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Floquet-Weyl semimetals (FWSMs) generated by irradiation of a continuous-wave laser with left-hand
circular polarization (rotating in counterclockwise sense with time) on the group II–V narrow-gap semiconductor
Zn3As2 are theoretically investigated, where the frequency of the laser is set nearly resonant with the band gap
of the crystal. It is found that the excitation of the crystal by such a laser induces two types of FWSM phases
that differ absolutely in character. To be specific, the associated two pairs of Weyl points are stably formed by
band touching between Floquet sidebands ascribable to a valence band labeled Jz = ±3/2 and a conduction
band labeled Jz = ±1/2, where Jz represents the z component of total angular-momentum quantum number of
the � point and a double sign corresponds. Here, one FWSM state composed of the up-spin Floquet sidebands
relevant to Jz = 3/2 and 1/2 shows almost quadratic band-touching in the vicinity of the associated pair of Weyl
points, while the other FWSM state composed of the down-spin Floquet sidebands relevant to Jz = −3/2 and
−1/2 shows linear band-touching. Furthermore, it is revealed that both up-spin and down-spin sidebands host
nontrivial two-dimensional surface states that are pinned to the respective pairs of the Weyl points. Both surface
states also show different energy dispersions and physical properties. A more detailed discussion is presented in
the text on the origin of the above findings, the chirality of the FWSM phases, the alteration of topological order,
laser-induced magnetic properties, and so on.
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I. INTRODUCTION

Topological materials have been studied for more than a
decade [1–4] and growing interest has been directed toward
the exploration of a class of topological semimetals (SMs)
[5–21]—such as Weyl SMs (WSMs), Dirac SMs (DSMs),
and nodal-line SMs (NLSMs)—in addition to further deep-
ening of the studies of prototypical topological insulators, for
instance, on non-Hermitian topological systems [22,23], topo-
logical photonics [24], higher-order topological insulators
[25–27], topological excitons [28–30], topological surface-
plasmon polaritons [31,32], and so on. WSMs and DSMs are
three-dimensional (3D) gapless phases of materials in which
bands cross linearly at points protected by topology and sym-
metry. There is close connection with the chiral anomaly (the
Adler-Bell-Jackiw anomaly) in linearly dispersing fermionic
excitations in particle physics, which gives rise to the non-
conservation of an axial current even for a massless particle
[33–39]. In accord with the prediction of the chiral anomaly,
large negative magnetic resistance is observed in magneto-
transport in WSMs [40–43]. Furthermore, these SMs exhibit
a great number of novel transport properties such as ultra-
high mobility, titanic magnetic resistance, and anomalous Hall
conductivity [8,17,40,44–51]. In NLSMs, bands cross along
special lines in the Brillouin zone (BZ) in the shape of a closed
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ring or a line. Breaking of either time-reversal (T) symmetry
or spatial-inversion (I) symmetry leads DSMs and NLSMs
to WSMs [19]. In the T-breaking WSMs, there are a pair of
Weyl nodes with opposite chirality on which a surface state
is pinned with a characteristic Fermi arc, while the number
of Weyl nodes in the I-breaking WSMs is a multiple of four
[6,18].

An interaction of topological SMs with a continuous-wave
laser provides the studies of topological materials with an-
other avenue from the perspective of the quantum control of
underlying topological properties by means of built-in laser
parameters—intensity, frequency ω, and polarization—and
the exploration of topological phases that are in nonequilib-
rium [52–71]. Here, the total Hamiltonian H (t ) of concern at
time t has temporal periodicity H (t ) = H (t + T ) to ensure
the Floquet theorem, with T = 2π/ω [72]. By the drive with
a circularly polarized laser—in place of the application of a
static intrinsic Zeeman field—, the T symmetry in DSMs and
NLSMs is broken to form WSMs, and these are termed as
Floquet WSMs (FWSMs). This scenario for creating FWSMs
is applied to the DSMs alkali pnictides NaBi3 [55], type-II
and hybrid NLSMs [58], and 3D stacked graphene systems
[56]. In particular, it is reported that the drive of a 3D Lut-
tinger semimetal by an elliptically polarized light leads to
the coexistence of WSM phases with double and single Weyl
points, which can be tuned to be type I or type II [69]. Fur-
thermore, by virtue of Floquet engineering due to periodical
driving of hybrid multi-WSM phases, the number of various
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isolated band-touching points can be increased on demand
by tuning the system parameters, where intricate Fermi arc
structures are hosted [70]. In addition, NLSMs are driven to
result in FWSMs, revealing a photovoltaic anomalous Hall
effect associated with the Weyl point nodes [54]. Very re-
cently, frequency-independent magnetization mechanisms in
response to circularly polarized light are studied in WSMs
[62,64].

As regards the I symmetry, this is also broken by the
introduction of an interaction of electron with the continuous-
wave laser. However, the time-glide I symmetry holds correct
instead to realize the same invariance in H (t ) as the I
symmetry [65,73]. The symmetry operation associated with
this symmetry is represented by the operation of putting
time t ahead by a half period T/2, followed by the I
operation.

In most theoretical studies of Floquet topological materials
[74–83], an electron-light interaction is introduced exclu-
sively by employing the Peierls phase transform—given by
the replacement of a Bloch momentum k by k + A(t )—under
the off-resonant condition that ω � Eg. Here, A(t ) and Eg

represent a vector potential of the laser at t , and a band gap
of the concerned material, respectively, and the atomic units
are used. Furthermore, the effective Floquet Hamiltonian is
constructed by relying on the Floquet-Magnus expansion with
respect to Eg/ω [84–86]. It is remarked that the convergence
of this expansion is not ensured at the resonant limit of ω = Eg

[86]. The resulting Floquet bands are likely modified from
original bands before laser irradiation. It is assumed that,
under the above off-resonant condition, effects of interband
electric-dipole transitions between a valence band and a con-
duction band are negligibly small compared with those of
the above-mentioned Peierls interaction [52,55,82]. Here, in-
terband and intraband couplings caused by the electron-light
interaction due to the Peierls phase transformation are termed
“the Peierls interaction” to make a distinction from the inter-
band electric-dipole interaction.

The aim of this paper is to create a FWSM phase by
driving Zn3As2 [87–90], belonging to the group II-V semi-
conductors, with a circularly polarized laser which meets
an almost-on-resonant condition ω ≈ Eg [65,77] and to ex-
plore the properties of surface states hosted by this FWSM.
This material is topologically trivial without band inversion.
This differs from the DSM Cd3As2 [87,89,91–93], realized
by the band-inversion mechanism due to the presence of an
(n > 2)-fold uniaxial rotational symmetry along a symmetry
line, hosting edge modes known as double Fermi arcs at the
surfaces [7,8,11,14,18]. The creation of the FWSM is gov-
erned by an almost resonant transition due to the interband
electric-dipole interaction rather than that due to the Peierls
interaction, as shown in more detail later (Sec. III). This is the
key issue of this paper.

Below, a more detailed explanation is made on this key
issue based on the four-band model of the semiconductor
Zn3As2, where the valence and conduction bands are labeled
Jz = ±3/2 and ±1/2, respectively, with Jz being the z com-
ponent of total angular momentum quantum number at the
� point (k = 0). First, given the driving laser with a left-
hand circular polarization (rotating in counterclockwise sense
with time), the coupling of this light with an electric-dipole

moment induced by the transition between the down-spin
bands with Jz = −3/2 and −1/2 is dominant over that be-
tween the up-spin bands with Jz = 3/2 and 1/2 [94]. This
is maximized when the on-resonant condition is met. It is
remarked that the roles of the up-spin and down-spin bands
are exchanged for a laser with a right-hand circular polar-
ization. A left-hand polarization is favored throughout this
paper unless otherwise stated. Second, as the laser inten-
sity increases, the ac-Stark effect gives rise to larger energy
splitting of each down-spin band into two leaves with con-
spicuous modification of the band profile [65,95–97], whereas
the up-spin bands are just slightly affected. The ac-Stark ef-
fect is also maximized by the on-resonant condition. Third,
the present resonant interband transition yields real carrier
excitation, differing from virtual carrier excitation due to the
off-resonance one. Thus, it is likely that orbital magnetization
results from the inverse Faraday effect that is a nonlinear
optical process caused by a circularly polarized laser field
[62–64,66,98–102]. Consequently, it is expected that the laser
drive with a circular polarization in the almost-on-resonant
condition provides intriguing physics with FWSMs, which is
sharply distinct from the conventional off-resonant laser drive
[52,55,82].

The remainder of this paper is organized as follows;
Section II describes the theoretical framework, Sec. III
presents the results and discussion, and Sec. IV presents
the conclusion. Furthermore, three Appendixes are included.
Hereinafter, atomic units (a.u.) are used throughout unless
otherwise stated.

II. THEORY

A. Effective Hamiltonian

The crystal of concern, Zn3As2, is a narrow-gap semi-
conductor, the structure of which is very similar to that of
Cd3As2, although, in the latter, a band is inverted to result
in a DSM [87,89,91–93]. There are many equilibrium phases
of Zn3As2 depending on pressure and temperature, for in-
stance, αZn3As2 (with a body-centered tetragonal structure
I41/cd) and α′Zn3As2 (with a tetragonal structure P42/nbc)
[88]. Here, one employs the structure of α′Zn3As2 having the
C4-rotational symmetry along the �-Z axis in the BZ for con-
structing an effective Hamiltonian. The low-energy electronic
properties of it are mostly determined by the conduction band
composed of Zn 4s orbitals and the valence band composed of
As 4p orbitals.

Here, an effective electronic Hamiltonian for Zn3As2 is
constructed by following the Kane model used in Ref. [8]
for the crystal structure of Cd3As2 with a tetragonal structure
P42/nbc. To be specific, one considers the following four
states as conduction s states |�6, Jz = ±1/2〉 and heavy-hole
p states |�7, Jz = ±3/2〉, and light-hole states and split-off
states are disregarded because of relatively large energy sep-
aration from these four states at the � point. The effective
Hamiltonian is read as the 4 × 4 matrix [103,104]:

H(k) = c(k)I +
5∑

j=3

d j (k)γ j, (1)
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with k = (kx, ky, kz ) as a 3D Bloch momentum. Here, γ j rep-
resents the four-dimensional Dirac matrices for the Clifford
algebra defined by γ1 = τx ⊗ σx, γ2 = τx ⊗ σy, γ3 = τx ⊗ σz,
γ4 = τz ⊗ I2, and γ5 = τy ⊗ I2, where I and I2 represent the
4 × 4 and 2 × 2 unit matrices, respectively, τl and σl with
l = x, y, z represent the Pauli matrices for orbital and spin
degrees of freedom, respectively, and the anticommutation
relation {γ j, γ j′ } = 2δ j j′ is ensured. According to the above
definition of γ j , it is understood that the states of |�6, Jz =
1/2〉, |�7, Jz = 3/2〉, |�6, Jz = −1/2〉, and |�7, Jz = −3/2〉
are labeled as 1, 2, 3, and 4, respectively, for the matrix ele-
ments of H(k), namely, {Hmn(k)} with m, n = 1–4. Moreover,
d j (k) is given by

d3(k) = tsp sin (kxdx ),

d4(k) = 
g +
∑

l=x,y,z

εl (kl ), (2)

d5(k) = tsp sin (kydy),

where

εl (kl ) = −2t xy{1 − cos (kldl )} (3)

for l = x, y, and

εz(kz ) = −2t z{1 − cos (kzdz )}. (4)

Here, t l represents a hopping matrix between identical bands
in the l direction with l = x, y, z, where t l < 0, t xy ≡ t x = t y,
and tsp represents a hopping matrix between different bands
due to a spin-orbit coupling. Furthermore, dl represents a
lattice constant in the l direction, and the band gap at the �

point Eg is given by Eg = E�6 − E�7 with 
g = Eg/2, where
the conduction- and valence-band energies at �6 and �7 are
represented as E�6 and E�7 , respectively. An additional energy
c(k) is given by

c(k) = EF + 2
∑

l=x,y,z

ml{1 − cos (kldl )}, (5)

with ml constant, and the Fermi energy EF is set equal to zero:
EF = 0. Hence, E�6 = c(0) + d4(0) and E�7 = c(0) − d4(0).

It is assumed that the off-diagonal block matrices of H(k)
have little contributions to the band structure under the present
tetragonal symmetry; that is, d1(k), d2(k) ≈ 0, leading to
[I2 ⊗ σz,H(k)] ≈ 0 [105]. Thus, H(k) is cast into the block-
diagonal form:

H(k) =
(

h(k) 0
0 h∗(−k)

)
, (6)

where h(k) = d3(k)τx + d4(k)τz + d5(k)τy.
An interaction of electron with light is introduced into

H(k) by replacing k by K(t ) = k + A(t ), followed by adding
to H(K(t )) an interband electric-dipole interaction repre-
sented by H′(t ) [106]. Here, the replacement by K(t ) results
from the Peierls phase transform in the lattice representa-
tion of the effective Hamiltonian, and the optical interaction
arising from this replacement is herein termed “the Peierls in-
teraction,” as mentioned in Sec. I. Furthermore, the interband
electric-dipole interaction is provided as H′(t ) = F(t ) · M,
where M represents a matrix of electric-dipole transition be-
tween |�6, Jz = ±1/2〉 and |�7, Jz = ±3/2〉, independent of

k; a double sign corresponds. The vector potential is given by

A(t ) =
(

− Fx

ω
sin ωt,

Fy

ω
cos ωt, 0

)
, (7)

with Fx and Fy constants, and in view of F(t ) = −Ȧ(t ), the
associated electric field becomes

F(t ) = (Fx cos ωt, Fy sin ωt, 0). (8)

The laser is linearly polarized in the x direction when Fx 	= 0
and Fy = 0, while left-hand circularly polarized in the x-y
plane when Fx is set equal to Fy, namely, Fc ≡ Fx = Fy. The
time-dependent effective Hamiltonian of the driven semicon-
ductor is thus read as [106]

H (k, t ) = C(k, t )I +
5∑

j=3

Dj (k, t )γ j + H′(t ), (9)

where C(k, t ) ≡ c(K(t )) and Dj (k, t ) ≡ d j (K(t )).
Obviously, this Hamiltonian ensures the temporal periodic-

ity, H (k, t + T ) = H (k, t ) with T = 2π/ω, and the system of
concern follows the Floquet theorem [72]. Thus, the present
time-dependent problem ends up with the following Floquet
eigenvalue problem:

L(k, t )�α (t ) = Eα (k)�α (t ), (10)

where

L(k, t ) = H (k, t ) − iI
∂

∂t
, (11)

Eα (k) represents the αth eigenvalue termed a “quasienergy” or
a Floquet energy, and �α (t ) represents the associated eigen-
vector ensuring the temporal periodicity, �α (t + T ) = �α (t ).
In actual calculations, a set of Eα (k) is obtained by numer-
ically solving Eq. (10) in the ω domain, where the Floquet
matrix L(k, t ) is recast into a Fourier-Floquet matrix element
L̃nn′ (k, ω) with respect to n and n′ photon states [72]. This is
read as

L̃nn′ (k, ω) = C̃nn′ (k, ω)I +
5∑

j=3

D̃ j,nn′ (k, ω)γ j

+ H̃′
nn′ (ω) + nωIδnn′ , (12)

where it is understood that the Fourier transform of matrix
X (t ) is represented by

X̃nn′ (ω) = 1

T

∫ T

0
dte−i(n−n′ )ωt X (t ). (13)

In addition, it is remarked that, in fact, C̃nn′ (k, ω) is less
dependent on the set of photon numbers n and n′ and al-
most identical to c(k). Hence, hereinafter, it is understood
that Eα (k) is reckoned from c(k); in other words, the ef-
fect of c(k) on Eα (k) is neglected. Explicit expressions of
D̃ j,nn′ (k, ω) ( j = 3–5) are given in Appendix A.

B. Electric-dipole couplings

It is convenient to describe an explicit form of H′(t ). This
is provided as

H′(t ) = (�y sin ωt )τx ⊗ I2 + (�x cos ωt )τy ⊗ σz, (14)
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where �x = FxP/
√

2 and �y = FyP/
√

2. Here, P is a dipole
matrix element given by P = 〈S|x|X 〉 = 〈S|y|Y 〉, where x
and y represent the x and y components of electron posi-
tion r, respectively, and the states of |�6, Jz = ±1/2〉 and
|�7, Jz = ±3/2〉 are represented by |�6, Jz = ±1/2〉 = i|S〉
and |�7, Jz = ±3/2〉 = ±(1/

√
2)|X ± iY 〉, respectively, in

terms of s, px, and py states denoted as |S〉, |X 〉, and |Y 〉,
respectively. Similar to Eq. (6), H′(t ) is block-diagonalized
as

H′(t ) =
(

V (+)(t ) 0
0 V (−)(t )

)
, (15)

where V (+)(t ) and V (−)(t ) represent the electric-dipole cou-
plings between the up-spin bands |�6, Jz = 1/2〉 and |�7, Jz =
3/2〉 and the down-spin bands |�6, Jz = −1/2〉 and |�7, Jz =
−3/2〉, respectively, given by

V (±)(t ) = (�y sin ωt )τx ± (�x cos ωt )τy, (16)

where a double sign corresponds. The Fourier transform of
V (±)(t ) into the ω domain is given in Appendix A. In view of
Eqs. (9) and (15), H (k, t ) is cast into the block-diagonalized
form:

H (k, t ) = C(k, t )I +
(

H (+)(k, t ) 0
0 H (−)(k, t )

)
, (17)

that is, [I2 ⊗ σz, H (k, t )] = 0. Here, the up-spin Hamilto-
nian H (+)(k, t ) and the down-spin Hamiltonian H (−)(k, t ) are
given by

H (±)(k, t ) = [±D3(k, t ) + �y sin ωt]τx + D4(k, t )τz

+ [D5(k, t ) ± �x cos ωt]τy. (18)

The expression of Eq. (16) implies that, in general, an
optical dipole interaction between up-spin bands is different
from that between down-spin bands. To be specific, for a
linearly polarized light,

V (±)(t ) = ±(�x cos ωt )τy = ±�x cos ωt

(
0 −i
i 0

)
, (19)

with �y = 0, and V (+)(t ) is identical to V (−)(t ) aside from
an unimportant phase factor ∓i. On the other hand, for a left-
hand circularly polarized light,

V (±)(t ) = �c[(sin ωt )τx ± (cos ωt )τy]

= ∓i�c

(
0 e±iωt

−e∓iωt 0

)
, (20)

with �c ≡ �x = �y, and V (+)(t ) and V (−)(t ) are different
from each other. In particular, this distinction stands out for
a linear optical transition, for instance, from the valence band
at �7 to the conduction band at �6. In view of the matrix
element V (±)

12 (t ) of Eq. (20), the transition amplitudes of the
photoabsorption between the up-spin bands, represented as
a(+), and that between the down-spin bands, represented as
a(−), are given by

a(±) = ∓i�c

∫ ∞

−∞
dtei(E�6 −E�7 ±ω)t ∝ δ(Eg ± ω), (21)

with Eg = E�6 − E�7 > 0. It is evident that the transition be-
tween the up-spin bands is forbidden, namely, a(+) = 0, while

that between the down-spin bands is allowed, namely, a(−) 	=
0, because of the energy conservation ω = Eg. Incidentally,
as regards the related photoemission, in view of the matrix
element V (±)

21 (t ), the transition amplitudes of it are given by

b(±) = ±i�c

∫ ∞

−∞
dtei(E�7 −E�6 ∓ω)t ∝ δ(Eg ± ω), (22)

and the same discussion as the photoabsorption is applicable;
b(+) = 0 and b(−) 	= 0.

As long as ω ≈ Eg, these results almost hold correct in
nonlinear optical processes, including strongly photoinduced
processes, although the contribution from up-spin bands does
not vanish because the energy conservation is not required in
virtual states. In other words, the effect of V (−)(t ) is dominant
over that of V (+)(t ). This is one of the key issues in this paper,
as mentioned in Sec. I. In contrast, as regards off-resonant
cases that ω � Eg or ω � Eg, V (+)(t ) and V (−)(t ) would
have almost equal, however, vanishingly small contributions
to optical processes, as long as |Eg − ω| � 2�c; for more
detail, see Eq. (23) or (24) to be shown later.

C. Symmetries

It is evident that both T and I symmetries are conserved
in H(k), that is, �−1H(−k)� = H(k), and �−1H(−k)� =
H(k), where � and � represent the T and I operators, defined
by � = −iI2 ⊗ σyK and � = τz ⊗ I2, respectively, where K
means an operation of taking complex conjugate. Further-
more, the T symmetry is still respected in H (k, t ) for a linearly
polarized light; that is, �−1H (−k,−t )� = H (k, t ), so a pair
of up-spin and down-spin Floquet bands forms a Kramers
degeneracy. On the other hand, the T symmetry is broken for
circularly polarized light; that is, �−1H (−k,−t )� 	= H (k, t ).

As regards the I symmetry, this is broken; that is,
�−1H (−k, t )� 	= H (k, t ), because Dj (−k, t ) 	= −Dj (k, t )
for j = 3 and 5, D4(−k, t ) 	= D4(k, t ), and �−1H′(t )� 	=
H′(t ). In fact, it is shown that, in terms of an operator de-
fined as �̃ = �T1/2, the symmetry �̃−1H (−k, t + T/2)�̃ =
H (k, t ) is retrieved, where T1/2 represents the operation of
putting t ahead by a half period T/2, namely, the replacement
of t → t + T/2 [65,73]. This is the time-glide I operator
mentioned in Sec. I. Therefore, despite the breaking of the I
symmetry, a Floquet band disperses in a symmetric manner
with respect to k, namely, Eα (k) = Eα (−k). For a linearly
polarized light, it is still probable that a fourfold band crossing
occurs at the high-symmetry points, namely, the time-reversal
invariant momenta.

III. RESULTS AND DISCUSSION

In the actual calculations, the following material
parameters [7,8] and laser parameters are employed:
Eg = 0.0169 (0.46 eV), ω = 0.0147 (0.4 eV), dx = dy =
5.67 (3 Å), dz = 9.44 (5 Å), t xy = −0.0018, t z = −0.0074,
tsp = 0.0037, Fx = Fc = 0.0003 (1.54 MV/cm), and
P = 25.9. Furthermore, the maximum number of photons
(Np) incorporated in the calculations is set to be three to
reach numerical convergence; that is, n, n′ = −Np–Np for the
Fourier-Floquet matrix L̃nn′ (k, ω).
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Based on these numerical parameters, one evaluates the
degree of magnitude of effects due to the Peierls interaction.
These contributions are determined in terms of factors given
by the nth-order Bessel function of the first kind, Jn(zl ),
that is included in D̃ j,nn′ (k, ω) ( j = 3–5) of Eqs. (A3)–(A5)
with zl ≡ Fldl/ω (l = x, y). For zl = 0.116, one obtains that
J0(zl ) − 1 = −0.0034, J1(zl ) = 0.056, and J2(zl ) = 0.0017,
implying that the hopping matrices of t l and tsp are modified
just by the order of 10−2–10−3 by the Peierls interaction.
Thus, it is stated that in the system of concern, this interaction
plays a less significant role than the interband electric-dipole
interaction.

A. Qualitative understanding of band structures

It is preferable to show an overall Floquet band structure
in the present system in a qualitative manner prior to the
discussion of rather complicated numerical results. Here, a
Floquet state α attributed to a b band dressed with n photons is
denoted as b(n) with b = e, hh, where the bands e and hh rep-
resent the s and heavy-hole p orbitals, respectively. Below, one
seeks approximate Floquet bands represented in an analytic
closed form in a two-step manner. First, based on a two-band
model incorporating e(n − 1) and hh(n) for each spin state,
one seeks expressions of hybridized bands of states e(n − 1)
for up- and down-spins, represented as E (+)

e(n−1) and E (−)
e(n−1),

respectively. Here, the ac-Stark effect with a Rabi frequency
�l is incorporated by employing the rotational-wave approx-
imation. Similarly, the coupling between e(n) and hh(n + 1)
for each spin state results in expressions of hybridized bands
of states hh(n + 1) for up- and down-spins, represented as
E (+)

hh(n+1) and E (−)
hh(n+1), respectively. Second, by introducing the

residual spin-orbit interaction between E (±)
e(n−1) and E (±)

hh(n+1)
bands, one obtains the desired expressions of hybridized Flo-
quet bands represented by E (±)

e(n−1)(k) and E (±)
hh(n+1)(k): a double

sign corresponds. For more detail of the derivation, consult
Appendixes B 1–B 3.

In the case that the band hh(n + 1) is located above the
band e(h − 1), the resulting energy, represented by E (±)(k),
is cast into E (±)(k) = E (±)

hh(n+1)(k) � nω and E (±)(k) =
E (±)

e(n−1)(k) � nω, the expressions of which are given by
Eqs. (B34) and (B35), respectively. To avoid unnecessary
complication in these expressions, the approximations that
J0(zl ) ≈ 1 and Jn( 	=0)(zl ) ≈ 0 are made. Thus, these are read
as

E (±)
e(n−1)(k) ≈ −[{ω/2 − (η(k)2+|W (±)

0 |2)1/2}2 + |V (±)
0 |2]1/2

+ nω, (23)

and

E (±)
hh(n+1)(k) ≈ [{ω/2 − (η(k)2 + |W (±)

0 |2)1/2}2 + |V (±)
0 |2]1/2

+ nω, (24)

where

η(k) = d4(k) − ω

2
(25)

and d4(k) is given in Eq. (2). Furthermore, W (+)
0 =

[W (−)
0 ]∗ = −i�x/2 for the linearly polarized light, while

W (+)
0 = 0 and W (−)

0 = i�c for the circularly polarized light.

Defining V±)
0 as an approximation of V (±) of Eq. (B31) in

view of the above approximations, one has

|V (±)
0 | = tspσ

(±)
√

sin2 (kxdx ) + sin2 (kydy), (26)

where the prefactor σ (±) depending on the polarization of
light is given by Eq. (B51). In Eqs. (23) and (24), V (±)

0 is
attributed to D3(k, t ) and D5(k, t ) in Eq. (9), while W (±)

0
is attributed to H′(t ). Hereinafter, it is understood that, in
the opposite case that hh(n + 1) is located below e(h − 1),
the subscript of e(n − 1) is replaced by that of hh(n + 1) in
the above equations; that is, E (±)(k) = E (±)

hh(n+1)(k) � nω and

E (±)(k) = E (±)
e(n−1)(k) � nω.

Now, one examines the possibility of creating Dirac nodal
points on the kz axis that result from band inversion for the
irradiation of the linearly polarized light. It is likely that
the band e(n − 1) crosses the band hh(n′ + 1) for n = n′ at
k = (0, 0, kz ) when E (±)

e(n−1)(k) = E (±)
hh(n+1)(k). Here, one takes

account of the pair of Floquet bands of e(−1) and hh(1).
These bands are enabled to be inverted to form a pair of Dirac
nodes at the positions ±kD(±) ≡ ±(0, 0, kD(±)

z ) subject to the
equation

εz
(
kD(±)

z

) = 1
2

[
ω − Eg +

√
ω2 − �2

x

]
(27)

in terms of εz(kz ) defined in Eq. (4) under the condition that

ωD
1 < ω < ωD

2 , (28)

where

ωD
1 = Max

(
�x,


2
g + (�x/2)2


g

)
, (29)

and

ωD
2 = (
g − 4t z )2 + (�x/2)2


g − 4t z
. (30)

For more accurate expressions than Eqs. (27) and (28), consult
Eqs. (B36) and (B41), respectively.

The existence of these nodes exhibits the manifestation
of the Floquet DSM (FDSM) phases in the original crystal
of Zn3As2 that is in a topologically trivial phase. Due to
the T symmetry in addition with the time-glide I symmetry,
the up-spin and down-spin bands for the states e(−1) and
hh(1) are doubly degenerate; that is, E (+)

e(−1)(k) = E (−)
e(−1)(k)

and E (+)
hh(1)(k) = E (−)

hh(1)(k), and the above Dirac nodes are four-
fold degenerate, namely, kD(+)

z = kD(−)
z . Thus, it is considered

that the FDSM carries Chern number zero and is not topo-
logically protected [18]. In addition, as shown in Eq. (B53),
E (±)(k) � 0 forms an upper part of the Dirac cone (linear
dispersion) in the vicinity of k = kD(±), that is,

E (±)(k) ≈
⎡
⎣∑

l=x,y,

(
ξD

l

)2
(kldl )

2 + (
ξD

z

)2
(
kzdz )2

⎤
⎦

1/2

, (31)

where 
kz = kz − kD(±)
z , and the constants of ξD

x = ξD
y and

ξD
z are given right below Eq. (B53).

Furthermore, in the similar manner to DSMs created by
the band inversion mechanism in stationary systems such
as Cd3As2 and Na3Bi [7,8,11,14,18], two-dimensional (2D)
nontrivial surface states are also expected in the FDSM phase.
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FIG. 1. The scheme of the surface state formation. (a) In the
FDSM arising from the drive of linearly polarized laser, this phase
hosts nontrivial surface states with up-spin (red) and down-spin
(blue) that are pinned to a pair of surface Dirac nodes at kz = ±kD(±)

z .
(Here, kD(±)

z is replaced by the notation of kD
z just for the sake of

simplicity.) (b) In the FWSM arising from the drive of left-hand
circularly polarized laser, due to the breaking of the T symmetry,
the Dirac nodes of the above FDSM are split into a pair of Weyl
nodes, and each FWSM phase hosts a nontrivial surface state. One
surface state (red) is characteristic of an up-spin band and is pinned
to a pair of surface Dirac nodes at kz = ±k(+)

z . The other state (blue)
is characteristic of a down-spin band and is pinned to a pair of surface
Dirac nodes at kz = ±k(−)

z . (Here, kW (±)
z is replaced by the notation

of k(±)
z just for the sake of simplicity.) For more detail, consult the

text.

As shown schematically in Fig. 1(a), these surface states are
composed of up-spin and down-spin states forming a Kramers
pair, each energy band of which is attached to the same pair
of the Dirac nodes that are projected to the surface 2D BZ;
hereinafter, these projected Dirac nodes are termed “surface
Dirac nodes” or “surface Dirac points.” The intersection of the
Fermi energy with these two leaves of surface bands would
result in the formation of double Fermi arcs, supposing that
the whole of carriers are occupied just below EF in disregard
of the nonequilibrium system of concern.

Next, as regards the circularly polarized laser drive, the T
symmetry is broken to lift the twofold degeneracy between
up-spin and down-spin bands. Thus, the fourfold degeneracy
at the Dirac nodes (at ±kD(±)) are also lifted to be split into
two pairs of Weyl nodes residing at ±kW (−) ≡ ±(0, 0, kW (−)

z )
and ±kW (+) ≡ ±(0, 0, kW (+)

z ); a double sign corresponds.
The nodal momentum ±kW (−) is attributed to the down-spin
Floquet band, and its location is subject to the similar equa-
tion as Eq. (27), aside from the replacement of �x by 2�c,

εz
(
kW (−)

z

) = 1
2

[
ω − Eg +

√
ω2 − 4�2

c

]
, (32)

under the condition that

ω
W (−)
1 < ω < ω

W (−)
2 , (33)

where

ω
W (−)
1 = Max

(
2�c,


2
g + �2

c


g

)
, (34)

and

ω
W (−)
2 = (
g − 4t z )2 + �2

c


g − 4t z
. (35)

Here the ac-Stark effect plays a key role. On the other hand,
the nodal momentum ±kW (+) is attributed to the up-spin Flo-
quet band, and its location is subject to the equation

εz
(
kW (+)

z

) = ω − 
g, (36)

under the condition that

ω
W (+)
1 < ω < ω

W (+)
2 , (37)

where ω
W (+)
1 = 
g and ω

W (+)
2 = 
g − 4t z. Here, in contrast,

the ac-Stark effect is less significant because the optical in-
teraction given by V (+)(t ) of Eq. (20) has negligibly small
contributions in the case of ω ≈ Eg; consult Sec. II B. Thus,
it is obvious that kW (+)

z > kD(±)
z > kW (−)

z ; based on Eqs. (27),
(32), and (36), approximate values of kW (+)

z , kD(±)
z , and kW (−)

z

are estimated as kW (+)
z = 0.956/dz, kD(±)

z = 0.910/dz, and
kW (−)

z = 0.732/dz, respectively.
In addition, as shown in Eq. (B56), E (−)(k) forms an upper

part of the Weyl cone (linear dispersion) in the vicinity of k =
kW (−), that is,

E (−)(k) ≈
⎡
⎣∑

l=x,y,

(
ξW

l

)2
(kldl )

2 + (
ξW

z

)2
(
kzdz )2

⎤
⎦

1/2

, (38)

where 
kz = kz − k(W (−)
z and the constants ξW

x = ξW
y and

ξW
z are given right below Eq. (B56). On the other hand, as

shown in Eq. (B55), in contrast with E (−)(k), E (+)(k) forms
a quadratic dispersion with respect to kx and ky and a linear
dispersion with respect to 
kz in the vicinity of k = kW (+),
that is,

E (+)(k) ≈
∣∣∣∣∣∣(−t xy)

∑
l=x,y

(kldl )
2 + η(1)

z (
kzdz )

∣∣∣∣∣∣, (39)

where 
kz = kz − kW (+)
z and η(1)

z = −2t z sin (kW (+)
z dz ). Here,

a term of linear dispersion represented by
∑

l=x,y ν
(+)
l (kldl ) is

considered negligibly small, because the expansion coefficient
is given by |ν (+)

l | = tsp{tspJ1(zc)/[2η(kW (+) )]}2 due to the re-
duction of the spin-orbit interaction by the Peierls interaction
by a factor of the order of J1(zc) with zc ≡ zx = zy; see also
the explanation below Eq. (B55).

Furthermore, the FWSM band structure E (+)(k) in the
vicinity of the kx-ky plane (kz = 0) is examined. Following
Eq. (24) for d4(k) > ω/2, this is represented simply as

E (+)(k) ≈ ω − d4(k) (40)

within the order of tspJ1(zc) ≈ 0 due again to the reduction of
tsp by the Peierls interaction. Thus, there is a closed ring in the
kx-ky plane (kz = 0) on which E (+)(k) ≈ 0; the locus of this
ring is given by

−2t xy
∑
l=x,y

[1 − cos (kldl )] = ω − 
g > 0. (41)
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As regards the FWSM of the down-spin state, an effect of
�c causes a gap to open between E (−)

hh(1)(k) and E (−)
e(−1)(k) in

this plane. Consult Eq. (B59) and the related discussion in
Appendix B 3 on the closed ring formation in the kx-ky plane
(kz 	= 0) and the origin of the difference between the up- and
down-spin states.

Given the relation between Dirac points and Weyl points
in stationary systems, the surface Dirac point in the FDSM
is regarded as the stable merger of two Weyl points in the
FWSM that have different handedness and are projected to
the same surface momentum. Hereinafter, these Weyl points
are termed “surface Weyl nodes” or “surface Weyl points.”
Due to the breaking of the T symmetry and the resulting
splitting of the Dirac node into of the pair of Weyl nodes, the
associated energy bands of the two surfaces with different spin
states are pinned to different surface Weyl points, as shown
schematically in Fig. 1(b). That is, the surface band charac-
teristic of up-spin (down-spin) state is pinned to the surface
Weyl point projected from the bulk Weyl points at ±kW (+)

(±kW (−)). Furthermore, it is considered that the energy gap
E (+)

g arising from the hybridization between the up-spin Flo-
quet bands e(−1) and hh(1) are largely different from the
energy gap E (−)

g attributed to the down-spin bands mostly due
to the difference of magnitude between V (+)(t ) and V (−)(t ); to
be more specific, E (+)

g � E (−)
g . Such a difference is straight-

forwardly reflected on the band gaps projected to the surface
BZ; see Fig. 1(b). Therefore, it is speculated that most parts of
down-spin surface band are energetically separated from the
up-spin surface band; for more detail, consult Sec. III C.

B. Floquet band structures of Floquet-Dirac semimetals
and Floquet-Weyl semimetals

Figures 2(a) and 2(b) show the calculated Floquet band
structures of FDSMs and FWSMs, respectively, for the crystal
structure of Zn3As2 given in Fig. 2(d). In Fig. 2(a), it is
found that there is a Dirac node along the �-Z line at kD(±)

z
in addition to anticrossings along the lines of �-X and �-
M with energy differences of approximately 3 and 30 meV,
respectively. As shown in Fig. 2(b), the twofold degeneracy
confirmed in Fig. 2(a) is lifted to result in energy splitting
between the up-spin and down-spin bands. Note that a pair
of Weyl nodes emerges along the �-Z line at different kz

following kW (−)
z < kW (+)

z , as shown in the enlarged view of
Fig. 2(c). As regards the up-spin bands, the anticrossing along
the line of �-M is largely reduced from that in Fig. 2(a) to
approximately 0.4 meV, while the energy difference along
the line of �-X is almost the same as 2 meV. In contrast,
as regards the down-spin bands, the energy differences of
anticrossings along the lines of �-X is largely enhanced from
that in Fig. 2(a) to approximately 23 meV, while that along the
line of �-M is slightly changed to approximately 20 meV.

Figures 3(a) and 3(b) show the energy dispersions of the
up-spin and down-spin bands at kz = 0. In Fig. 3(a), the up-
spin band structure is reminiscent of a NLSM phase with a
nodal ring on the kx-ky plane; see also the enlarged figure of
it given in Appendix C. According to the analytic model
developed in Sec. III A, the locus of the ring is approximately
represented as Eq. (41). In fact, this ring is slightly blurred
at most by E (+)

g ≈ 2 meV around E = 0 that corresponds to

FIG. 2. Band structures of FDSM and FWSM. (a) The calculated
band structure of FDSM with the drive of a linearly polarized laser.
Inset shows an expanded view of the band structure in the vicinity of
the anticrossing along the �-X line. (b) The calculated band structure
of FWSM with the drive of a left-hand circularly polarized laser.
(c) Expanded view of panel (b) in the vicinity of the band crossing
along the �-Z line with specification of the Weyl nodes at k(+)

z and
k(−)

z ; these are the abbreviation of kW (+)
z and kW (−)

z , respectively. In
panels (a)–(c), bands dominated rather by the s-orbital (p-orbital)
component are denoted by a red (blue) solid line. (d) The bulk BZ of
the crystal Zn3As2.

the above-mentioned energy difference along the line of �-X.
On the other hand, it is obviously seen in Fig. 3(b) that the
down-spin band is gapped by the order of E (−)

g ≈ 20 meV due
to the relatively strong anticrossing between e(−1) and hh(1);
see also the enlarged figure of it given in Appendix C.

The definite contrast in the energy dispersions between up-
spin and down-spin bands seen in Figs. 3(a) and 3(b) is caused
by the different manner of couplings between the Floquet
states of e(−1) and hh(1). Note that the leading contribution
arises from a two-photon coupling between e(−1) and hh(1),
because the difference of the photon number of these Floquet
bands equals two. This coupling is given by a successive
interaction composed of the coupling due to D̃4,nn′ (k, ω) and
one of the three terms, D̃ j,nn′ (k, ω), ( j = 3, 5) and H̃′

nn′ (ω), in
Eq. (12) with |n − n′| = 1. For example, for down-spin bands,
it is likely that hh(1) is mediated by a two-photon interaction,
H̃′

01(ω) followed by D̃4,−10(k, ω), to be coupled with e(−1).
As regards up-spin bands, because the effect of H̃′

01(ω) is
negligibly small, hh(1) is coupled with e(−1) by a two-photon
interaction, D̃ j,01(k, ω), ( j = 3, 5) followed by D̃4,−10(k, ω).
The magnitudes of interactions H̃′

01(ω) and D̃ j,01(k, ω), ( j =
3, 5) are roughly evaluated to be �c and J1(zc)tsp, respec-
tively; consult Eqs. (20), (A3), and (A5). Thus, it is stated
that the inverted band gap E (−)

g in the down-spin state is
mostly caused by a strong resonant electric-dipole coupling,
while E (+)

g in the up-spin state is just attributed to an optical
spin-orbit coupling, namely, a spin-orbit coupling reduced by
a factor of J1(zc); actually, �c = 5.49 × 10−3 � tspJ1(zc) =
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FIG. 3. Energy dispersions E (±)(k) of up-spin and down-spin
bands at kz = 0 and in the vicinity of the Weyl points. The axis
of the abscissa kl is gauged in units of 1/dl with l = x, y, z. Here,
E (±)(k) is simply represented as E (k), and bands dominated rather
by the s-orbital (p-orbital) component are denoted by a red (blue)
solid line. (a) E (k) in the kx-ky plane at kz = 0 for the up-spin bands.
(b) The same as panel (a) but for the down-spin bands. (c) E (k)
as a function of kx with ky = 0 in the vicinity of the Weyl point
kW (+) for the up-spin bands. (d) The same as panel (c) but in the
vicinity of the Weyl point kW (−) for the down-spin bands. (e) E (k)
as a function of kz with kx = ky = 0 for the up-spin bands with the
Weyl points ±kW (+)

z = ±0.887/dz. (f) The same as panel (e) but for
the down-spin bands with the Weyl points ±kW (−)

z = ±0.775/dz.

2.07 × 10−4. The resulting FWSM phase for the up-spin state
is considered as a Floquet NLSM (FNLSM) phase that is
generated by the drive of the present circularly polarized
light.

Such sharp distinction between the up-spin and down-spin
bands is also seen in the energy dispersions in the kx direction
in the vicinity of the Weyl points at kW (+) and kW (−), respec-
tively, as shown in Figs. 3(c) and 3(d). Note that the up-spin
band crosses with quadratic band touching, following

E (+)(k) ≈ (−t xy)(kxdx )2 � 0, (42)

as given in Eq. (39), while the down-spin band crosses with
linear band touching, as often happens, following

E (−)(k) ≈ ξW
x |kxdx| � 0, (43)

as given in Eq. (38), where ξW
x is of the order of tsp. In fact,

there is a contribution from the linear dispersion of the form

of ν (+)
x (kxdx ) in Eq. (42), however, this is neglected because

of ν (+)
x � 1, as mentioned before.

Furthermore, it is seen in Figs. 3(e) and 3(f) that the two
bands of e(−1) and hh(1) are inverted to form a pair of
Weyl nodes along the kz axis at kW (±)

z and −kW (±)
z . These

dispersions in the vicinity of kW (±) are given by

E (+)(k) ≈ η(1)
z |
kzdz| � 0 (44)

for the up-spin state, and

E (−)(k) ≈ ξW
z |
kzdz| � 0 (45)

for the down-spin state, following Eqs. (39) and (38), re-
spectively. Here, the obtained numerical value of kW (+)

z (=
0.887/dz ) is greater than that of kW (−)

z (= 0.775/dz ), which
is in harmony with the qualitative discussion based on the
approximated expressions of Eqs. (32) and (36); consult the
values thus obtained for kW (±)

z below Eq. (37). It is specu-
lated that the difference of the former numerical values from
the latter approximate ones is attributed to the nonresonant
contributions of interband couplings beyond the rotating-wave
approximation in the nearly resonant two-band model adopted
in Sec. III A. Actually, the intense laser field is applied to the
system of concern with the order of �c/ω ≈ 0.37, and hence,
for instance, the Floquet band hh(1) is somewhat coupled
with other nonresonant bands of e(n 	= 0) in addition with the
nearly resonant band e(0).

C. Surface states

Here, it is considered that a vanishing boundary condition
in the y direction is imposed on the Floquet eigenvalue prob-
lem given by Eq. (10) in place of a periodic boundary condi-
tion. To be specific, an electron is confined in the finite range
of y from L1 = 0 to L2 = 40 a.u., while it moves freely in
the x-z plane. Such confinement results in energy dispersions
E (k̄) that are the projection of bulk bands E (k) on the kx-kz

plane where k̄ = (kx, kz ). Furthermore, it is likely that surface
states are hosted by the projected bands. For the sake of the
later convenience, the positions of surface Weyl nodes for the
up-spin and down-spin bands are represented as ±k̄

W (+) =
±(0, kW (+)

z ) and ±k̄
W (−) = ±(0, kW (−)

z ), respectively.
Figure 4 shows the projected energy dispersions of down-

spin bands with surface states at three different kz. As shown
in Fig. 4(a), at kz close to kW (−)

z , the inverted bands of e(−1)
and hh(1) form a definite energy gap E (−)

g , hosting a pair of
surface states just in a small range of kx. It is evident that, as kz

becomes closer to k(−)
z , the range of kx becomes more reduced,

and, eventually, the pair of surface states are embedded in the
surface Weyl point at k̄

W (−)
. Meanwhile, it is remarked that

the appearance of such a pair is due to a numerical artifact
ascribable to the above-mentioned confinement of electron
in the finite range in place of a semi-infinite confinement
corresponding to L2 = ∞. Here, it is understood that, in all
of the panels of Fig. 4, just the surface states with a positive
gradient are taken account of. As shown in Figs. 4(b)–4(d),
with the further decrease of kz, the range of kx in which the
surface state is supported becomes larger, and is maximized at
kz = 0, where this range extends over a half of the BZ in the kx

direction. Moreover, as kz changes from kz = 0 to the negative
kz direction, the range of kx turns to a decrease, and eventually,
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FIG. 4. Projected energy dispersions E (k̄) with a surface state of
down-spin. The axis of the abscissa, kx , is gauged in units of 1/dx .
Here, bands dominated rather by the s-orbital (p-orbital) component
are denoted by a red (blue) solid line. (a) E (k̄) at kz = 0.7 slightly
smaller than kW (−)

z . Inset shows an expanded view of the band struc-
ture in the vicinity of E (k̄) = 0. (b) The same as panel (a) but at
kz = 0.35. (c) The same as panel (a) but at kz = 0. (d) Enlarged view
of panel (c).

at kz = −kW (−)
z , the surface state is incorporated with another

surface Weyl point at −k̄
W (−)

; though not shown here. These
nontrivial surface states sliced in the interval −kW (−)

z � kz �
kW (−)

z are unified to form a tilted surface band in the kx − kz

plane. Both edges of it are pinned to the respective surface
Weyl points at ±k̄

W (−)
. This surface band is schematically

depicted as the tilted surface that is colored blue in the right
figure of Fig. 1(b).

Figures 5(a)–5(c) show the projected energy dispersions
of up-spin bands with surface states at three different kz. It is
seen that the pattern of variance of the surface states formed
here follows that shown in the down-spin bands of Fig. 4.
However, the energy gap E (+)

g is much smaller than E (−)
g ,

and as seen in Fig. 5(d), the surface band is slightly tilted
with overall negative gradient and undulation. The pattern
of variance in the negative kz direction is also subject to that
seen in the down-spin bands, although not shown here. As
a result, the nontrivial surface states sliced in the interval
−kW (+)

z � kz � kW (+)
z form a slightly tilted and undulated

surface band in the kx-kz plane. Both edges of it are pinned
to the respective surface Weyl points at ±k̄

W (+)
. This surface

band is schematically depicted as the tilted surface that is
colored red in the left figure of Fig. 1(b).

D. Physical properties

First, discussion is made on the chirality of the FWSM
phases and the related topological phase transitions. It
is considered that based on the qualitative discussion in

FIG. 5. Projected energy dispersions E (k̄) with a surface state of
up-spin. The axis of the abscissa, kx , is gauged in units of 1/dx . Here,
bands dominated rather by the s-orbital (p-orbital) component are
denoted by a red (blue) solid line. (a) E (k̄) at kz = 0.8 slightly smaller
than kW (+)

z . Inset shows an expanded view of the band structure in
the vicinity of E (k̄) = 0. (b) The same as panel (a) but at kz = 0.4.
(c) The same as panel (a) but at kz = 0. (d) Enlarged view of panel
(c).

Sec. III A, the conditions of generating the Weyl nodes for
the up-spin and down-spin states are approximately evaluated
as Eqs. (37) and (33), respectively. According to these, when
ω is made greater from ω

W (±)
1 and eventually identical to

ω
W (±)
2 , the Weyl nodes at kW (±) move along kz axis from the

� point kz = 0 toward the boundary of the BZ at kz = π/dz

to annihilate with the other pair of the Weyl nodes at −kW (±)

that move in the opposite direction toward the boundary at
kz = −π/dz; a double sign corresponds. This implies that the
Weyl nodes at kW (±) possess opposite handedness from that at
the other Weyl nodes at −kW (±). In other words, there should
be the relations that

h(+)
+ h(+)

− = −1, h(−)
+ h(−)

− = −1, (46)

where h(+)
± and h(−)

± , which are either 1 or −1, represent
helicities of the Weyl cones at ±kW (+) for the up-spin and
±kW (−) for the down-spin, respectively. Furthermore, note
that the handedness of the Weyl node for the up-spin state at
kW (+)(−kW (+) ) is opposite from that for the down-spin state at
kW (−)(−kW (−) ), because a pair of Weyl nodes for the up-spin
and down-spin states at kW (+) and kW (−), respectively, are gen-
erated by splitting the Dirac node at kD(±) due to the breaking
of the T symmetry. That is, there should be the relations that

h(+)
+ h(−)

+ = −1, h(+)
− h(−)

− = −1. (47)

Actually, the above relations (46) and (47) are confirmed by
defining these helicities as Eqs. (B64) and (B69), followed by
mathematical evaluation, as developed in Appendix B 4. Here,
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FIG. 6. Frequency dependence of energy dispersions E (±)(k) of
up-spin and down-spin bands as a function of kz with kx = ky = 0
for ω equal to (a) 0.2 eV (7.35 × 10−3 a.u.), (b) 0.3 eV (1.10 × 10−2

a.u.), (c) 0.35 eV (1.29 × 10−2 a.u.), (d) 0.4 eV (1.47 × 10−2 a.u.),
(e) 0.5 eV (1.84 × 10−2 a.u.), and (f) 0.7 eV (2.57 × 10−2 a.u.).
The abscissa kz is gauged in units of 1/dz. Panel (d) is the same as
Figs. 3(e) and 3(f). Here, the legend of ordinate E (±)(k) is simply
represented as E . The up-spin bands e(−1) and hh(1) are depicted
by blue solid lines, and the down-spin bands e(−1) and hh(1) are
depicted by red solid lines. The parent bands are also labeled as e(0)
and hh(0). In all panels, red solid lines are partially superimposed on
blue solid lines.

these expressions of helicities are extracted from effective
Floquet-Weyl Hamiltonians of Eqs. (B61) and (B66), which
are reduced from the original Floquet Hamiltonian of Eq. (12).
Here, one mentions that, recently, dynamical characterization
of Floquet-Weyl nodes was discussed in Ref. [71].

In passing, when ω exceeds ω
W (±)
2 , the topological order

is changed from the FWSM phase to a phase of Floquet
topological insulator due to the gap opening. Furthermore, the
reduction of ω below ω

W (±)
1 in the other direction brings the

FWSM phase just back to a trivial insulator phase.
Figure 6 shows the energy dispersions E (±)(k) of up-spin

and down-spin bands as a function of kz with kx = ky = 0 for
ω = 0.2–0.7 eV. Below, discussion is made on the alteration
of just e(−1) and hh(1) bands of an up-spin state (depicted
by blue solid lines) and a down-spin state (depicted by red
solid lines) with respect to ω. In Fig. 6(a) for ω = 0.2 eV, both

spin bands are not inverted, and in Fig. 6(b) for ω = 0.3 eV,
the up-spin band is inverted to form a FWSM phase with a
pair of Floquet-Weyl nodes while the down-spin band is left
open. In Fig. 6(c) for ω = 0.35 eV, both bands become in-
verted to form FWSM phases with two pairs of Floquet-Weyl
nodes, and similarly, in Fig. 6(d) for ω = 0.4 eV (<Eg), both
bands remain inverted. Such band inversion is still retained
in Figs. 6(e) and 6(f) even for ω = 0.5 and 0.7 eV (>Eg).
Incidentally, the discontinuities of the down-spin band seen
in Figs. 6(e) and 6(f) are due to an anticrossing between
e(−1) and hh(0) and that between e(0) and hh(1). It is worth
comparing these numerical results with the results estimated
by Eqs. (37) and (33) based on the analytic model in Sec. III A,
where ω

W (+)
1 = 0.23 eV, ωW (+)

2 = 0.64 eV, ωW (−)
1 = 0.33 eV,

and ω
W (−)
2 = 0.67 eV. It is found that aside from Fig. 6(f), the

above-stated changes of topological order with respect to ω

are well consistent with these estimated existence conditions
of FWSM phases. The variance seen in Fig. 6(f) is due to the
breaking of the rotational-wave approximation adopted in this
model. Actually, this approximation is considered accurate
under the situation that ω ≈ Eg (=0.46 eV).

Second, discussion is made on a magnetic property in-
duced by the irradiation of the intense laser with a left-hand
circular polarization. As far as the nearly resonant optical
transition is concerned, down-spin electrons that are situated
in a valence band before the irradiation are selectively ex-
cited to a conduction band, and some fractions of the excited
electrons are deexcited back to the valence band due to the
Rabi oscillation, whereas up-spin electrons remain almost in
the valence band, consult Sec. II B. In terms of the Floquet
picture, these excitation and deexcitation processes in a series
of the nonequilibrium dynamics are interpreted as couplings
between one pair of down-spin bands hh(1) and e(0), and
between another pair of down-spin bands hh(0) and e(−1),
respectively. Thus, carriers are likely distributed to both bands
of e(−1) and hh(1), which are further coupled by the two-
photon interaction mentioned in Sec. III B to form the FWSM
phase through the ac-Stark splitting. On the contrary, it is
considered that the up-spin bands of e(−1) and hh(1) are
almost unoccupied. Therefore, the down-spin electrons are
exclusively distributed over the surface, while these coexist
with the up-spin electrons in the bulk though both electronic
states are energetically separated by the amount of E (−)

g .
This implies that the system of concern exhibits transient

surface magnetization with down-spins that survive for as
long as the associated population relaxation time, besides
bulk magnetization that is expected to be induced as well.
In addition with such an effect of spin magnetization, it is
likely that the circularly polarized laser induces the inverse
Faraday effect, which is a sort of a generation mechanism
of orbital magnetization [98–102]. This effect is expected to
contribute the above surface magnetization to a certain extent.
Indeed, the surface magnetization seems faint and transient,
but the magnitude of it can be somewhat enhanced by increas-
ing the strength of the circularly polarized laser. Moreover,
the measurement of such an intriguing phenomenon would
be feasible by means of the longitudinal magneto-optic Kerr
effect that can detect the degree of strength of magnetization
manifested just in the surface [107–109]. To do this, a pump-
probe measurement is expected to be effective, in which a
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linear polarized laser causing the magneto-optic Kerr effect is
incorporated as a probe in addition with the pump laser with
the left-hand circular polarization.

Below, additional comments on the results described in
Secs. III A–III C are enumerated.

(1) The up-spin FWSM band is considered as a FNLSM
phase because the band gap of E (+)

g is of the order of 2 meV,
consult Sec. III B. Actually, such small energy separation and
the concomitant surface state would be possibly smeared with
homogeneous broadening due to an electron correlation effect
and inhomogeneous broadening due to finite temporal width
of a laser pulse—in place of the ideal continuous-wave laser—
which is of the order of a couple of meV for a picosecond
pulse. Although the up-spin bands are almost unoccupied as
stated above, these would be detectable by reconstructing
the optical system of concern as follows: the up-spin bands
of e(−1) and hh(1) are excited in advance by an intense
ultrashort pulse laser with linear polarization, followed by
the irradiation of the picosecond pulse (the continuous-wave
laser) with left-hand circular polarization.

(2) In view of the above comment (1), the surface states
hosted by the down-spin band are entirely embedded in the
continuum (bulk) of the FNLSM phase of the up-spin band,
consult Figs. 4 and 5. When a spin-flip interaction attributed
to the spin-orbit coupling is tuned on, the surface states be-
come somewhat unstable due to the effect of Fano resonance,
namely, the collapse of the discrete levels of the surface states
into the continuum states which is caused by the interaction
between both of these states [110]. The spin-flip interaction
becomes effective when either d1(k) or d2(k) has a non-
negligible contribution to the effective Hamiltonian given in
Eq. (6).

(3) The crystal Zn3As2 has a bulk rotational symmetry
around the z axis and this leads to the formation of FWSMs
under the conditions of Eqs. (33) and (37). In fact, there
remains internal compression normal to this axis within the
crystal and this symmetry is considered partially broken. Such
breaking will open up a slight gap to make the Floquet system
of concern insulating [7].

IV. CONCLUSIONS

It is found that the narrow-gap semiconductor Zn3As2 is
driven by a left-hand circularly polarized continuous-wave
laser with frequency nearly resonant with the band gap Eg to
produce the two types of FWSM phases simultaneously in the
crystal, which are sharply distinguished by their spins. The

bulk rotational symmetry around the z axis protects a pair of
Weyl nodes with opposite chirality along the kz axis in the re-
spective FWSM phases under the condition of either Eq. (33)
or Eq. (37). In the down-spin FWSM phase, the Floquet bands
of e(−1) and hh(1) touch in a linear manner in the vicinity of
the Weyl nodes situated at ±kW (−), hosting the nontrivial sur-
face states pinned to both nodes. Since the above-mentioned
laser makes electrons excited exclusively in the down-spin
Floquet bands, it is considered that the surface states are
selectively occupied by such spin-polarized electrons, show-
ing transient magnetization with partial modification by the
inverse Faraday effect. This surface magnetization would be
measured by virtue of the magneto-optic Kerr effect. On the
other hand, in the up-spin FWSM phase, the Floquet bands of
e(−1) and hh(1) touch in the vicinity of the Weyl nodes situ-
ated at ±kW (+) almost in a quadratic manner in the kx and ky

directions and in a linear manner in the kz direction. Because
of the negligibly small band gap, this up-spin FWSM phase is
rather considered as the FNLSM phase. To detect this phase
somehow or other, it would be necessary to make excited
electrons occupied in the up-spin bands in advance prior to the
irradiation of the circularly polarized laser. The exploration
of the transient nonequilibrium dynamics of the concerned
system is inevitable in addition with Floquet band structures
to deepen the understanding of the underlying physics of the
FWSMs.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR
D̃ j,nn′ (k, ω) ( j = 3–5) AND Ṽ (±)

nn′

The Floquet matrix element D̃ j,nn′ (k, ω) seen in Eq. (12) is
given by

D̃ j,nn′ (k, ω) = 1

T

∫ T

0
dte−i
nωt D j (k, t ), (A1)

with 
n = n − n′. This is expressed in terms of the N th-order
Bessel function of the first kind

JN (zl ) = 1

2π

∫ 2π

0
dθe−iNθ eizl sin θ , (A2)

with zl = Fldl/ω (l = x, y) as follows:

D̃3,nn′ (k, ω) =
{

tspJ
n(zx ) sin (kxdx ) for 
n = 0,±2,±4, . . .

itspJ
n(zx ) cos (kxdx ) for 
n = ±1,±3, . . . ,
(A3)

D̃4,nn′ (k, ω) =

⎧⎪⎨
⎪⎩


g − �l=x,y2t xy[1 − J0(zl ) cos (kldl )] − 2t z[1 − cos (kzdz )] for 
n = 0

2t xy
[
J
n(zx ) cos (kxdx ) + J
n(zy) cos

(
kydy + 
n

2 π
)]

for 
n = ±2,±4, . . .

2t xy
[− iJ
n(zx ) sin (kxdx ) + J
n(zy) cos (kydy + 
n

2 π )
]

for 
n = ±1,±3, . . . ,

(A4)

and

D̃5,nn′ (k, ω) =
{

i
ntspJ
n(zy) sin (kydy) for 
n = 0,±2,±4, . . .

i(
n−1)tspJ
n(zy) cos (kydy) for 
n = ±1,±3, . . . .
(A5)
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Furthermore, the Fourier transform of the electric-dipole
interaction V (±)(t ) of Eq. (16), given by

Ṽ (±)
nn′ = 1

T

∫ T

0
dte−i
nωtV (±)(t ), (A6)

is cast into

Ṽ (±)
nn′ =

⎛
⎜⎜⎜⎜⎝

0 1
2i (�y ± �x )δn,n′+1

− 1
2i (�y ∓ �x )δn,n′−1

1
2i (�y ∓ �x )δn,n′+1

− 1
2i (�y ± �x )δn,n′−1 0

⎞
⎟⎟⎟⎟⎠.

(A7)

APPENDIX B: ANALYTIC EXPRESSIONS OF ENERGY
DISPERSION E(k)

1. Floquet Hamiltonian and approximate eigenvalues

The eigenvalue problem of the following Floquet Hamilto-
nian for up- and down-spins,

L(±)(k, t ) = H (±)(k, t ) + V (±)(t ) − iI2
∂

∂t
, (B1)

is solved approximately to obtain analytic expressions of
eigenvalue E (k), where H (±)(k, t ) and V (±)(t ) are given
in Eqs. (18) and (16), respectively. The associated Fourier-
Floquet matrix L̃(±)(k, ω) is represented as

L̃(±)(k, ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

. . . L(±)
n,n X (±)

n,n−1 . . .

. . . X (±)
n−1,n L(±)

n−1,n−1 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B2)

where L(±)
n,n and X (±)

n,n−1 are 2 × 2 block matrices defined by

L(±)
n,n =

(
L̃(±)

1(n)1(n) L̃(±)
1(n)2(n+1)

L̃(±)
2(n+1)1(n) L̃(±)

2(n+1)2(n+1)

)
(B3)

and

X (±)
n,n−1 =

(
L̃(±)

1(n)1(n−1) L̃(±)
1(n)2(n)

L̃(±)
2(n+1)1(n−1) L̃(±)

2(n+1)2(n)

)
, (B4)

with X (±)
n−1,n = [X (±)

n,n−1]†, respectively. Here, L̃(±)
b(n)b′(n′ ) is a

Fourier-transform of the (b, b′) matrix element of L(±)(k, t ),
that is,

L̃(±)
b(n)b′(n′ ) = 1

T

∫ T

0
dte−i
nωt L(±)

bb′ (k, t ), (B5)

where it is understood that the index b = 1 (2) represents the
conduction (valence) band.

Now, an approximation is made that L̃(±)(k, ω) is replaced
by a sequence of 4 × 4 block matrices {L(±)

n },

L̃(±)(k, ω) ≈

⎛
⎜⎜⎜⎜⎜⎝

. . .

L(±)
n+1 O

L(±)
n

t O L(±)
n−1

. . .

⎞
⎟⎟⎟⎟⎟⎠, (B6)

where the off-diagonal elements are represented in terms of
a null upper-triangular block O and its transpose t O, and the
diagonal block matrix is given by

L(±)
n =

(
L(±)

n,n X (±)
n,n−1

X (±)
n−1,n L(±)

n−1,n−1

)
. (B7)

It is obvious that this corresponds to the rotating-wave ap-
proximation, in which just almost resonant coupling terms
of X (±)

n,n−1 and X (±)
n−1,n are sustained, and the rest terms are

disregarded. In Eq. (B3), the diagonal elements of L̃(±)
1(n)1(n) and

L̃(±)
2(n+1)2(n+1) of L(±)

n,n are strongly coupled by the off-diagonal

element, L̃(±)
1(n)2(n+1) and L̃(±)

2(n+1)1(n) representing interband in-
teractions, when an almost on-resonant condition is met.
Setting a set of eigenvalues and the associated eigenvectors
of L(±)

n,n as E (±)
n,α and u(±)

n,α with α = 1, 2, respectively, that is,

L(±)
n,n u(±)

n,α = E (±)
n,α u(±)

n,α , (B8)

with U (±)
n as a 2 × 2 unitary matrix given by

U (±)
n = (u(±)

n,1 u(±)
n,2 ), (B9)

L̄(±)
n defined as

L̄(±)
n = U (±)†

n L(±)
n U (±)

n (B10)

becomes of the form

L̄(±)
n =

(
E (±)

n X̄ (±)
n,n−1

X̄ (±)
n−1,n E (±)

n−1

)

=

⎛
⎜⎜⎜⎝
E (±)

n,1 0 × ×
0 E (±)

n,2 V (±) ×
× V (±)∗ E (±)

n−1,1 0
× × 0 E (±)

n−1,2

⎞
⎟⎟⎟⎠, (B11)

where

E (±)
n =

(
E (±)

n,1 0

0 E (±)
n,2

)
(B12)

and

X̄ (±)
n.n−1 = U (±)†

n X (±)
n,n−1U

(±)
n−1 ≡

( × ×
V (±) ×

)
. (B13)

In the second equality of the above equation, V (±) represents
the (2,1) components of X̄ (±)

n.n−1 and all other components are
expressed just as a symbol ×; V (±) is independent of n, as
shown later. Here, it is supposed that just the component V (±)

is retained with neglecting the components denoted as ×.
Thus, one obtains two kinds of eigenenergies from

Eq. (B11),—denoted as E (±)
n,β (k) with β = 1, 2—which are the

eigenvalues of the 2 × 2 block matrix

L̄(±)
D,n ≡

(
E (±)

n,2 V (±)

V (±)∗ E (±)
n−1,1

)
. (B14)

Explicit expressions of E (±)
n,β are provided as

E (±)
n,β (k) = 1

2 [E (±)
n,2 + E (±)

n−1,1
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− (−1)β
√

(E (±)
n,2 − E (±)

n−1,1)2 + 4|V (±)|2]. (B15)

Therefore, the approximate eigenvalues of L̃(±)(k, ω) of
Eq. (B6) are given in terms of a series of the set of eigenvalues
{E (±)

n,1 (k), E (±)
n,2 (k)}.

2. Energy dispersions of Floquet-Weyl semimetal states

The more detailed expressions of E (±)
n,β (k) are sought. To

do this, E (±)
n,α is represented in terms of the matrix elements of

Eq. (B3) as

E (±)
n,α = 1

2

[
ε0(±)

n − (−1)α
√

(
ε
(±)
n )2 + 4|W (±)|2], (B16)

where

ε0(±)
n = L̃(±)

1(n)1(n) + L̃(±)
2(n+1)2(n+1), (B17)


ε (±)
n = L̃(±)

1(n)1(n) − L̃(±)
2(n+1)2(n+1), (B18)

and

W (±) = L̃(±)
1(n)2(n+1). (B19)

According to the explicit expressions of D̃ j,nn′ (k, ω) obtained
in Appendix A, it is shown that

ε0(±)
n = (2n + 1)ω (B20)

and


ε (±)
n ≡ 2η(k) = 2D(k) − ω, (B21)

where

D(k) = 
g + εz(kz ) −
∑
l=x,y

2t xy[1 − J0(zl ) cos (kldl )],

(B22)

with

εz(kz ) = −2t z[1 − cos (kzdz )]. (B23)

Similarly, in view of Ṽ (±)
nn′ given in Appendix A, one has

W (+) = − i

2
�x − itspJ1(zx ) cos (kxdx )

W (−) = (W (+) )∗ (B24)

for the linearly polarized light, and

W (+) = −itspJ1(zc)[cos (kxdx ) + cos (kydy)]

W (−) = itspJ1(zc)[cos (kxdx ) − cos (kydy)] + i�c

(B25)

for the circularly polarized light, with �c ≡ �x = �y and
zc ≡ zx = zy.

Furthermore, U (±)
n of Eq. (B9) is given by

u(±)
n,1 =

(
cos �(±)

sin �(±)e−i�(±)

)
(B26)

and

u(±)
n,2 =

(
sin �′(±)ei�(±)

cos �′(±)

)
, (B27)

where

tan �(±) = |W (±)|
η(k) +

√
η(k)2 + |W (±)|2 , (B28)

tan �′(±) = − tan �(±), (B29)

and

ei�(±) = W (±)

|W (±)| . (B30)

Thus, V (±) of Eq. (B13) is approximately given by

V (±) ≈ L̃(±)
1(n)2(n) sin �(±) sin �′(±)e−2i�(±)

, (B31)

where just the most dominant component L̃(±)
1(n)2(n) in X (±)

n,n−1 of
Eq. (B4) is kept under the condition that J0(zl ) � Jn(�1)(zl ) in
the range of zl concerned here. To be more specific, L̃(±)

1(n)2(n) is
represented as

L̃(±)
1(n)2(n) = ±tsp[J0(zx ) sin (kxdx ) ∓ i sin (kydy)] (B32)

for linearly polarized light, and

L̃(±)
1(n)2(n) = ±tspJ0(zc)[sin (kxdx ) ∓ i sin (kydy)] (B33)

for circularly polarized light.
According to the above results, E (±)

n,β (k) of Eq. (B15) is cast
into

E (±)
n,β (k) = nω + E (±)

0,β (k), (B34)

where

E (±)
0,β (k) = (−1)β−1[{ω/2 − (η(k)2

+ |W (±)|2)1/2}2 + |V (±)|2]1/2. (B35)

Obviously, it is likely that these two photon sidebands,
E (±)

n,1 (k) and E (±)
n′,2 (k), touch each other when the following

conditions are met: n = n′ and the expression inside the
square brackets of Eq. (B35) vanishes. The second condition
is ensured only when kx = ky = 0, that is, V (±) = 0. Thus, this
becomes the existence condition of a touching point at kD/W (±)

z
satisfying the relation

εz
(
kD/W (±)

z

) = ω/2 − 
′
g +

√
(ω/2)2 − |W (±)

0 |2, (B36)

where


′
g = 
g −

∑
l=x,y

2t xy[1 − J0(zl )] (B37)

and

W (±)
0 = W (±)|kx=ky=0 . (B38)

Here, kD(±)
z represents a solution of Eq. (B36) for the drive of

linearly polarized laser, while kW (±)
z for the drive of circularly

polarized laser. In view of Eq. (B23), a certain pair of values,
kD/W (±)

z and −kD/W (±)
z , exists under the condition that

−ω/2 + 
′
g <

√
(ω/2)2 − |W (±)

0 |2 < −ω/2 + 
′
g − 4t z,

(B39)

with t z < 0, and

ω/2 > |W (±)
0 |. (B40)
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The above condition is recast into

Max

(
2|W (±)

0 |, 
′2
g + |W (±)

0 |2

′

g

)
< ω

<
(
′

g − 4t z )2 + |W (±)
0 |2


′
g − 4t z

. (B41)

It is evident that these pairs of values kD/W (±)
z and −kD/W (±)

z
correspond to nodal points lying on the �-Z axis in the BZ for
FDSM and FWSM states.

3. Band structures of E (±)
hh(1)(k, ω) and E (±)

e(−1)(k, ω)

Here, the label b(n) (with b = e, hh) is introduced to rep-
resent a Floquet state attributed to b band with n photon
dressing; e and hh mean electron and heavy-hole bands, re-
spectively. Following this, a Floquet energy E (±)(k) is given
by

E (±)
hh(n+1)(k) ≡ E (±)

n,1 (k) � nω (B42)

and

E (±)
e(n−1)(k) ≡ E (±)

n,2 (k) � nω (B43)

in the case that a Floquet band hh(n + 1) is located
above a Floquet band e(n − 1). In the opposite case that
hh(n + 1) is located below e(n − 1), it is understood that
the above definition of E (±)

hh(n+1)(k) is replaced by that of

E (±)
e(n−1)(k).

Below, an energy dispersion of E (±)(k) = E (±)
hh(1)(k) � 0 in

the vicinity of kD/W (±) ≡ (0, 0, kD/W (±)
z ) is examined, where

E (±)
e(−1)(k) = −E (±)

hh(1)(k). To do this, η(k), W (±), and V (±) are
expanded around this point as follows:

η(k) ≈ η0 + η(1)
z (
kzdz ) +

∑
l=x,y

ηl (kldl )
2 + ηz(
kzdz )2,

(B44)

W (±) ≈ W (±)
0 +

∑
l=x,y

ω
(±)
l (kldl )

2, (B45)

and

V (±) ≈
∑
l=x,y

ν
(±)
l (kldl ), (B46)

where 
kz = kz − kD/W (±)
z , and the expansion coefficients η0,

η(1)
z , ηl , ηz, W (±)

0 , ω
(±)
l , and ν

(±)
l are represented by

η0 = 
′
g + εz

(
kD/W (±)

z

)− ω/2,

η(1)
z = −2t z sin

(
kD/W (±)

z dz
)
, (B47)

ηl ≈ −t xy, ηz = −t z cos
(
kD/W (±)

z dz
)
,

W (+)
0 = − i

2
�x, W (−)

0 = i

2
�x (linear)

W (+)
0 = 0, W (−)

0 = i�c (circular), (B48)

ω
(±)
l ≈ 0, (B49)

and

ν (±)
x = ±σ (±)tsp, ν (±)

y = −iσ (±)tsp, (B50)

respectively. It is considered that J0(zl ) ≈ 1 in the range of
zl concerned here in Eq. (B47), terms including tspJ1(zl ) are
neglected due to |J1(zl )| � 1 in Eqs. (B48) and (B49), and the
prefactor σ (±) is given by

σ (±) = sin �
(±)
0 sin �

′(±)
0 e−2i�(±)

0 (B51)

in Eq. (B50), where

�
(±)
0 = �(±)|k=kD/W (±) , �

′(±)
0 = �′(±)|k=kD/W (±) ,

�
(±)
0 = �(±)|k=kD/W (±) . (B52)

For the FDSM driven by the linearly polarized light,

E (±)(k)

≈
⎡
⎣
∣∣∣∣∣∣
∑
l=x,y

ν
(±)
l (kldl )

∣∣∣∣∣∣
2

+
(
η0η

(1)
z

)2

(ω/2)2 (
kzdz )2

⎤
⎦

1/2

=
⎡
⎣∑

l=x,y

(
ξD

l

)2
(kldl )

2 + (
ξD

z

)2
(
kzdz )2

⎤
⎦

1/2

, (B53)

where 
kz = kz − kD(±)
z , ξD

x = ξD
y = |σ (±)|tsp with

|σ (±)| = (�x/2)2

(�x/2)2 + (
η0 +

√
η2

0 + (�x/2)2
)2

(B54)

and ξD
z = |η0η

(1)
z |/(ω/2). Hence, it is seen that the Floquet

bands of E (±)
hh(1)(k) and E (±)

e(−1)(k) cross linearly at the Dirac

points of kD(±) and −kD(±). On the other hand, for the FWSM
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driven by the circularly polarized light,

E (+)(k) ≈
∣∣∣∣∣∣
∑
l=x,y

ηl (kldl )
2 + η(1)

z (
kzdz ) + ηz(
kzdz )2

∣∣∣∣∣∣
=
∣∣∣∣∣∣(−t xy)

∑
l=x,y

(kldl )
2 + η(1)

z (
kzdz ) + ηz(
kzdz )2

∣∣∣∣∣∣,
(B55)

due to W (+)
0 = 0 and ν (+)

x = iν (+)
y = σ (+)tsp ≈ 0 with

|σ (+)| = [tspJ1(zc)/(2η0)]2, where 
kz = kz − kW (+)
z , while

E (−)(k) ≈
⎡
⎣
∣∣∣∣∣∣
∑
l=x,y

ν
(−)
l (kldl )

∣∣∣∣∣∣
2

+
(
η0η

(1)
z

)2

(ω/2)2 (
kzdz )2

⎤
⎦

1/2

=
⎡
⎣∑

l=x,y

(
ξW

l

)2
(kldl )

2 + (
ξW

z

)2
(
kzdz )2

⎤
⎦

1/2

, (B56)

where 
kz = kz − kW (−)
z , ξW

x = ξW
y = |σ (−)|tsp with

|σ (−)| = (�c)2

(�c)2 + (
η0 +

√
η2

0 + (�c)2
)2

, (B57)

and ξW
z = |η0η

(1)
z |/(ω/2). Hence, it is seen that the Floquet

bands of E (+)
hh(1)(k) and E (+)

e(−1)(k) cross in a quadratic manner
in the kx and ky directions and in a linear manner in the kz

direction at the Weyl points of kW (+) and −kW (+). On the other
hand, those of E (−)

hh(1)(k) and E (−)
e(−1)(k) cross in a linear manner

at the Weyl points of kW (−) and −kW (−), similar to the FDSMs.
Finally, band structures in the vicinity of the kx-ky plane

with kz fixed are examined. For the FWSM of the up-spin
state, E (+)(k) is represented simply as

E (+)(k) ≈ |ω/2 − D(k)| (B58)

due to Eq. (B35), where W (+) and V (+) are neglected within
the order of tspJ1(zc) ≈ 0. Thus, E (+)

hh(1)(k) ≈ 0 for k situated
on the closed surface

−2t xy
∑
l=x,y

[1 − J0(zl ) cos (kldl )] − 2t z[1 − cos (kzdz )]

= ω − 
g > 0. (B59)

This shows that there exists a nodal ring in the kx-ky plane,
which is reminiscent of a NLSM phase in the FWSM of con-
cern. As regards the FWSM of the down-spin state, E (−)

hh(1)(k)

and E (−)
e(−1)(k) are gapped out in the kx-ky plane due to V (−)

that is not negligible. It is remarked that an accidental band
crossing occurs between these two bands at high-symmetry
points of k∗ = (0, 0, 0), (0,±π/dy, 0), (±π/dx, 0, 0), and
(±π/dx,±π/dy, 0) at which V (−) = 0, only when the relation

ω/2 =
√

η(k∗)2 + �2
c (B60)

is ensured. In passing, the similar result with that of the
FWSM of the down-spin state is applied for the FDSMs.

4. Floquet-Weyl Hamiltonian and chirality

Here, effective Floquet-Weyl Hamiltonians the eigenvalues
of which are given by Eqs. (B55) and (B56) are derived from
Eq. (B14) in the vicinity of the Weyl points kW (+) and kW (−).
The Hamiltonian for the up-spin band, represented as LW (+)

n ≡
L̄(+)

D,n, is cast into

LW (+)
n = nω +

( −η(1)
z (
kzdz )

∑
l=x,y ν

(+)
l (kldl )∑

l=x,y ν
(+)∗
l (kldl ) η(1)

z (
kzdz )

)

= nω + h(+)
+ p(+) · σ, (B61)

where Eqs. (B16) and (B44)–(B46) are used, and Eq. (B50)
is considered, namely, ν (+)

y = −iν (+)
x with ν (+)

x real. Fur-
thermore, the effective momentum p(+), defined in the
right-handed system, is given by

p(+)
l = h(+)

+
∑

l ′=x,y,z

v
(+)
ll ′
(
kl ′ − kW (+)

l ′
)≡ h(+)

+ v
(+)
l · (k − kW (+) ),

(B62)

where

v(+)
x = (ν (+)

x dx, 0, 0)

v(+)
y = (0, ν (+)

x dy, 0) (B63)

v(+)
z = (

0, 0,−η(1)
z dz

)
,

and h(+)
+ is a helicity of particle at the Weyl point kW (+),

defined by

h(+)
+ = sgn(v(+)

x × v(+)
y · v(+)

z ), (B64)

which is either +1 or −1. Thus, the positive eigenvalue of
Eq. (B61) for n = 0 is given by

EW (+)(k) =
∣∣∣∣∣∣
(
η(1)

z

)2
(
kzdz )2 + ν (+)2

x

∑
l=x,y

(kldl )
2

∣∣∣∣∣∣
1/2

≈ ∣∣η(1)
z (
kzdz )

∣∣, (B65)

where in the second equality the fact that ν (+)
x ≈ 0 is consid-

ered. This is identical to Eq. (B55) within the first order with
respect to kx, ky, and 
kz.

Similarly, the Hamiltonian for the down-spin band, repre-
sented as LW (−)

n ≡ L̄(−)
D,n, is cast into

LW (−)
n = nω +

⎛
⎝ − η0η

(1)
z

(ω/2) (
kzdz )
∑

l=x,y ν
(−)
l (kldl )∑

l=x,y ν
(−)∗
l (kldl )

η0η
(1)
z

(ω/2) (
kzdz )

⎞
⎠

= nω + h(−)
+ p(−) · σ, (B66)

where Eq. (B50) is considered, namely, ν (−)
y = iν (−)

x with ν (−)
x

real. Here, the effective momentum p(−), defined in the right-
handed system, is given by

p(−)
l = h(−)

+
∑

l ′=x,y,z

v
(−)
ll ′
(
kl ′ − kW (−)

l ′
)

≡ h(−)
+ v

(−)
l · (k − kW (−) ), (B67)

085206-15



ZHANG, HINO, AND MAESHIMA PHYSICAL REVIEW B 106, 085206 (2022)

where

v(−)
x = (ν (−)

x dx, 0, 0)

v(−)
y = (0,−ν (−)

x dy, 0) (B68)

v(−)
z =

(
0, 0,−η0η

(1)
z

(ω/2)
dz

)

and h(−)
+ is a helicity of particle at the Weyl point kW (−),

defined by

h(−)
+ = sgn(v(−)

x × v(−)
y · v(−)

z ), (B69)

which is either +1 or −1. It is obvious that the positive
eigenvalue of Eq. (B66) for n = 0, EW (−)(k), is identical to
Eq. (B56).

Finally, the chiralities of FWSMs for both up- and down-
spins are examined. Let the helicities of the Weyl cones at
−kW (+) and −kW (−) be represented as h(+)

− and h(−)
− , respec-

tively. It is evident that h(+)
+ h(+)

− = −1 and h(−)
+ h(−)

− = −1,
since according to Eqs. (B47) and (B50), the replacement
of the nodal position at kW (±) by that at −kW (±) still keeps
ν (±)

x unaltered, whereas η(1)
z changes its sign; a double sign

corresponds. Furthermore, it is also seen that h(+)
+ h(−)

+ = −1
and h(+)

− h(−)
− = −1, since the sign of η(1)

z remains unaltered,
whereas the sign of ν

(+)
± is different from that of ν

(−)
± ; a

double sign corresponds. Therefore, it is verified that each of
four pairs of the Weyl cones at ±kW (+), ±kW (−), kW (±), and
−kW (±) possesses opposite chiralities.

APPENDIX C: ENLARGED VIEW OF FIGS. 3(a) AND 3(b)

Energy dispersions shown in Figs. 3(a) and 3(b) are en-
larged in Fig. 7 to make clearer the difference of band
gaps between the up-spin and down-spin bands around
E = 0.

FIG. 7. Energy dispersions E (k) of up-spin and down-spin bands
at kz = 0 which are enlarged around E = 0. Here, bands dominated
rather by the s-orbital (p-orbital) component are denoted by a red
(blue) solid line. The axis of abscissa kl is gauged in the unit of 1/dl

with l = x, y, z. (a) E (k) in the kx-ky plane at kz = 0 for the up-spin
bands. (b) The same as panel (a) but for the down-spin bands.
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