow boundary condition applied to current-penetrable
boundaries in kinetic theory [37,38], and its form is justi-
fied by the basic assumptions that the electron density and
conductivity in the electrode are much larger than those in
the electron system at y > 0, and that the electrons pass the
boundary without backscattering. The boundary condition at
the right side, y � le, is derived from the known form of
the distribution function, Eq. (5), taken in the hydrodynamic
transport regime. Since the drift velocity is constant, the vis-
cous stress at y � le is zero, so that gp = eV + pyuy and the
boundary condition is

g−
p

∣∣
y�le

= eV − (p/en) jn sin ϕ, (7)

since uy = jn/en and py = ±p sin ϕ for ϕ ∈ [0, π ] in g±
p . The

normal current density jn is constant everywhere. According
to Eq. (3), jn at y = 0 is written as

jn = e
∫

dεDεvε(−∂ε f )[[g+
p (0) − g−

p (0)] sin ϕ]+, (8)

where gp is expressed in terms of g±
p and [. . .]+ denotes

angular averaging limited by the half space or half plane
where py > 0. For three-dimensional (3D) systems, [. . .]+ ≡∫
+

d�
4π

. . . = (4π )−1
∫ π/2

0 dϕ cos ϕ
∫ 2π

0 dχ . . ., where d� is
the differential of the solid angle and χ is the angle of the
tangential component of momentum in the boundary plane
(xz). For 2D systems, [. . .]+ ≡ (2π )−1

∫ π

0 dϕ . . ..
To estimate the value of the boundary conductance and

to show the physical mechanism responsible for its increase
over the Sharvin conductance, an approximate calculation of
the boundary conductance is carried out below, followed by
the detailed calculation based on numerical solution of the
Boltzmann equation. It is assumed that the scattering of the
left-moving electrons in the Knudsen layer can be neglected
in calculation of the normal current jn. This means that g−

p (0)
in Eq. (8) is approximated by the form of g−

p given by Eq. (7),
so one obtains g+

p (0) − g−
p (0) = e(U1 − V ) + (p/en) jn sin ϕ.

This assumption is justified by the subsequent numerical
calculations demonstrating that the calculated boundary con-
ductance appears to be very close to the approximate one. By
noticing that the Sharvin conductance per unit area is

GS = e2
∫

dεDεvε(−∂ε f )[sin ϕ]+, (9)

one can find that the potential term in the expression for
g+

p (0) − g−
p (0) produces the Sharvin current density GS�U ,

where �U = U1 − V , while the term proportional to jn is
equal to jn/2. Thus, one obtains Eq. (1) with

G/GS = 2, (10)

so the boundary conductance G is twice larger than the
Sharvin conductance. The derivation of Eq. (10) shows
that the superballistic effect occurs because the boundary
condition for the left-moving electrons includes the term pro-
portional to the current density jn. Without this term, one
would obtain the usual Sharvin conductance G = GS . Phys-
ically, the presence of the current modifies the distribution
function in the half space y > 0, in contrast to the perfectly
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conducting region at y < 0, where such a modification is neg-
ligibly small. This increases electron transmission, because
the backward, proportional to f −

p , component of the current
decreases, so the difference g+

p − g−
p gains a positive contri-

bution proportional to jn.
The result of Eq. (10) is approximate because the scattering

of the left-moving electrons in the Knudsen layer has been
neglected. Thus, Eq. (10) gives the upper bound of the con-
ductance G in Eq. (1). To obtain a more precise result, one
should solve the kinetic equation with boundary conditions
Eqs. (6) and (7). The kinetic equation in the linear transport
regime is transformed to an equation for gp,

vp · ∇gp(r) = Jp(r), (11)

where the linearized collision integral is represented as
(−∂ε f )Jp(r). The electrostatic potential � does not ap-
pear explicitly in Eq. (11) because it is already included
to the isotropic part of gp(r) according to Eq. (2). The
collision-integral term Jp is written as a sum of momentum-
relaxing (MR) and momentum-conserving electron-electron
parts, Jp = JMR

p + Jee
p . To specify them, the elastic relaxation-

time approximation is used,

JMR
p = −gp − g

τtr
, (12)

and

Jee
p = −gp − g − gαcα

τe
, (13)

where τtr is the transport time and τe is the electron-electron
scattering time. The corresponding lengths are introduced
as ltr = vτtr and le = vτe. The approximation implies elas-
tic isotropic scattering, which is strictly correct only in the
case of scattering of electrons by short-range impurity poten-
tial. The nonelasticity of electron-phonon scattering entering
JMR

p can be neglected if the electron temperature exceeds
the Bloch-Grüneisen temperature. Also, the nonelasticity of
both electron-phonon and electron-electron scattering can be
neglected at low temperatures T 	 εF provided that gp is not
varied considerably as a function of energy within the interval
∼T around the Fermi level. The isotropic scattering approxi-
mation for the electron-electron collision integral, which leads
to representation of Jee

p in terms of a single relaxation time τe,
is, strictly speaking, not a good one, so it should be considered
as a convenient model rather than a justifiable approximation.
Nevertheless, the single-time approximation Eq. (13) for the
electron-electron collision integral is often used in theoretical
calculations [8,9,12,15,27,29,30,35,39] since it satisfies the
principal properties of particle and momentum conservation,
Jee

p = 0 and pJee
p = 0, and provides the easiest way to solve

the kinetic equation in spatially inhomogeneous case and
to describe fundamental hydrodynamic effects. In particular,
this approximation is physically reliable for description of
the potential distribution within the Knudsen layer, which
is considered in this paper. Application of a more elaborate
expression for Jee

p , as shown below, does not lead to quali-
tative modifications of this distribution. The nonelasticity of
electron-electron scattering is not expected to modify this
distribution considerably even at T ∼ εF , as far as the linear
transport regime is assumed.

For the problem under the consideration [Fig. 1(b)],
Eq. (11) takes the form

[sin ϕ∇y + l−1]gϕ (y) = g(y)/l + gy sin ϕ/le, (14)

where gp(r) is written as gϕ (y), gy = dgϕ sin ϕ is y inde-
pendent and proportional to the normal current density, and
l−1 ≡ l−1

e + l−1
tr . Note that le, l , and gϕ depend on electron

energy ε. The solution of Eq. (14) satisfying the boundary
conditions Eqs. (6) and (7) can be written through the integrals
of g(y). Below, the zero point of V (y) is chosen at y � l .
Since the hydrodynamic transport in the bulk is considered,
the momentum-relaxing scattering in the Knudsen layer is
neglected, l−1

tr = 0 and l = le. Owing to the elastic approx-
imation for the collision integral, the angular averaging of
Eq. (14) leads to the continuity equation ∇ygy = 0, which
means that gy is a constant. Thus, gy is equal to its value
at y � l standing in the boundary condition Eq. (7), gy =
p jn/en. With the use of identities g(y) = [(g+

ϕ + g−
ϕ )]+ and

gy = d[(g+
ϕ − g−

ϕ ) sin ϕ]+, the problem is finally reduced to
an integral equation for g(y),

g(ỹ) = e�US(ỹ) +
∫ ∞

0
dỹ′K (ỹ, ỹ′)g(ỹ′), (15)

where ỹ = y/l and ỹ′ = y′/l are the dimensionless coordi-
nates,

S(ỹ) = ζ0(ỹ) − ζ 2
1 (ỹ)/ζ2(ỹ), (16)

K (ỹ, ỹ′) = K0(ỹ, ỹ′) − ζ1(ỹ)

ζ2(ỹ)
K1(ỹ, ỹ′), (17)

K0(ỹ, ỹ′) = [e−|ỹ−ỹ′|/ sin ϕ/ sin ϕ]+,

K1(ỹ, ỹ′) = sgn(ỹ − ỹ′)[e−|ỹ−ỹ′|/ sin ϕ]+, (18)

and

ζk (ỹ) = [sink ϕe−ỹ/ sin ϕ]+. (19)

Numerical solution of Eq. (15) allows one to find the func-
tion g(y) determining the potential distribution V (y) and the
current density jn. The latter is given by Eq. (1), where, in
contrast to Eq. (10), the conductance is smaller than 2GS ,

G
GS

= 2α, α = 1 − 1

ζ1(0)

〈〈∫ ∞

0
dỹζ0(ỹ)

g(ỹ)

e�U

〉〉
. (20)

In this equation, 〈〈. . .〉〉 ≡ 〈p−1 . . .〉/〈p−1〉 denotes the modi-
fied averaging over energy.

Since Eq. (14) at le 	 ltr contains only one length param-
eter l = le, the dimensionless ratio g(ỹ)/e�U is a numerical
function of the dimensionless coordinate ỹ. This property is
directly seen from Eq. (15). The function g(y) depends on
energy because of the energy dependence of the relaxation
length l . However, the integral standing in Eq. (20) is an
energy-independent numerical constant that is not affected by
the averaging over energy. Therefore, the coefficient α de-
scribing the lowering of the ratio G/GS below its upper bound
of 2 is independent of temperature, electron energy spectrum,
and electron-electron scattering rate. The calculation gives
α  0.96 and α  0.94 for 2D and 3D cases, respectively. The
reduction of the boundary conductance caused by electron
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FIG. 2. Distribution of electrochemical potential in the Knudsen
layer for the systems of different dimensionalities. The drop of the
potential across the Knudsen layer and the boundary conductance
are indicated.

collisions in the Knudsen layer appears to be relatively small,
and the conductance remains superballistic.

For degenerate electron gas, when the electrochemical po-
tential V (y) is equal to g(y)/e at the Fermi energy εF , and
l is fixed by its value at εF , the profile of V (y) is shown in
Fig. 2. The plots for 2D and 3D cases are similar and demon-
strate that the main decrease of the potential occurs already at
y < l . The total potential drop at the contact, �U , from the
hydrodynamic point of view, can be described in terms of the
pressure jump under injection of liquid between two different
reservoirs. It includes a sharp jump of the electrochemical
potential at the boundary and a smooth decrease within the
Knudsen layer. The sharp jump is a consequence of chemical
potential drop caused by the ballistic transfer of electrons be-
tween different media, whereas the smooth decrease appears
because of the scattering of electrons within the Knudsen
layer. The electrostatic potential �(y), which is related to the
nonequilibrium density δn according to Poisson’s equation,
does not show a sharp jump, although it follows the elec-
trochemical potential profile within the spatial scale of the
screening length. The magnitude of the smooth part of the
potential drop is relatively small. The normalized magnitude,
V (0)/�U , similar as α, depends only on the dimensionality.

The universality of the ratio G/GS described above is a
consequence of the chosen model of the electron-electron
collision integral, Eq. (13). A more careful consideration, even
within the elastic approximation, suggests that this model
is oversimplified because is describes the relaxation of all
angular harmonics of electron distribution by a single time
τe. In particular, it has been shown [40,41] and later empha-
sized [42,43] that, due to the kinematic constraints, the main
contribution to the electron-electron collision integral at low
temperatures comes from the head-on collisions that cause
relaxation of the momentum-symmetric part of the electron
distribution while leaving the antisymmetric part intact. As a
result, the symmetric, f s

p = ( fp + f−p)/2, and antisymmetric,
f a
p = ( fp − f−p)/2, parts of electron distribution are expected

to relax with different times, τs and τa, respectively, and τa

should be considerably larger than τs if T is much smaller
than the Fermi energy εF . The simplest way to account this

difference is to introduce the elastic two-time model [40],

Jee
p = −gs

p − g

τs
− ga

p − gαcα

τa
, (21)

that generalizes Eq. (13). This model can be applied as well
to the problem of boundary conductance. Then, instead of
Eq. (14), one has two equations

sin ϕ∇yga
ϕ (y) + gs

ϕ (y)/ls = g(y)/ls,

sin ϕ∇ygs
ϕ (y) + ga

ϕ (y)/la = gy sin ϕ/la, (22)

where ls = vτs, la = vτa, and l−1
tr = 0 is already implied. It

is sufficient to define the functions gs
ϕ (y) and ga

ϕ (y) in the
region py > 0, where sin ϕ is positive. Then, according to the
symmetry of the problem, g±

ϕ (y) = gs
ϕ (y) ± ga

ϕ (y). Solution of
Eq. (22) with the boundary conditions Eqs. (6) and (7) leads
to an integral equation of the same form as Eq. (15), where
the dimensionless coordinates are now defined as ỹ = y/ls and
ỹ′ = y′/ls. The term S in this equation is modified as

S(ỹ) = 2

β + 1

[
ζ0(ỹ) − ζ 2

1 (ỹ)

ζ2(ỹ)

]
, (23)

with β = √
la/ls = √

τa/τs and

ζk (ỹ) = [sink ϕe−ỹ/β sin ϕ]+. (24)

The modified kernel K is given by Eq. (17) with

K0(ỹ, ỹ′) = β−1[e−|ỹ−ỹ′ |/β sin ϕ/ sin ϕ]+

+β−1 β − 1

β + 1
[e−(ỹ+ỹ′ )/β sin ϕ/ sin ϕ]+,

K1(ỹ, ỹ′) = β−1sgn(ỹ − ỹ′)[e−|ỹ−ỹ′ |/β sin ϕ]+

+β−1 β − 1

β + 1
[e−(ỹ+ỹ′ )/β sin ϕ]+, (25)

and with ζk (ỹ) of Eq. (24). Finally, Eq. (20) is modified by
multiplying the integral term by β−1 and using there ζ0(ỹ)
of Eq. (24). If la = ls = l (β = 1), the problem is reduced
to the one described by Eqs. (15)–(20). The presence of the
energy-dependent factor β in the modified equations makes
the energy averaging in the modified Eq. (20) essential, in
contrast to the initial Eq. (20). However, if energy dependence
of β is neglected, the boundary conductance G again does
not depend on temperature, energy spectrum, and scattering
time τs, although the dependence of G on β remains. The
results of numerical calculations of the potential distribution
for degenerate 2D electron gas is shown in Fig. 3, along
with the dependence of the conductance on la/ls. Increas-
ing the ratio la/ls brings the conductance closer to its upper
bound, which is expectable since the total relaxation rate
τ−1

s + τ−1
a decreases. However, this also increases the width

of the Knudsen layer. The transport properties of the hydro-
dynamic state beyond the Knudsen layer are governed only
by the length ls entering the expression for dynamic viscosity,
η = n〈pls〉/(d + 2). Indeed, the viscosity is determined by
the relaxation time of the second angular harmonic of the
distribution function, and this harmonic belongs to the sym-
metric set including all even harmonics. Thus, in contrast to
the boundary conductance, the hydrodynamic transport in the
bulk is not sensitive to whether the collision integral is given
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FIG. 3. Distribution of electrochemical potential in the Knud-
sen layer for 2D systems in the case of modified relaxation-time
approximation for the collision integral described by the two-time
model of Eq. (21). The inset shows the dependence of the boundary
conductance on the ratio of relaxation lengths for antisymmetric and
symmetric parts of the distribution function.

by Eq. (13) or Eq. (21), provided that both ls and la are smaller
than the other characteristic lengths.

The above consideration shows that electron scattering in
the Knudsen layer produces a numerically small relative de-
viation of the boundary conductance from the approximate
result of Eq. (10). The use of the improved model of electron-
electron collision integral makes this deviation even smaller.
This observation brings much credit to the method applied in
derivation of Eq. (10). A similar method, with the difference
that the hydrodynamic form of g−

p approximates g−
p (0) in

the expression for the momentum flux density rather than the
current density, has been applied to calculation of the slip
length in the hydrodynamic boundary condition for tangential
current, producing the results that are very close to those ob-
tained in the detailed calculations taking into account electron
collisions in the Knudsen layer [44]. Below, this method is
applied in order to find the correction to the boundary con-
ductance caused by a finite curvature of the boundary. The
consideration is limited to 2D systems. The hydrodynamic
description of the boundary implies that possible variation of
the curvature occurs on a large scale compared to the Knudsen
layer width. Thus, one can consider a piece of boundary with
a constant curvature C which is positive for convex boundary
and negative for concave boundary. In contrast to the case of
flat boundary, the normal current density jn near the curved
boundary depends on the normal (radial) coordinate, in order
to satisfy the current continuity, see also Sec. III. As a result,
the viscous stress is generated in the bulk, so the distribution
function there acquires an additional contribution proportional
to Qαβ , see Eq. (5). Calculating Qαβ in the hydrodynamic
regime as described after Eq. (5), one obtains, instead of
Eq. (7),

g−
p = eV − (p/en) jn sin ϕ − C(pvτ/en) jn cos 2ϕ. (26)

where ϕ denotes the angle of momentum with respect to the
tangent to the boundary, which is reduced to the angle ϕ of the
previous consideration if the curvature goes to zero. Applying

Eq. (26) in Eq. (8), one gets

G
GS

= 2

1 + (4/3π )C〈vτ 〉 , (27)

which generalizes Eq. (10) to the case of 2D systems with
curved contact boundaries. The convex boundary decreases
the conductance, while the concave boundary increases it.
Within the simplest model of the collision integral given by
Eqs. (12) and (13), the length vτ is identified with l  le,
whereas in the modified model of Eq. (21) vτ = ls. At low
temperatures, when the electron gas is degenerate, this length
can be expressed through the viscosity according to 〈vτ 〉 =
4η/npF , where pF is the Fermi momentum. The correction
due to the curvature is parametrically small, because the prod-
uct |C|l must be small in the hydrodynamic transport regime.
Nevertheless, this correction may become more important
than the small numerical correction proportional to the differ-
ence 1 − α. To take into account both these corrections, one
may use the following expression:

G
GS

= 2

α−1 + (4/3π )C〈vτ 〉 . (28)

When applying Eq. (28), one should neglect the terms con-
taining double smallness ∝ (1 − α)C〈vτ 〉, since such terms
are beyond the accuracy of the approximation.

III. TRANSPORT IN MICROSTRUCTURES

The results of the previous section can be applied for
calculation of the conductance of various microstructures
with contacts. In this section, the simplest examples of two-
terminal devices are considered, where the electron transport
can be described as well by solving the Boltzmann kinetic
equation in a straightforward way. The kinetic equation ap-
proach makes it possible to study different transport regimes
and transitions between them, and to link such results to those
following from the above theory. The consideration below
is limited to 2D systems, and the electron-electron collision
integral is described by Eq. (13). The case of degenerate
electron gas is studied, so the characteristic lengths le and ltr

appearing in the theory correspond to ε = εF and have the
direct meaning of the mean free path lengths.

Consider first the system of flat geometry shown in
Fig. 1(c). Although it is implied that the device has a fi-
nite width W along Ox, the presence of the side walls is
not essential as it is assumed that electrons are specularly
reflected from these walls. In this case, the device behaves
like an infinitely wide one, and its conductance in the ballistic
limit is equal to the Sharvin conductance. The current flows
along Oy and the current density jn = jy does not depend on
coordinates, whereas the electrochemical potential depends
only on y. In the hydrodynamic regime, specular reflection
is equivalent to the no-stress boundary condition, ∇x jy = 0
at the side walls, which is satisfied automatically because the
current density is constant. As there are no current density
gradients, the linearized Navier-Stokes equation describing
the current in the bulk of the system is reduced merely to the
ohmic relation between the current density and the gradient of
electrochemical potential in the bulk: jy = −σ0∇yV (y), where
σ0 is the Drude conductivity. Thus, ∇yV (y) is constant, and
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the total resistance of the system is determined as a resis-
tance in series, formed by the sum of two equal boundary
resistances, R0 = R1 = (2αGS )−1, and the bulk ohmic resis-
tance. The latter is limited by momentum-relaxing scattering
and is equal to Rbulk = σ−1

0 L/W , where L is the distance
between the contacts. In 2D systems with degenerate electron
gas, σ0 = e2nltr/h̄kF , GS = ge2kFW/2π2h̄, and n = gk2

F /4π ,
where kF is the Fermi wavenumber and g is the degeneracy
factor of electron states (e.g., g = 2 in GaAs and g = 4 in
graphene). Then Rbulk = G−1

S 2L/π ltr , and the total resistance
of the device is

R = G−1
S

[
1

α
+ 2

π

L

ltr

]
, (29)

where α  0.96 according to the results of the previous sec-
tion. Since α < 1, such a device can never be superballistic,
even if the momentum-relaxing scattering is absent. Thus, the
momentum-conserving scattering alone increases the resis-
tance of the system shown in Fig. 1(c), making it larger than
the Sharvin resistance G−1

S .
The expression for the resistance in the form similar to

Eq. (29) remains valid for arbitrary le, ltr , and L. This general
case can be investigated by solving the kinetic equation. The
nonequilibrium part of the distribution function is again gov-
erned by Eq. (14), with the boundary condition at y = 0 given
by Eq. (6). Accordingly, at the right side y = L, the boundary
condition is g−

p |y=L = eU0. If the point of zero electrochemical
potential is chosen in the middle of the device, y = L/2, and
the total applied voltage is defined as U = U1 − U0, the whole
set of the boundary conditions is written as

g+
ϕ (0) = eU/2, g−

ϕ (L) = −eU/2. (30)

The solution of the Cauchy problem defined by Eq. (14)
and the boundary conditions of Eq. (30) is facilitated by the
observation that gϕ (y) can be represented in the form gϕ (y) =
hϕ (y) − (y − L/2)gy/ltr , where hϕ (y) satisfies Eq. (14) with
le = l , i.e., with zero momentum-relaxing scattering, ltr →
∞. Accordingly, the boundary conditions for hϕ are modified
by the formal substitution eU → eU − gyL/ltr so that I =
GU = G∗(U − gyL/eltr ), where G∗ is the effective conduc-
tance for the problem with zero momentum-relaxing scatter-
ing rate 1/ltr and enhanced momentum-conserving scattering
rate, 1/le → 1/le + 1/ltr ≡ 1/l . Since gy = (2/π )e jy/GS =
(2/π )(G/GS )eU , the total resistance R = 1/G is given by
Eq. (29), where α is replaced by G∗/GS . The problem of
finding G∗ is described by Eq. (14) with le = l and boundary
conditions Eq. (30). It is reduced to solution of an integral
equation similar to Eq. (15), see Appendix A. The ratio G∗/GS

depends on a single parameter, the Knudsen number K, de-
fined here as K ≡ l/L. In the ballistic limit, K → ∞, G∗ =
GS . In the hydrodynamic limit, K → 0, G∗/GS = α  0.96.

In summary, the resistance of the system in Fig. 1(c) in the
general case is given by

R = R∗ + 2

π
G−1

S

L

ltr
, (31)

where R∗ ≡ 1/G∗ is determined from Eqs. (A3)–(A7). In the
hydrodynamic transport regime, when le 	 ltr and le 	 L, the
effective resistance R∗ is described as a sum of two boundary
resistances and is equal to (αGS )−1, so Eq. (31) is reduced to

FIG. 4. Distribution of electrochemical potential along the 2D
device with flat boundaries shown in Fig. 1(c), in the absence of
momentum-relaxing scattering. The inset shows the dependence of
the conductance on the Knudsen number K ≡ l/L.

Eq. (29). The ratio G∗/GS changes from 0.96 to 1 as the length
l increases. The dependence of this ratio on the Knudsen num-
ber is shown in Fig. 4, which also demonstrates the potential
profiles for different K in the absence of momentum-relaxing
scattering. In the hydrodynamic regime, K 	 1, half of the
total potential drops near each boundary, while in the bulk the
potential is constant. When K increases above 1, the potential
profile approaches a linear one, and the potential drop caused
by the momentum-conserving scattering decreases.

Consider now the 2D Corbino disk system, Fig. 1(d), where
the conducting layer is placed between the circular contact
boundaries with radii R1 (inner) and R0 (outer). In the absence
of magnetic field, only the radial flow with current density j
is present, and all macroscopic quantities depend on the radial
coordinate r. The continuity equation ∇ · j = 0 assumes the
form

∇r j(r) + j(r)/r = 0, (32)

so that j(r) = I/2πr, where I is the total current. This prop-
erty leads to disappearance of the viscous force, which means
that the term proportional to the viscosity does not enter the
Navier-Stokes equation [28], similar as in the case of the
device with flat boundaries studied above. However, due to
finite curvature of the boundaries, the current generates the
viscous stress not only in the Knudsen layers, but also in
the bulk of the system. The absence of the viscous term
reduces the Navier-Stokes equation to the ohmic relation
j(r) = −σ0∇rV (r) leading to the well-known logarithmic
dependence of the electrochemical potential in the bulk:
V (r) = V (R0) − I ln(r/R0)/2πσ0, so the bulk resistance is
Rbulk = ln(R0/R1)/2πσ0. The resistances of the outer and
inner boundaries are R0 = (2πR0G)−1 and R1 = (2πR1G)−1,
because the contact widths are equal to circumference of the
boundaries. The curvatures of these boundaries are −1/R0 and
1/R1. Thus, according to Eq. (28) with 〈vτ 〉 = l , the sum of
the resistances is

R∗ = R0 + R1 = G−1
S

[
b + 1

2bα
+ 2(b2 − 1)

3πb
K

]
, (33)
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where b ≡ R0/R1. The Knudsen number is defined here as
K ≡ l/R0. The ballistic conductance of the Corbino disk de-
vice is equal to the Sharvin conductance [35]

GS = 2πR1GS = ge2kF R1/π h̄, (34)

which is proportional to the circumference of the inner con-
tact as the ballistic electron flow is limited by the smallest
circumference. One can also derive Eq. (34) from the kinetic
equation in the ballistic limit (see Appendix B). By adding
the resistances in series, one obtains the total resistance of the
device in the hydrodynamic transport regime,

R = R∗ + 2

π
G−1

S

R1 ln b

ltr
. (35)

In contrast to the device with flat boundaries, the Corbino
disk device can be superballistic, i.e., R can be smaller than
the Sharvin resistance G−1

S . The contribution to R∗ due to
boundary curvatures, given by the second term in the right-
hand side of Eq. (33), coincides with the resistance calculated
in Ref. [28] up to a numerical coefficient 2/3. Note, however,
that the authors of Ref. [28] considered a problem when this
contribution was the main one, while in the present theory
it represents a small correction to the total resistance. If the
momentum-relaxing scattering is absent, the total resistance
is equal to the sum of the boundary contact resistances, R =
R∗, and the potential in the bulk of the device is constant,
V (r) = Vbulk [28]. Since Vbulk = R0I ,

Vbulk

U
= 1 − 4K/3π

(b + 1)(1 + 4K(b − 1)/3π )
. (36)

In the hydrodynamic limit, K → 0, Eqs. (33) and (36) as-
sume the simple forms R∗ = G−1

S (b + 1)/2bα and Vbulk/U =
1/(b + 1). The inequality K 	 1 is the necessary condition
for the validity of hydrodynamic description of the transport.
The sufficient conditions are l 	 min{R1, R0 − R1} and le 	
ltr .

Equation (35) with properly redefined R∗ remains valid
in the case of arbitrary le, ltr , R0, and R1. To prove this
statement, one needs to consider the kinetic equation. In the
Corbino geometry, the function gp(r) can be written as gϕ (r),
where ϕ now denotes the angle of momentum with respect to
the tangent to the inner boundary. The angle ϕ has the same
meaning as before if the radial direction is identified with the
Oy axis. Equation (11) for gϕ (r) assumes the form

sin ϕ∇rgϕ (r) + 1

r
cos ϕ

∂gϕ (r)

∂ϕ
+ gϕ (r)

l
= g(r)

l
+ A sin ϕ

ler
,

(37)

where the radial (the only nonzero) component of the vector g
is written as A/r, since it is proportional to the current density.
The constant A is expressed as A = I/πeDF vF , where DF and
vF are the density of states and group velocity at the Fermi
level. Similar as above, it is convenient to decompose gϕ (r)
into g+

ϕ = gϕ and g−
ϕ = g2π−ϕ defined in the angular interval

ϕ ∈ [0, π ] and describing the particles moving from the center
and towards the center, respectively. Then, the in-flow bound-
ary conditions for gϕ (r) are

g+
ϕ (R1) = eU, g−

ϕ (R0) = 0, (38)

FIG. 5. Bulk potential profiles for Corbino disk devices with
different ratios b = R0/R1 from 1.5 to 6 for K ≡ l/R0 = 0.1 in
the absence of momentum-relaxing scattering. For comparison, thin
red line shows the potential profile for purely ballistic transport,
V (r) = (U/π ) arcsin(R1/r), at b = 6. The horizontal lines show the
magnitude of the flat part Vbulk according to Eq. (36). The vertical
lines indicate the positions of the inner boundary, r = R1.

where the point of zero potential is chosen at the outer
electrode. The Boltzmann kinetic equation with boundary
conditions of Eq. (38) has been used in the analysis of
experimental data for the Corbino disk with R0/R1 = 4.5
in Ref. [35]. The function gϕ (r) is representable in the
form gϕ (ρ) = hϕ (r) − A ln(r/R0)/ltr , where hϕ (r) satisfies
Eq. (37) with le = l . Accordingly, the boundary conditions
for hϕ are modified by the substitution eU → eU − A ln b/ltr .
This leads to Eq. (35), where the effective resistance R∗ is
now found by solving the problem described by Eqs. (37) and
(38) with le = l , which is formally equivalent to the trans-
port problem with zero momentum-relaxing scattering rate
and enhanced momentum-conserving scattering rate, 1/le →
1/le + 1/ltr ≡ 1/l [35]. This problem is solved by the method
of characteristics as described in Appendix B.

The potential profiles for Corbino disks with different b,
calculated at K = 0.1 in the absence of momentum-relaxing
scattering, when R = R∗, are shown in Fig. 5. They demon-
strate almost flat electrochemical potentials in the middle
regions and rapid change of the potentials in the Knudsen
layers of width l near the boundaries. The magnitudes of
the flat parts of the potentials decrease with increasing b
and are in good agreement with those given by Eq. (36).
If R0 − R1 	 R0, the behavior of the potential in Corbino
devices approaches to that shown in Fig. 4, since the cur-
vature effect becomes no longer important. To account for
the momentum-relaxing scattering, one should add the con-
tribution I ln(R0/r)/2πσ0 = IG−1

S (2R1/π ltr ) ln(R0/r) to the
potential profile. The results presented are consistent with the
data obtained by experimental imaging of the potential distri-
bution in the Corbino device [35]. The resistance R(r) found
in these measurements is related to the potential calculated
here as R(r) = V (r)/I , within the accuracy of spatial smear-
ing due to a finite resolution of the imaging. The scale of this
smearing, 1 μm, is larger than the width of the Knudsen layer
in the hydrodynamic transport regime. This fact, together with
the nonideal transmission at the contact interfaces of real
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FIG. 6. Conductance of Corbino disk devices as a function of the
ratio R0/R1. Three upper plots (black-solid lines) are calculated in the
absence of momentum-relaxing scattering, ltr → ∞, and the lower
plot corresponds to ltr = le = 2l = 2R0. The dashed lines show the
approximate results according to Eq. (33): K = 0.1 and α = 0.96
(red); K = 0.1 and α = 1 (blue); and K = 0 and α = 0.96 (black).

Corbino devises [35], hinders a detailed quantitative compar-
ison of the theoretical and experimental potential profiles.

The dependence of the conductance on the ratio R0/R1

is shown in Fig. 6. In the absence of momentum-relaxing
scattering, when R = R∗, the numerical result at K = 0.1
is in good agreement with the approximate result given by
Eq. (33). The deviation in the region of large R0/R1 occurs
because the curvature-induced correction is no longer small,
l/R1 = bK ∼ 1, and Eq. (33) loses its validity. Thin dashed
lines in Fig. 6 show the results of more crude approximations
that neglect either the effect of scattering in the Knudsen
layer (α = 1) or the curvature effect [C = 0 in Eq. (28) or,
equivalently, K = 0 in Eq. (33)]. In general, the conductance
is the highest when the momentum-conserving scattering is
strong and the momentum-relaxing scattering is weak. The
superballistic conductance G > GS does not require the hy-
drodynamic transport regime and can be observed even at
le > R0 if the momentum-relaxing scattering is weak enough.
To obtain a considerable superballistic effect, it is preferable
to use the devices with R0/R1 > 2.

The important question about the existence of superballis-
tic conductance depending on the parameters of the problem
is addressed in more detail in Fig. 7. It shows the lines
separating the regimes G > GS and G < GS in the param-
eter space. These lines are nearly straight if R1 is not too
close to R0. Otherwise, when b − 1 is comparable to 1 − α,
the shape of the border lines is essentially different from
linear at small le/R0. Regardless of the value of R0/R1,
the superballistic conductance requires ltr > le, that is the
rate of electron-electron scattering must be higher than the
rate of momentum-relaxing one. In the hydrodynamic limit,
le/R0 → 0, the superballistic conductance requires ltr/R0 >

(2/π ) ln b/[b − (b + 1)/2α] and exists at b > 1/(2α − 1).
For finite le, however, the superballistic conductance may exist
even at b < 1/(2α − 1), although in this case the conductance
only slightly exceeds GS . The characteristic lengths ltr and le
are varied by the temperature T . For a degenerate fermion gas,

le  γ vF h̄εF /T 2, (39)

FIG. 7. The borders of superballistic behavior for Corbino disks
with different ratios b = R0/R1 (indicated) in the space of parameters
le and ltr . The lines correspond to G = GS . In the regions above the
lines the transport is superballistic, G > GS . Red and blue dashed
lines show the dependence of ltr/R0 on le/R0 when temperature is
changed, plotted by using the experimental details of two devices
with b = 4.5 and b = 6 from Ref. [35]. The intersection points of
these plots with the lines G = GS for b = 4.5 and b = 6 are shown.

where γ can be approximated by a numerical constant of order
unity. On the other hand, ltr ∼ 1/T if the main mechanism of
momentum-changing scattering is the interaction of electrons
with acoustic phonons and T exceeds Bloch-Grüneisen tem-
perature. Therefore, by changing the temperature one moves
in the parameter space along the square root line ltr ∼ √

le,
which may intersect the border lines shown in Fig. 7 in
two points. This means that the superballistic conductance
is expected to exist in a temperature interval correspond-
ing to the interval between these points. In the presence
of a considerable electron-electron scattering, the resistance
should have a minimum as a function of T that correlates
with Eq. (39) and depends on the system size, like in the
Gurzhi effect [11]. Such a behavior was recently observed
[35] in graphene Corbino disks. Using the device dimensions
R0 = 9 μm and R1 = 2 μm, density n = 4.5 × 1011 cm−2,
graphene Fermi velocity vF = 108 cm/s, and the temperature
dependence ltr[μm] = (0.016 + 0.0015T [K])−1, which gives
a sufficiently accurate approximation of the one extracted
from the experimental data (see Supplemental Material for
[35]), one may plot the dependence of ltr on le. This de-
pendence, obtained with γ = 1 in Eq. (39), is also shown
in Fig. 7. According to the calculations, the superballistic
transport should be observed in the temperature interval be-
tween 31 K and 93 K with the minimum of the resistance
near 60 K. The temperature dependence of the resistance
shown in Fig. 8 is consistent with the experimental results,
see the next paragraph for more details. The experimental
data suggest that the hydrodynamic regime in the bulk is
reached approximately at T = 140 K. According to Eq. (39)
with γ = 1, at this temperature le  0.36 μm, which, indeed,
is much smaller than ltr  4.5 μm and considerably smaller
than the inner contact radius R1 = 2 μm. In the case of the
sample with a smaller electron density, n = 3.3 × 1011 cm−2,
also investigated in the experiment (see Supplemental Mate-
rial for [35]), the calculated temperature interval shows only
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FIG. 8. Calculated temperature dependence of the normalized
resistance GS/G for two Corbino disk devices studied in Ref. [35].
For the device with R0 = 9 μm and R1 = 2 μm, the plots with
γ = 0.5 and γ = 2 are included to show sensitivity of the resistance
to the strength of electron-electron interaction. Squares show the
experimental data extracted from Ref. [35] as described in the text.

a slight change, from 26 K to 99 K. The theoretical results
are sensitive to the numerical constant γ , as demonstrated
in Fig. 8. With γ = 2 in Eq. (39) (weaker electron-electron
interaction), the transport is no longer superballistic for a
given device, although the minimum in the temperature de-
pendence of the resistance persists. With γ = 0.5 in Eq. (39)
(stronger electron-electron interaction) the temperature inter-
val for superballistic transport is considerably broader, as well
as the depth of the resistance minimum. The position of the
minimum is only slightly shifted when γ is changed. The
authors of Ref. [35] also studied a smaller Corbino device
with R0 = 6 μm and R1 = 1 μm (see Supplemental Material
for [35]). For this device, the intervals of parameters, as well
as the interval of temperatures corresponding to superballistic
transport increase considerably, as shown in Figs. 7 and 8,
and the resistance minimum is expected around 105 K. As
the experimental data for this particular device are limited, a
detailed comparison with experiment is given below for the
device with R0 = 9 μm and R1 = 2 μm (b = 4.5).

The measured [35] resistance of the Corbino devices is
higher than the theoretical one because the contacts do not
transmit electrons perfectly. In particular, at low temperatures,
when the transport is nearly ballistic, the theory (Fig. 8)
gives the normalized resistance GS/G  1.025 for the device
with b = 4.5, while the corresponding experimental value is
1.42. To exclude the contact contributions, the authors of
Ref. [35] introduced the quantity Rbulk/Rin

sh (Rin
sh denotes the

Sharvin resistance, the same as G−1
S ) derived from the total

measured resistance by subtracting the contact resistances
for the inner and the outer contacts. These resistances have
been found by comparing the measured potential profile at
T = 6 K with the sum of the theoretically known ballistic
potential profile V (r) = (U/π ) arcsin(R1/r) and two smeared
step functions representing the contact contributions. Thus,
for the ideal (perfectly transmitting) contacts assumed in the
present paper, the inner and outer contact resistances would
be G−1

S /2 and G−1
S π−1 arcsin(1/b)  G−1

S /πb, respectively.
The relation between the total normalized resistance of the

ideal Corbino device and the quantity Rbulk/Rin
sh specified in

Ref. [35] is reduced to a shift GS/G  Rbulk/Rin
sh + 1/2 +

1/πb  Rbulk/Rin
sh + 0.57. The experimental points shifted in

this way are shown in Fig. 8 by the squares. The position
of the resistance minimum near 60 K is in good agreement
with the experiment. The absolute values of the calculated
GS/G are not far from the experimental ones, and can be put
within 10% of relative deviation from the experimental ones
by variation of the parameter γ . Taking into account that the
contact resistances, and hence the quantity Rbulk/Rin

sh, are de-
termined within the accuracy of 10% [35], one can say that the
theory satisfactory describes the experiment. This agreement
also indicates that the conductance of high-quality Corbino
devices with nearly perfectly transmitting contacts can exceed
the ballistic limit GS , so the experimental results provide a
convincing proof for the possible superballistic transport in
these systems.

In should be emphasized, however, that the contact resis-
tances introduced in Ref. [35] are different from the boundary
resistances described in this paper. These boundary resis-
tances are defined in the hydrodynamic transport regime when
the contacts can be considered separately from each other. The
sum of the inner and outer boundary resistances is given by
Eq. (33), and the total resistance is given by Eq. (35) by adding
the bulk resistance to this sum.

IV. SUMMARY

In this paper, the classical transport properties of electron
systems contacted to perfectly conducting electrodes (leads)
have been studied. If the electron gas in the bulk is in the
hydrodynamic transport regime, there exists a thin Knudsen
layer separating the lead from the hydrodynamic electron
state [Fig. 1(b)]. The interface between the lead and this
state can be characterized by the conductance per unit con-
tact area G, which is intrinsically superballistic: G = 2αGS ,
where GS is the Sharvin conductance per unit area and α is
a numerical constant slightly smaller than unity. Remarkably,
within the elastic relaxation-time approximation for electron-
electron collision integral, which is often applied in theoretical
description of electron transport, α depends only on the di-
mensionality of the system and is approximately equal to
0.96 for 2D systems and 0.94 for 3D systems. Application of
the modified double-time approximation for electron-electron
collision integral [40], which takes into account the difference
in relaxation times for even and odd angular harmonics of the
distribution function, brings α closer to unity (Fig. 3). The
correction to G due to finite curvature of the contact boundary
also has been found. It is shown that G decreases for the
convex boundary and increases for the concave boundary.

Based on these results, the conductance of highly sym-
metric 2D microstructures [Figs. 1(c) and 1(d)], where the
current is always normal to the contact boundaries, has been
described. The important example of this kind is the Corbino
disk device, whose conductance G can exceed the Sharvin
conductance GS owing to the superballistic contact property
of the device boundaries. The conductance of Corbino disks
has been calculated as well by means of numerical solution
of the Boltzmann kinetic equation, which describes different
transport regimes and transitions between them, depending
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on the characteristic lengths of the problem. In the hydro-
dynamic transport regime, when the Knudsen number K is
small, the calculated conductance and the electrochemical
potential in the bulk are in good agreement with the simple an-
alytical formulas obtained from the consideration of a single
contact boundary (Figs. 5 and 6). The kinetic equation ap-
proach shows that the superballistic conductance of Corbino
disks does not require the hydrodynamic transport regime,
although the domination of electron-electron scattering over
the momentum-relaxing scattering is a necessary require-
ment. The map in the parameter space, indicating the regions
with superballistic conductance G > GS , has been presented
(Fig. 7). By considering the dependence of electron-electron
and momentum-relaxing mean free path lengths on temper-
ature, it is concluded that the superballistic conductance in
Corbino disks can be observed within a certain interval of
temperatures. The general behavior of G as well as the po-
sition of the temperature minimum of the resistance G−1 are
in agreement with experimental results [35].

The calculation of the conductance standing in Eq. (1) is
important by itself, without regard to the specific problem
of superballistic transport. Indeed, Eq. (1) relates the normal
current density to the voltage of the contact and should be
considered as a hydrodynamic boundary condition for the
normal current density at the current-penetrable boundary. On
the other hand, the tangential current density jt is related to
its normal derivative at the boundary by Maxwell’s boundary
condition, jt = lS∇njt [44–46], which is usually applied to the
hard-wall boundaries, where the normal current is zero. The
tangential current density at the current-penetrable boundaries
can be as well described by Maxwell’s boundary condi-
tion derived in the fully diffuse limit, which corresponds to
the slip lengths lS = 0.582le and lS = 0.637le for degenerate
3D and 2D fermion gases, respectively [44]. By combining
Maxwell’s boundary conditions with Eq. (1), one obtains a
full set of hydrodynamic boundary conditions, describing both
tangential and normal current for both hard-wall and current-
penetrable boundaries. These boundary conditions, together
with the Navier-Stokes equation, form a Cauchy problem for
determination of the current density and potential distribu-
tion in various microstructures in the hydrodynamic transport
regime, which is important for applications, in particular, for
development of viscous electronics [22].

APPENDIX A

The solution of Eq. (14) with le = l and boundary condi-
tions Eq. (30) is

g+
ϕ (y) = gy(1 − e−y/l sin ϕ ) sin ϕ + eU

2
e−y/l sin ϕ

+
∫ y

0

dy′

l sin ϕ
e(y′−y)/l sin ϕg(y′), (A1)

g−
ϕ (y) = −gy(1 − e(y−L)/l sin ϕ ) sin ϕ − eU

2
e(y−L)/l sin ϕ

+
∫ L

y

dy′

l sin ϕ
e(y−y′ )/l sin ϕg(y′). (A2)

With g(y) = [(g+
ϕ + g−

ϕ )]+ = (2π )−1
∫ π

0 dϕ[g+
ϕ (y) + g−

ϕ (y)]

and gy = 2[(g+
ϕ − g−

ϕ ) sin ϕ]+ = π−1
∫ π

0 dϕ[g+
ϕ (y) −

g−
ϕ (y)] sin ϕ, one gets an integral equation for g(y). Since

g(y) = eV (y), this equation is written as an equation for the
electrochemical potential,

V (ỹ) = U

2
S (ỹ) +

∫ L/l

0
dỹK(ỹ, ỹ′)V (ỹ′), (A3)

where the dimensionless coordinates ỹ = y/l and ỹ′ = y′/l are
used. In Eq. (A3),

S (ỹ) = ζ−
0 (ỹ) − ζ−

1 (ỹ)ζ+
1 (ỹ)/ζ+

2 (ỹ), (A4)

K(ỹ, ỹ′) = K0(ỹ, ỹ′) − ζ−
1 (ỹ)

ζ+
2 (ỹ)

K1(ỹ, ỹ′), (A5)

K0 and K1 are given by Eq. (18), and

ζ±
k (ỹ) = [sink ϕ(e−ỹ/ sin ϕ ± e(ỹ−L/l )/ sin ϕ )]+. (A6)

Once V (y) is found, the ratio G∗/GS is found from the expres-
sion

G∗

GS
= πζ+

1 (0)

4ζ+
2 (0)

[
1 − 2

ζ+
1 (0)

∫ L/l

0
dỹζ0(ỹ)V (ỹ)/U

]
. (A7)

where ζ0 is given by Eq. (19). In the ballistic limit, l/L → ∞,
G∗ = GS . In the hydrodynamic limit, l/L → 0, one has ζ±

k =
ζk , S = S, K = K , and Eq. (A3) becomes identical to Eq. (15)
with �U = U/2, reflecting the property that half of the total
potential drops near each boundary. Since ζ1(0) = 1/π and
ζ2(0) = 1/4, Eq. (A7) is reduced to G∗/GS = α, where α is
given by Eq. (20).

APPENDIX B

The solution of Eq. (37) with le = l and boundary condi-
tions Eq. (38) is

g+
ϕ (ρ) = eUθ (ρ1 − |w|)eψw (ρ1 )−ψw (ρ) + θ (|w| − ρ1)

×
∫ ρ0

max{ρ1,|w|}
dρ ′e−ψw (ρ)−ψw (ρ ′ )

[
ρ ′g(ρ ′)
ψw(ρ ′)

− A

lρ ′

]

+
∫ ρ

max{ρ1,|w|}
dρ ′e−ψw (ρ)+ψw (ρ ′ )

[
ρ ′g(ρ ′)
ψw(ρ ′)

+ A

lρ ′

]
,

(B1)

g−
ϕ (ρ) =

∫ ρ0

ρ

dρ ′eψw (ρ)−ψw (ρ ′ )
[
ρ ′g(ρ ′)
ψw(ρ ′)

− A

lρ ′

]
, (B2)

where the dimensionless quantities are introduced according
to ρ = r/l , ρ ′ = r′/l , ρ0 = R0/l , ρ1 = R1/l , w = ρ cos ϕ,
and ψw(ρ) =

√
ρ2 − w2. The latter is related to ϕ as

ψw(ρ) = ρ sin ϕ. The solution satisfies the necessary re-
quirements g+

0 (ρ) = g−
0 (ρ) and g+

π (ρ) = g−
π (ρ) expressing

periodicity of gϕ (ρ) and its continuity at ϕ = π . Applying
g(ρ) = eV (ρ) = (2π )−1

∫ π

0 dϕ[g+
ϕ (ρ) + g−

ϕ (ρ)] and A/r =
π−1

∫ π

0 dϕ[g+
ϕ (ρ) − g−

ϕ (ρ)] sin ϕ, one obtains the integral
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equation

V (ρ) = UL(ρ) +
∫ ρ0

ρ1

dρ ′Q(ρ, ρ ′)V (ρ ′). (B3)

The functions entering Eq. (B3) are

L(ρ) = L0(ρ) + L1(ρ)Z0(ρ)/[1 − Z1(ρ)], (B4)

Q(ρ, ρ ′) = Q0(ρ, ρ ′) + Q1(ρ, ρ ′)Z0(ρ)/[1 − Z1(ρ)],

(B5)

L0(ρ) = 1

π

∫ ρ1

0
dw

eψw (ρ1 )−ψw (ρ)

ψw(ρ)
, (B6)

L1(ρ) = 2

π

∫ ρ1

0
dweψw (ρ1 )−ψw (ρ), (B7)

Q0(ρ, ρ ′) = 1

π

∫ ρm

0
dw

e−|ψw (ρ)−ψw (ρ ′ )|ρ ′

ψw(ρ)ψw(ρ ′)

+ 1

π

∫ ρm

ρ1

dw
e−ψw (ρ)−ψw (ρ ′ )ρ ′

ψw(ρ)ψw(ρ ′)
, (B8)

Q1(ρ, ρ ′) = 2

π

∫ ρm

0
dw

e−|ψw (ρ)−ψw (ρ ′ )|sgn(ρ − ρ ′)ρ ′

ψw(ρ ′)

+ 2

π

∫ ρm

ρ1

dw
e−ψw (ρ)−ψw (ρ ′ )ρ ′

ψw(ρ ′)
, (B9)

Z0(ρ) = 1

π

∫ ρ0

ρ1

dρ ′

ρ ′

[∫ ρm

0
dw

e−|ψw (ρ)−ψw (ρ ′ )|

ψw(ρ)

×sgn(ρ − ρ ′) −
∫ ρm

ρ1

dw
e−ψw (ρ)−ψw (ρ ′ )

ψw(ρ)

]
,

(B10)

and

Z1(ρ) = 2

π

∫ ρ0

ρ1

dρ ′

ρ ′

[∫ ρm

0
dwe−|ψw (ρ)−ψw (ρ ′ )|

−
∫ ρm

ρ1

dwe−ψw (ρ)−ψw (ρ ′ )
]
, (B11)

where ρm = min{ρ, ρ ′}. The conductance G∗ = 1/R∗ is de-
termined by the solution of Eq. (B3) as follows:

G∗

GS
=

1 − (π/ρ1)
∫ ρ0

ρ1
dρρL0(ρ)V (ρ)/U

1 − ∫ ρ0

ρ1
dρL1(ρ)/ρ

. (B12)

The conductance depends on the ratios R0/l and R1/l . In
the ballistic limit, when R0/l → 0, the integral terms in
Eq. (B12) go to zero as well and G∗ = GS , while Eq. (B3)
is reduced to V (ρ) = UL0(ρ) describing the potential dis-
tribution V (r) = (U/π ) arcsin(R1/r) [28,35]. In the hydro-
dynamic limit, when l/R1 → 0, l/(R0 − R1) → 0, the re-
lations G∗/GS = 2bα/(b + 1) and V (r) = Vbulk = U/(b + 1)
are restored.
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