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A magnetotransport and quantum capacitance of the two-dimensional (2D) electron gas in HgTe/CdxHg1−xTe
quantum wells of a width (20.2–46.0) nm are experimentally investigated. It is shown that the first energy
subband of spatial quantization is split due to the spin-orbit interaction and the split branches are single spin,
therewith the splitting strength increases with the increase of the quantum well width. The electron effective
masses in the branches are close to each other within the actual density range. Magnetointersubband oscillations
(MISO) observed in the structures under study exhibit the growing amplitude with the increasing electron density
that contradicts to the expected decrease of wave-function overlap for the rectangular quantum well. To interpret
the data obtained, we have used a self-consistent approach to calculate the electron energy spectrum and the
wave function within framework of the kP model. It has been, in particular, shown that the MISO amplitude
increase results from the increasing overlap of the wave functions due to their shift from the gate electrode with
the gate voltage increase known as a phenomenon of the negative electron polarizability. The results obtained
from the transport experiments are supported by quantum capacitance measurements.
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I. INTRODUCTION

Structures with HgTe quantum wells (QWs) are attract-
ing a lot of attention for many reasons. First, the QW is a
gapless semiconductor, while the barriers Hg1−xCdxTe are a
semiconductor with a normal band ordering [1,2]. Second, the
band spectra of the parent materials HgTe and Hg1−xCdxTe
have been studied in detail and their parameters are fairly
well known. Third, as shown in numerous papers (see, e.g.,
[3–8] and references therein) different types of spectrum are
realized depending on the QW width (d). At d = dc � 6.3 nm
it is gapless [3] and close to the linear Dirac-type spectrum
at small quasimomentum [6]. When QW is narrow, d < dc,
the ordering of energy subbands of spatial quantization is
analogous to that in conventional semiconductors; the highest
valence subband at k = 0 is formed from the heavy-hole �8

states, while the lowest conduction subband is formed both
from the �6 states and light-hole �8 states. For a thicker HgTe
layer, d > dc, the quantum well is in the inverted regime; the
lowest conduction subband is formed from the heavy-hole �8

states [9], whereas the subband formed from the �6 states and
light-hole �8 states sinks into the valence band. In the inverted
regime, the spectrum becomes semimetallic at d � 15 nm due
to overlapping of the valence and conduction bands, therewith
the semimetallic phase is a universal property independent of
the surface orientation, but is very sensitive to the strain effects

caused by the lattice mismatch of HgTe and Hg1−xCdxTe
[10–12]. Fourth, the theory predicts that at d > 6.5 nm, the
QW will be a two-dimensional (2D) topological insulator
when, along with two-dimensional states, one-dimensional
edge states are formed. Fifth, the HgTe/Hg1−xCdxTe system
is a good candidate for realizing of a three-dimensional (3D)
topological insulator. As known the inversion of the �6 and �8

band ordering in HgTe is the origin of existence the 2D states
on the surface of the bulk material [9]. But since the mer-
cury telluride is semimetal, these states are always coupled
to metallic bulk states. However, with applied uniaxial strain,
a gap opens up between the light-hole and heavy-hole bands,
so that strained 3D HgTe is a true 3D topological insulator
[13]. In the HgTe/Hg1−xCdxTe structure, uniaxial strain is of
natural origin due to lattice mismatch HgTe and Hg1−xCdxTe.
The critical thickness for lattice relaxation is around 200 nm
[14], implying that for thinner HgTe the epilayer adopts the
lateral lattice constant of the substrate, while in thicker lay-
ers the strain is relaxed by the formation of dislocations. It
is generally accepted that the HgTe QW behaves like 3D
top insulator already at d � (70–80) nm [14,15] that allows
ones to trace the transformation of the physical properties of
HgTe/Hg1−xCdxTe system on the way from 2D-to-3D topo-
logical insulator with thickening of the HgTe layer.

In addition, the technology of growing HgTe/Hg1−xCdxTe
structures is well developed [16–18] which makes it possible
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to grow structures with high-mobility electrons and holes.
Multiband kP calculations of the spectrum and wave functions
are well developed and tested. This would seem to make it
possible to understand all the properties (transport, optical,
etc.) of such structures.

Experimentally, the energy spectrum of structures with
d = (4–20) nm has been studied in sufficient detail by various
techniques including the optical and photoelectric methods
in a wide range of radiation wavelength, starting from the
terahertz range [19–22], magnetotransport [15,23–26]. It was
shown that in general the energy spectrum is reasonably de-
scribed within the framework of the kP model, in which the
spin-orbit (SO) interaction is taken into account. The main
contribution to SO interaction comes from the asymmetry
of the interfaces for the valence band [27,28] and from the
Bychkov-Rashba effect for the conduction band [4,29]. But,
some discrepancies remain; the experimental effective mass of
electrons at the bottom of the conduction band at d = (10–20)
nm turns out to be 1.5–2 times less than the theoretical one
(the authors of Ref. [2] assume that this is due to many-particle
effects).

Many papers have been devoted to the study of conductiv-
ity by the edge states [30–33], which should be topologically
protected from backscattering according to theoretical predic-
tions [34–37]. However, in most experiments, the mean-free
path for such states did not exceed (1–3) μm, which is not
much greater than the mean-free path of two-dimensional
electrons (Lp) in these structures [Lp = (0.5–5) μm for μ =
(105–106) cm2/Vs, n = 1 × 1011 cm−2]. Another prediction
of the theory concerns the specific features of the spectrum
and wave functions in wide HgTe quantum wells. It was
predicted [38] that single-spin surface states should exist in
sufficiently wide quantum wells, which are well localized at
the boundaries of the quantum well. Studies of such structures
have attracted a lot of attention of experimenters [15,39–41].
Structures with a QW width of (60–90) nm were mainly
studied. Only the phenomenological model of surface states
was used to interpret the data. No quantitative comparison
with theoretical calculations was made.

Let us consider what are specific features of the methods
used to study the spectrum, its transformation with increasing
width, and the properties of states caused by a nontrivial
topology.

In interband optics and magneto-optics experiments, both
the valence band and the conduction band participate in the
processes. But, the valence band has a complex spectrum,
which makes it difficult to interpret experimental data.

When studying the low-temperature transport, the spec-
trum at the Fermi level is probed. The Fermi energy can be
easily changed, if you are investigating gated structures by
changing the gate voltage (Vg). But, in this case, the gate volt-
age changes not only the carrier density, and hence the Fermi
energy, but also the potential profile of QW. To interpret the
results in this case, it is necessary to solve the self-consistent
problem taking into account the real potential, which changes
significantly with a change of the gate voltage.

In principle, the Fermi energy can be changed by doping,
but even in this case, it is imperative to take into account
the electrostatic potential of the charge carriers and the dop-
ing impurities, i.e., to solve a self-consistent problem when

interpreting the data quantitatively. In addition, these will
be different samples, the asymmetry of which is difficult to
determine and change.

In almost all the experimental studies of the magnetotrans-
port in wide QWs (d > 15–20 nm), structures with the gate
were studied, and the results were analyzed using an intuitive
model in which it is assumed that near each of the walls there
are single-spin states at some distance from the wall of some
width Lz, which are independent of Vg and shift only in the
energy by applied gate voltage [26,42,43]. The accuracy of
this approach, especially for sufficiently wide QWs, remains
unclear.

To understand how the energy spectrum and wave func-
tions of states change with an increase in the QW width,
in this work we have experimentally studied the magneto-
transport phenomena and the dependence of the capacitance
between 2D gas and the gate electrode in a wide range of
gate voltages in practically unexplored QWs of (20.2–46.0)
nm width. When analyzing the results, we used self-consistent
calculations of the energy spectrum carried out within the
framework of the four-band kP model.

II. STRUCTURES INVESTIGATED

Our HgTe quantum wells were realized on the basis of
HgTe/Hg1−xCdxTe (x = 0.5–0.7) heterostructure grown by
molecular beam epitaxy on GaAs substrate of the (013) sur-
face orientation using a CdTe layer (5–7) μm thick as buffer
[17]. The nominal widths of the quantum wells under study
were d = (20.2–46.0) nm. The samples were mesa etched
into standard Hall bars of 0.5-mm width with the distance
between the potential probes of 0.5 mm. To change and con-
trol the electron and hole densities (n and p, respectively) in
the quantum well, the field-effect transistors were fabricated
with parylene as an insulator and aluminum as a gate elec-
trode. The measurements were performed in the DC regime
of linear response at temperatures (3–20) K in the magnetic
field up to 2.5 T. For each heterostructure, several samples
were fabricated and studied. The parameters of the structures
investigated are presented in Table I.

The main results for all the structures investigated are qual-
itatively close to each other, therefore, as an example, let us
consider in more detail the data obtained for the structure with
d = 32 nm, for which all the features manifest themselves
more clearly.

For a general characterization of the structure, we first
analyze the gate voltage dependencies of the electron and
hole densities. When Vg > 1 V, only electrons participate in
the conductivity, the Hall resistance ρxy at low magnetic field
(B < 0.2–0.4 T) linearly depends on B, and the Hall electron
density n = −1/eRH , where e and RH stand for elementary
charge and the Hall coefficient, respectively, increases linearly
with the Vg increase [Fig. 1(a)]. When Vg < 1 V, the Hall coef-
ficient strongly depends on B, changing sign from electronic
at low B to holelike with increasing B, and at the same time
ρxx increases strongly with B [see inset in Fig. 1(a)]. Within
this gate voltage range the electron and hole densities were
found by simultaneous fit of dependencies ρxx(B) and RH (B)
at B < 0.3 T within classical model of the conductivity by
two types of the carriers. Figure 1(a) shows that total charge
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TABLE I. The parameters of heterostructures under study.

Structure d (nm) n, p (cm−2)a μe (cm2/Vs)b nsym (cm−2) n(2) (cm−2)

110614 20.2 p = 0.8 × 1011 70000 2.0 × 1011 >7 × 1011

180820 22.0 n = 4.6 × 1011 265000 3.0 × 1011 6.3 × 1011

180824 32.0 p = 0.25 × 1011 560000 1.5 × 1011 3.6 × 1011

180823 46.0 p = 0.6 × 1011 490000 0.9 × 1011 2.9 × 1011

aFor Vg = 0 V.
bFor n = 2 × 1011 cm−2.

of free carriers in QW Q = e(p − n) linearly depends on Vg

as Q/e = (0.23–1.05Vg) × 1011, cm−2 within whole Vg range.
Note that the absolute value of the slope of this dependence
1.05 × 1011 cm−2 V−1 is in a good agreement with that ob-
tained from the capacitance measurements e dn/dVg = C/Sg,
where C is the capacitance between the 2D gas and the gate
electrode, measured for the same structure, Sg is the gated
area.

Figure 1(b) shows the electron density dependence of elec-
tron mobility at Vg < 1 V when electrons exist together with
hole (circles) and at Vg > 1 V when only electrons contribute
to the conductivity (the curve). It is seen that the n dependence
of the mobility is nonmonotonic. It increases with n increase
while n � 3.6 × 1011 cm−2 and shows a sharp decrease at
higher values of n resulting from the beginning of filling
the second subband of spatial quantization [see Table I and
Fig. 4(b)].

III. SPIN-ORBIT SPLITTING OF CONDUCTION BAND:
EXPERIMENT

The purpose of this paper is to study the spectrum and wave
functions of electrons in the conduction band, therefore, be-
low we will discuss the results only for Vg > 0. The spectrum
of the valence band is much more complicated and should be
discussed in a separate paper.

As an example, the magnetic field dependencies of ρxy and
oscillating part of resistivity �ρxx(B) = ρxx(B) − ρmon

xx (B),
where ρmon

xx (B) is the monotonic part of ρxx(B), for some
gate voltages are presented in Figs. 2(a) and 2(b), respec-
tively. As seen, ρxy linearly increases with B in low magnetic
fields, then the oscillations appear, which are transformed to
the steps of the quantum Hall effect in the higher magnetic
field. The results of the Fourier transformation of �ρxx(1/B)
performed in the magnetic field range before onset of the
steps of the quantum Hall effect are presented in Fig. 2(c).

FIG. 1. (a) The gate voltage dependencies of electron and hole charges obtained as 1/RH (0.2 T) (◦), 1/RH (1.0 T) (+) and found from the
fit of the data within framework of the two-type carriers model (�, �). The straight line is the dependence Q/e = (0.23–1.05Vg) × 1011 cm−2.
The inset shows an example of the simultaneous fit of dependencies ρxx (B) and RH (B) at Vg = −2 V within framework of the two-type carriers
model. The symbols are the experiment, the curves are the fitting results. (b) The electron density dependence of the electron mobility found
from the fit of the experimental dependencies ρxx (B) and RH (B) (the circles) and obtained as −RH/ρxx at B = 0.2 T when Vg is swept (the
curve). T = 4 K. Structure with d = 32.0 nm.
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FIG. 2. (a), (b) The magnetic field dependencies of ρxy and oscillating part of ρxx , respectively. (c) The Fourier spectra of the oscillations
shown in (b) performed over the magnetic field range (0.2–0.6) T. Structure with d = 32.0 nm.

It is seen that unsplit oscillations with one component in the
Fourier spectrum f0 are observed for low-electron density
n � (1.4–1.5) × 1011 cm−2. With increasing Vg, it splits into
two f1 and f2 components, and a low-frequency f3 component
appears.

At n > (1.4–1.5) × 1011 cm−2, the electron densities
found from fi under assumption of nondegeneracy of electron

states, ni = fi × e/2π h̄, are plotted in Fig. 3(a). It can be seen
that the sum of the two high-frequency components f1 + f2

gives a density that coincides with the Hall density. The dif-
ference f1 − f2 coincides with the low-frequency component
f3. This is consistent with the following interpretation: (i)
the high-frequency components f1 and f2 correspond to two
single-spin branches of the first spatially quantized subband

FIG. 3. (a) The density of electrons in the branches, their sum and difference plotted against the total electron density. The straight lines
show the results of the linear fit. T = 3.6 K. (b) The Fourier spectra of the oscillations at n = 3 × 1011 cm−2 for T = 3.6 and 9.1 K. The dotted
curves show the characteristics of the filters used to separate the low- and high-frequencies components. (c) The oscillating part of resistivity.
The points are the experimental dependence. The curves are the results of data analysis (see the text). T = 3.6 K. Structure with d = 32.0 nm.

085301-4



TRANSFORMATION OF ENERGY SPECTRUM AND WAVE … PHYSICAL REVIEW B 106, 085301 (2022)

FIG. 4. (a) The SOS value for structures of different width. Solid
symbols are the results of this paper, open symbols are the results
obtained in Ref. [29]. The curve is a guide for the eye. (b) The density
of electrons when the second subband begins to be occupied plotted
against the QW width. The symbols are the data, the curve is a guide
for the eye.

split due to SO interaction, the splitting value increases with
increasing gate voltage; (ii) the low-frequency component f3

arises from the transitions between split branches which result
in the well-known magnetointersubband oscillations (MISO).
This interpretation is confirmed by the temperature depen-
dence of the amplitudes of these Fourier components shown
in Fig. 3(b). It is seen that the amplitude of the two high-
frequency components corresponding to the Shubnikov–de
Haas (SdH) oscillations of each of the spectrum branches de-
creases strongly with increasing temperature, while the MISO
amplitude decreases insignificantly, as predicted theoretically
[44,45].

Figure 3(a) shows that the electron densities in the split
branches within experimental uncertainty are well described
by the linear dependencies with the different slopes equal to
sl1 = 0.65 and sl2 = 0.36. These lines intersect at the point
n � 1.5 × 1011 cm−2. Therefore, we believe that the quantum
well is close to symmetric one at nsym � 1.5 × 1011 cm−2.

To compare the results obtained for the structures with
the different QW widths, we will characterize the strength
of spin-orbit splitting by the phenomenological parameter
SOS = (sl1 − sl2)/(sl1 + sl2).1 In Fig. 4(a), we plot the d
dependence of SOS for all the structures from Table I and
for the structures investigated in Ref. [29]. As seen the SOS
value monotonically, without inflection, increases with the
increasing QW width over the entire d range. This shows that
no new strongly localized surface states arise up to d = 46 nm
at least.

Another parameter that can be extracted from the analysis
of the SdH oscillations is the electron density n(2) at which

1This is of course an approximation. In the paper [29] we show that
the theory predicts nonlinear dependencies n1(Vg) and n2(Vg) at the
small splitting values. However, in order to trace the change in spin-
orbit splitting with the d change, such a SOS parameter is suitable.

the second subband of the spatial quantization begins to be
occupied. As seen from Fig. 4(b) the n(2) values diminish
with d increase monotonically that as shown in Sec. VI agrees
satisfactorily with the theoretical results.

Thus, all the results presented above show that the main
magnetotransport properties of wide QWs are qualitatively
similar to those previously investigated in QWs with a width
of d < 20 nm. Their analysis shows that the specific features
of the energy spectrum of wide quantum wells are analogous
to those of narrower QWs. Namely, the SO splitting is also
observed; it increases with the increase of the electron density
and with the increase of the QW width.

IV. ELECTRON MASSES IN THE BRANCHES

By separating the SdH oscillation components corre-
sponding to split branches and analyzing the temperature
dependencies of their amplitudes one can obtain the masses
in each branch. To separate the components, we used the
Fourier spectrum bandpass filtering as shown in Fig. 3(b). To
improve the resolution of the Fourier spectra, the oscillating
part of ρxx(B) was multiplied by 1/B. Then, applying the
inverse Fourier transformation we obtained the oscillations
of the frequency f3 [the curve F3 in Fig. 3(c)] and super-
position of oscillations with two higher frequencies f1 and
f2 [the curve labeled as F1+F2 in Fig. 3(c)]. To keep the
correct ratio of the amplitudes of the different oscillations, the
curves obtained after the inverse Fourier transform were mul-
tiplied by B. Fitting the curve F1+F2 by the sum of the two
Lifshits-Kosevich (LK) formulas [46] allows us to separate
the contributions which are presented by the curves F1 and
F2 in this figure (for more detail see Ref. [47]). This method
of decomposition allows us not only to reliably separate out
the contributions of each of the three oscillation components
and determine their frequencies, but also to determine the
amplitudes. Applying this procedure to analyze the oscilla-
tions measured for different temperatures one can obtain the
temperature dependencies of the amplitudes of the oscillations
coming from the branches and hence obtain the cyclotron
effective mass m = h̄2k(dE/dk)−1 at the Fermi energy for
each of the branches.

The inset in Fig. 5 shows the temperature dependencies
of the amplitudes of the SdH oscillation components for
B = 0.5 T separated as described above for the total electron
density n = 3.3 × 1011 cm−2. It is seen that the temperature
dependencies of the amplitudes are very close to each other.
They are well fitted by the LK formula that gives the values
of effective masses m = (0.0258 ± 0.0015)m0 and (0.0242 ±
0.0015)m0 for the electron densities in the branches equal to
1.9 × 1011 cm−2 and 1.42 × 1011 cm−2, respectively. These
values and the values obtained for the other electron densities
are shown in Fig. 5 by squares and triangles. As seen the
effective masses in the split branches are very close to each
other.

We attract here the reader’s attention to a peculiarity of
MISO in HgTe-based QWs already discussed in Ref. [47] for
the narrower quantum wells. Figure 3(c) shows that beating of
the SdH oscillations results as a sum of two high-frequency
components. As seen, the magnetic fields of the antinodes
of high-frequency oscillations correspond to the minima in
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FIG. 5. The electron density dependence of the electron effective
mass at the Fermi energy for the structure with d = 32.0 nm. The
triangles and squares are the masses in each of the branches of the
spectrum obtained from the temperature dependencies of the am-
plitudes of the separate SdH oscillation components of ρxx (B). The
circles are the average value of the masses in the branches obtained
from the temperature dependence of the oscillation amplitude of
d2ρxx/dV 2

g measured with a change in the gate voltage at B = 0.5 T.
The line is a guide for the eye. The inset shows the temperature
dependencies of the amplitudes of separate components of the SdH
oscillations at B = 0.5 T for n = 3.3 × 1011 cm−2. The symbols are
the data, the lines are the results of the best fit to the LK formula.

ρxx-MISO. Such a mutual position is opposite to that observed
in ordinary structures, namely, in double and wide quantum
wells. But it agrees with that observed in narrow HgTe- and
InxGa1−xAs-based QWs, in which the splitting of oscillation
arises due to spin-orbit splitting. The authors of Ref. [47] as-
sume that the unusual mutual positions of the MISO extrema
and the SdH oscillation antinodes originate from the depen-
dence of the probability of transitions between the Landau
levels of different branches on the difference in their energies.

Let us consider the data obtained by the other method
which gives the effective mass over a wide electron density
range. It consists in analyzing the temperature dependence
of the amplitude of the oscillations of the d2ρxx/dV 2

g vs Vg

dependencies in a fixed magnetic field. This method gives an
average of the effective masses in the branches. The results are
shown in Fig. 5 by circles. It is seen that the results obtained
by the two methods practically coincide. The effective masses
increase slightly with an increase in the total electron con-
centration from (0.020 ± 0.003)m0 at n = 1.5 × 1011 cm−2

to (0.030 ± 0.003)m0 at n = 4.5 × 1011 cm−2.
The same measurements and analyses were carried out for

all the structures under study. The results are shown in Fig. 6.
It is seen that effective masses of QWs with d = (22.0–46.0)
nm are close to each other over the whole electron density
range. They are within the shadow area which width is compa-
rable with the experimental errors. In the same figure, we plot
the theoretical dependencies calculated within the framework
of the standard kP model for the rectangular quantum well

FIG. 6. The electron density dependence of the electron effective
mass for the structures with different QW width. The symbols are the
data, the lines are the calculated dependencies for rectangular quan-
tum well. The shadow area is the area within which the experimental
data for QWs with d = (22.0–46.0) nm are. The arrows show the n(2)

values for d = 32.0 and 46.0 nm.

when the potential of electric charge is not taken into account.
It is seen that the theoretical dependencies and experimental
plot are qualitatively similar. As for the data point for the QW
with d = 20.2 nm, the low values of the effective mass in
the narrow QWs, d = (7–20) nm, are already observed and
discussed earlier [2]. Thus, the above measurements show
that the effective masses of electrons in the split branches are
close to each other. In addition, the values of me and their
dependence on the electron concentration are similar for all
structures studied.

Let us now consider the behavior of MISO with changing
the electron density in QWs of different widths.

V. MISO AMPLITUDE WITH CHANGING ELECTRON
DENSITY AND QW WIDTH

The Fourier spectra of the oscillating part of ρxx(B) for
three structures for some electron densities are presented in
Fig. 7 (in contrast to Fig. 3, the Fourier transformation was
performed here without correcting the dependence of the
amplitude of oscillations on the magnetic field). Let us first
compare the strength of MISO and SdH oscillations qual-
itatively. At first glance, the ratio of the amplitude of the
Fourier peaks of MISO and SdH oscillations is approximately
the same in structures with different QW widths. Seemingly,
it contradicts to intuitive expectations and theoretical pre-
dictions according to which the overlapping of the wave
functions of two branches should decrease with the increasing
QW width that should result in decrease of the probability of
transitions between them, and, consequently, to a decrease in
the MISO amplitude.

It would seem that by separating the oscillations, we find
both prefactors and exponentials that describe the dependence
of the oscillations on the magnetic field, and then one should
compare these parameters for the SdH oscillations and MISO.
However, our analysis shows that each of these parameters
is found with not enough accuracy, only their combination is
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FIG. 7. The Fourier spectra of �ρxx/ρ
mon
xx for structures investigated. The Fourier transformation was performed without correcting the

dependence of the amplitude of oscillations on the magnetic field as has been done for Fig. 3. For clarity, the curves are shifted along the
vertical axis. T = 3.6 K.

obtained well. Therefore, we restrict ourselves to comparing
the areas under the Fourier peaks of the spectra corresponding
to MISO and SdH oscillations, denoted as SMISO and SSdH,
respectively. The SMISO/SSdH values plotted against n − nsym

are shown in Fig. 8.
It is seen that for a small splitting, that corresponds to

n − nsym � 1 × 1011 cm−2, the ratio SMISO/SSdH does not
change much with increasing d , although the overlap of the

FIG. 8. The SMISO/SSdH values plotted as a function of n − nsym.
The lines are a guide to the eye. The arrows show the densities at
which the second subbands begin to be occupied.

wave functions of different branches should seem to decrease
strongly.

Most important in Fig. 8 in our opinion is the difference
in the dependencies of SMISO/SSdH on n − nsym. As seen the
ratio SMISO/SSdH for QW with d = 22.0 nm does not depend
on the density within the experimental accuracy. In QWs
with d = 32.0 and 46.0 nm, the SMISO/SSdH value noticeably
increases with an increase of n − nsym. Such a behavior seems
strange because with an increase of electron density (i.e., with
an increase of the Fermi quasimomentum) the overlapping
of the wave functions of two branches located at different
QW walls decreases at least in the empty spectrum [see
Fig. 9(b)]. Figure 8 also shows sharp drops in SMISO/SSdH

at (n − nsym) � 3 × 1011 and 1.6 × 1011 cm−2 for structures
with d = 32 and 46 nm, respectively. These electron densities
are close to the beginning of the filling of the second subband
of spatial quantization [see Table I, and Figs. 1(b) and 4(b)].

Thus, we observe the MISO in all the structures. The MISO
amplitude exhibits an unexpected, counterintuitive behavior
with increasing electron concentration. It grows with increas-
ing n − nsym. This growth turns into a sharp decrease when the
second subband of spatial quantization begins to be occupied
with a further n increase.

In order to understand and interpret all the results pre-
sented above, namely, the electron density dependencies of the
splitting magnitude, masses in the branches, MISO amplitude
in the quantum wells of different widths, let us consider the
predictions of the kP theory.
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FIG. 9. (a) The energy spectrum of the rectangular QW of 32-nm width. (b) |φs(z)|2 for two states of the conduction band at different
energies corresponding to the different electron densities.

VI. RESULTS OF CALCULATION: THE ENERGY
SPECTRUM AND WAVE FUNCTIONS

The energy spectrum for the HgTe-based QWs was cal-
culated using the Kane’s four-band model including second-
order remote band contributions. The expression for the 8 × 8
Hamiltonian of the heterostructure grown on the plane of
different orientations was derived by the method described
in Refs. [48,49]. The components of the built-in strain ten-
sor were calculated with the use of the formulas from [5].
Parameters to describe the deformation contribution to the
Hamiltonian were taken from Ref. [50]. To take into account
the interface inversion asymmetry we used an additional term
in the Hamiltonian, which is suggested by Ivchenko [51] (see
also Ref. [27] for more details).

To account for the influence of the electrons on the elec-
tric field distribution across the quantum well, the standard
self-consistent procedure of simultaneous solution of the
Schrödinger equation and Poisson equation

d

dz

(
κ (z)

d

dz
ϕ(z)

)
= e

(2π )2

∑
s

∫
d2k|	s(k)|2 f [εs(k)]

− eN+
D

d
(1)

was used. Here, κ (z) is the dielectric susceptibility, ϕ(z) is the
electrostatic potential, f [εs(k)] is the Fermi-Dirac distribution
function, 	s(k) is the wave function of eight components,
which has the form

	s(k) = Cs exp (ikxx + ikyy)φs(z, kx, ky), (2)

N+
D is the density of charged donors (it is supposed that

the donors are distributed uniformly across the quantum

well2 and their density is equal to the electron density at
the gate voltage for which the quantum well is symmetric
N+

D = nsym), the summation in Eq. (1) runs over the spatial
quantization subband including the “spin” index. To solve the
Schrödinger equation we set the boundary conditions on the
planes z = ±z0 assuming that the center of the quantum well
was located at z = 0. The value of z0 was chosen in such a
way that the wave functions at z = ±z0 were practically equal
to zero. Usually, it was enough for the value of z0 to exceed
the width of the quantum well by 40 nm. Equation (1) was
solved with the following boundary conditions:

ϕ(−z0) = 0,

dϕ(z)

dz

∣∣∣∣
z=−z0

= 0, (3)

where is assumed that the gate electrode is located at posi-
tive z.

To calculate the energy spectrum and wave functions for
a given n value, we solved simultaneously the Schrödinger
and Poisson equations by using an iterative method. First, the
electron spectrum is calculated for zero potential. The wave
functions obtained are used to calculate the electron charge
distribution corresponding to given n. This distribution is sub-
stituted in the right-hand side of the Poisson equation (1).
Obtained ϕ(z) is substituted in the Hamiltonian and then the
Schrödinger equation is solved again. The procedure is re-
peated until the potential ϕ(z) converges. This usually requires
5–10 iterations.

2It should be mentioned that the results under consideration are
practically insensitive to where the donors are located: in the quan-
tum well or in the barriers.
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FIG. 10. (a), (c) The dependence |φs(z, k(s)
F )|2 for two states s = 1, 2 at k(s)

F (solid lines) and 0.5 k(s)
F (dashed lines). (b), (d) The distribution

of electric charge. The kF value corresponds to the electron density 2.5 × 1011 cm−2. The panels (a), (b) and (c), (d) show the calculation
results obtained without and with applying the self-consistent procedure, respectively. d = 32 nm.

The other theoretical details, including the Hamiltonian
in the explicit form, the calculation method, and the pa-
rameters used, can be found in the Supplemental Material
[52].

Let us first consider the calculation results for the empty
spectrum, i.e., when QW is rectangular in the shape. The
dispersion E (k) is depicted in Fig. 9(a), while the normalized
sum of squares of eight components of wave functions for two
states of the conduction band |φs(z)|2, s = 1, 2, for QW with
d = 32.0 nm are shown in Fig. 9(b). As seen from Fig. 9(b)
the wave functions of each of the branches are localized near
one of the QW wall, and the larger the k value the stronger
the localization and the less the overlap of the wave functions
of different branches. An approach of the empty spectrum
is, however, inapplicable to describe the experiment. This is
because the charge distribution changes and, hence, the shape
of the quantum well also changes when the electron density
is tuned via the voltage on the gate electrode. Self-consistent
procedure should be used for that.

An importance of the role of the potential of electrons in
the forming shape of the quantum well is illustrated by Fig. 10.
The dependencies |φs(z)|2 for k(s)

F (dashed lines) and 0.5 k(s)
F

(solid lines) for two states, s = 1, 2, for k(s)
F corresponding to

the electron density 2.5 × 1011 cm−2 before self-consistency
are shown in Fig. 10(a). The distribution of electron charge
Q(z) is presented in Fig. 10(b). As evident from the last

figure Q(z) is symmetric and the average value of the elec-
tron charge position is equal to zero for this case. The same

FIG. 11. The redistribution of the charge in QW with increasing
electron density caused by Vg increase. d = 32.0 nm.
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FIG. 12. (a) The SOS value for QWs of different widths. The symbols are the data from Fig. 4(a). The curve is result of self-consistent
calculation. (b) The density of electrons when the second subband begins to be occupied. The symbols are the data from Fig. 4(b), the line
is result of self-consistent calculation. (c), (d) The electron density dependence of the electron effective mass at the Fermi energy for the
structures with d = 32 and 22 nm, respectively. The triangles and squares are obtained from the temperature dependencies of the amplitudes of
the separated SdH oscillations ρxx (B) and correspond to the masses in each of the branches of the spectrum. The circles are obtained from the
temperature dependence of the oscillation amplitude of d2ρxx/dV 2

g , measured with a change in the gate voltage at B = 0.5 T, and correspond
to the average value of the masses in the branches. The dashed lines are calculated for the rectangular QW. The solid lines are the result of a
self-consistent calculation of masses for each branch.

dependencies after procedure of self-consistency are shown
in Figs. 10(c) and 10(d). It is clearly seen that both |φs(z)|2
and Q(z) are modified drastically.

Redistribution of the electron charge in QW with the grow-
ing gate voltage inducing the electron density increase is
shown in Fig. 11. As seen, the charge shifts monotonically
away from the gate electrode with an increase in the pos-
itive charge on it, first quickly, then slowly. The center of
gravity of the charge distribution shifts away from the gate,
which corresponds to the repulsion of the electronic state
from the gate electrode charged positively. Such a behavior
is counterintuitive and corresponds to negative polarizability
(this phenomenon for analogous structures was discussed in
Ref. [53]).

Now we are in position to compare the results of
self-consistent calculations with our experimental data (see
Fig. 12). Let us first consider the dependence of SOS on
the QW width. As seen from Fig. 12(a) both the experi-

mental and calculated dependencies grow with increasing d ,
and for d < 22 nm the theoretical dependence describes the
experiment well. However, at d > (22–25) nm, the calculated
dependence increases much faster. The calculated and exper-
imental dependencies n(2)(d ) are in a rather good agreement
[see Fig. 12(b)].

The comparison between the experimental and calculated
effective masses is given in Figs. 12(c) and 12(d) for d = 32
and 22 nm, respectively. As seen, the calculated effective
masses are different for the split branches that qualitatively
agree with the data. However, quantitatively, this differ-
ence is much less experimentally. The other point is that
the experimental masses are less as compared with the cal-
culated ones practically for all the electron densities. As
already mentioned above, the last discrepancy for HgTe-based
QWs is discussed earlier in Ref. [2] where assumption was
made that such a behavior may result from the many-body
effects.
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FIG. 13. (a)–(c) The transformation of the probability density distribution |φs(z)|2 at k(s)
F with growing electron density controlled by the

gate voltage. (d) The rate of the k(1)
F → k(2)

F transitions due to scattering on the short-range random potential plotted against n − nsym. d = 32.0
nm.

The theoretical model used provides also qualitative un-
derstanding of the unusual behavior of the MISO amplitude
with growing electron density considered in Sec. V. As
Figs. 13(a)–13(c) illustrate the growing gate voltage results to
the strengthening overlap of wave functions of the branches
due to their displacement away from the gate electrode that in
its turn leads to strong increase of the rate of the transitions
between different spin states w12 [Fig. 13(d)].

Thus, the results of self-consistent calculations of the elec-
tron energy spectrum and wave functions agree with the
experimental results concerning to SOS and me qualitatively.
An important result of the calculations is that the electron
wave functions are significantly shifted along z direction with
the changing gate voltage which controls the density of elec-
tron in the QW. They move away from the gate electrode with
an increase of the positive charge on it. This corresponds to the
negative polarizability of electrons and makes it possible to
qualitatively understand the increase in the MISO amplitude
with increasing n − nsym.

The charge redistribution over z direction with the varying
gate voltage discussed above should manifest itself in the
Vg dependence of the capacitance between the QW and gate
electrode.

VII. RESULTS OF CAPACITANCE MEASUREMENTS

The gate voltage dependence of capacitance between 2D
gas and the gate electrode results from the finite density of

states of a 2D gas and it can be written as

C−1 = C−1
g + C−1

q , Cq = e2D, (4)

where Cg is geometrical capacitance, and D is the density of
states of 2D gas which is related to the effective mass of the
carriers at the Fermi level as D = m/(π h̄2).

The samples under study differ slightly (by 20%) in
dielectric thickness, gate area, and Vg value correspond-
ing to the charge neutrality point, therefore, the results of
the volt-capacitance measurements obtained for the different
structures are shown in Fig. 14(a) as C/Cg vs Q/e plot.

To determine Cg, we used the fact that the measurements of
the Hall density and SdH oscillations at different Vg and T in
the hole region showed that (i) the degeneracy of the states of
valence band top is equal to two up to the hole density (4–5) ×
1011 cm−2; (ii) the effective mass of holes is large, and its
value is close to each other for all the structures and equal to
mh = (0.25 ± 0.05)m0. With taking this into account the Cg

value can be obtained as Cg = (1/C − 1/Choles
q )−1, where C

is the experimental capacity measured within the hole region
at p = (2–3) × 1011 cm−2, Choles

q = e2mh/(π h̄2) is the hole
quantum capacity.

Figure 14(a) shows that the capacitance drops sharply
at n = (0.5–1.0) × 1011 cm−2 and has a minimum at the
nonzero electron densities n = (1.9–2.5) × 1011 cm−2. This
is due to two factors: (i) at these QW widths, the conduction
and valence bands overlap; (ii) the effective mass of holes is
much (about 10 times) larger than that of the electrons. In
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FIG. 14. (a) The dependence of C/Cg on the charge of the free carriers for different QWs. The dashed curve is an example for QW
with d = 32 nm of the corrected geometrical capacity which provides the coincidence of the quantum capacity found from the experimental
dependence C(Vg) [the dashed line in (c)] with that obtained from the density of states with use of the experimental effective mass [the balls
in (c)]. (b)–(d) The solid lines are the quantum capacity Cq/S obtained as described in the text with Cg = const. The balls are the Cq/S values
calculated with m value measured on the same structures (see Fig. 6). The dashed lines are Cq/S obtained with taking into account the Vg

dependence of the geometrical capacity. The arrows show the electron density at which the second subband of spatial quantization starts to be
occupied.

ordinary structures, the drop is associated with a decrease in
the density of states and, therefore, with a large contribution
of the quantum capacitance. The values of quantum capacity
Cq/S calculated from these dependencies with a fixed geomet-
ric capacity are shown in Figs. 14(b)–14(d). It is seen that the
Cq/S value at the minimum decreases with an increase in the
QW width, which seems to correspond to a smaller value of
the electron mass in wider QWs. However, this contradicts the
experimental results on the electron masses obtained from the
analysis of SdH oscillations shown in Fig. 6.

In order to understand what the seemingly smaller value
of the electron mass found from C(Vg) can be connected
with, let us consider what approximations were made when
obtaining the formula (4). It was tacitly assumed that the
charge distribution in QW over z axis does not change with
a change in the density of charge carriers by the gate voltage.
Recall that self-consistent calculations (see Figs. 10 and 11)
show that Vg changes the charge distribution in the z direction.
In our case, as discussed above, electrons are repulsed from
the gate electrode at a positive voltage that can be considered
as the change (decrease in the given case) of the geometrical
capacity.

Using this simple model one can easily find how the geo-
metrical capacity Ccor

g should depend on the gate voltage so
that Cq calculated from Eq. (4) with replacement of Cg by
Ccor

g coincides with Cq calculated from the density of states
with the use of the experimental effective mass. The results
for Ccor

g (Vg) for the structures with d = 32 nm are shown
in Fig. 14(a) by the dashed line. As Figs. 14(a) and 14(c)
illustrate, the decrease of the geometrical capacity by the

value of 0.3% in the minimum for structure with d = 32 nm
gives good agreement between Cq values calculated from the
experimental effective mass and found from the C vs Vg mea-
surements. The simple estimate with the use of the formula
of the flat capacitor gives that this decrease in the geometrical
capacitance corresponds to increase of the distance between
the capacitor plates, i.e., to the shift of the electron density

FIG. 15. The solid line is the calculated electron density depen-
dence of the center of gravity of the electron charge distribution z1 for
the structure with d = 32 nm. The dashed line is obtained from Ccor

g

vs Q/e dependence shown in Fig. 14(a) with the use of the formula
of the flat capacitor.

085301-12



TRANSFORMATION OF ENERGY SPECTRUM AND WAVE … PHYSICAL REVIEW B 106, 085301 (2022)

away from the gate electrode, by the value of about 3 nm
(Fig. 15). This simple consideration agrees qualitatively with
the results of theoretical calculations. This is illustrated by the
same figure in which we also show the calculated electron
density dependence of the position of the center of gravity of
the electron charge distribution (z1) relative to the QW center.

Thus, interpreting the experimental gate voltage dependen-
cies of the capacitance between the 2D electron gas and the
gate electrode we have estimated the magnitude of the shift of
the charge in the quantum well along the z direction and the
change in the overlap of the wave functions with a Vg change.
These results confirm the interpretation of the unexpected
increase in the MISO amplitude presented in Sec. V.

VIII. CONCLUSION

We have experimentally studied the magnetotransport and
capacitance between 2D gas and the gate electrode in HgTe-
based quantum wells of (20–46) nm width. It is shown that an
increase in the electron density controlled by the gate voltage
leads to a spin-orbit splitting of the Bychkov-Rashba type
of the conduction band spectrum. This splitting drastically
increases with the increasing QW width so that the ratio of the
electron densities in the split branches achieves the value of
about 2.5–3.0 in QW with d = 46 nm at the electron density
of (3.0–3.5) × 1011 cm−2.

As the width of the well increases, the electron density at
which the second subband of spatial quantization begins to
be occupied decreases and the electron effective mass and
its electron density dependence, as expected, are practically
independent of the QW width.

In the entire range of the QW widths, the magnetointer-
subband oscillations (MISO) are observed, which indicates
that the overlap of wave functions of different branches is

sufficiently large even in the widest QW with d = 46 nm.
In addition, the electron density dependence of the MISO
amplitude is unexpected. The amplitude increases with the
increasing electron density, while simple calculations predict
a decrease in overlap with energy increase.

The data obtained were interpreted using the self-
consistent calculation of the energy spectrum within the
framework of the four-band kP model. Theoretically, the
wave functions demonstrate a shift across the quantum well
corresponding to the negative electron polarizability with an
increase of the gate voltage. Such a shift leads to an increase
in the overlap of the wave functions of different branches and,
as a consequence, to an increase in the rate of transitions, and
hence to an increase in the MISO amplitude. It is shown that
this shift also manifests itself in the gate voltage dependence
of the capacitance measured between the gate electrode and
the quantum well.

Analyzing the data we conclude that standard self-
consistent calculations are only in qualitative agreement with
the experimental results. A possible reason is the differ-
ence of dielectric susceptibility of the layer forming the
quantum well from that of the parent bulk material as dis-
cussed in Refs. [39,43,54,55]. We are not aware of papers in
which this was considered for such a complicated spectrum
as HgTe/Hg1−xCdxTe QWs. Further theoretical studies are
needed to understand which effects are not taken into account
yet in order to describe the data quantitatively.
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