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Intricate features of electron and hole skew scattering in semiconductors
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We study features of mobile carriers’ skew scattering in nonmagnetic semiconductors emerging due to a
combination of spin-orbit coupling in a crystal band structure and a nontrivial inner structure of impurities. In
particular, we show that a nonzero magnetic moment of the impurity generally leads to the anomalous Hall effect
(AHE) in the absence of the spin polarization of the mobile carriers, the effect arising from spin-independent
scattering asymmetry due to exchange interaction. We analyze the skew scattering in bulk zinc-blende semicon-
ductors for both electron and hole states and emphasize the crucial role of the impurity spin polarization for the
emergent AHE for the valence band holes. We also revisit the skew scattering in quantum wells showing that
the cancellation of the extrinsic contribution to the AHE common for two-dimensional systems can be lifted off
depending on both the electron wave function and the impurity structure.
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I. INTRODUCTION

A variety of spin transport phenomena constituting the
core of modern spintronics are based on the spin separation,
and, more generally, charge carriers’ separation by their spin,
valley, or pseudospin characteristic [1,2]. The transverse spin
separation is important for the spin-orbit torques [3,4] and also
can be combined with spin to charge conversion [5]. Naturally,
the comprehensive understanding of microscopics underlying
these phenomena is essential for the progress in the domain.

Skew scattering of electrons on electrically charged
dopants has been long known as an extrinsic mechanism of
the spin Hall effect (SHE) and anomalous Hall effect (AHE)
[6,7]. It is generally accepted that it stems from the spin-orbit
coupling (SOC) as described by Mott and further developed
by Smith [8,9]. In the course of time it has been established
that this effect is sensitive both to the microscopic mechanism
of the SOC and also to the inner structure of the scatterer.
For instance, in the original viewpoint of Mott scattering it is
assumed that the SOC is provided by the core electric fields
generated by a heavy impurity atom. It has been also shown
that the role of the impurity-driven SOC can be to introduce
the fine structure of the virtual bound states, i.e., the energy
splittings with respect to the total angular momentum [10,11].
Consequently, the resonant scattering on the virtual bound
states leads to the enhancement of the anomalous Hall effect
[11,12].

Apart from the atomic structure of the charged scattering
center itself, the extrinsic mechanism of the AHE can be
induced by the complex structure of the electronic band states
originating from the SOC in the host material [13]. When
SOC affects the crystal band structure, the electron scattering
on a spin-independent potential such as a Coulomb center
becomes asymmetrical [14,15]. In this case the Hall response
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depends on the host material properties; calculations of the
Hall resistivity lead to qualitatively different results strongly
depending on the model of the crystal SOC. For instance, for a
2D case the skew scattering can be suppressed for the Rashba
model [16,17], but not for Dirac electrons [13,18].

The physical picture of the skew scattering and AHE
becomes more complicated when both an impurity has a
complex inner structure and the electronic band structure is
modified by SOC. To date this situation has been mostly
considered for metallic systems via first-principles calcula-
tions [19–22]. A particularly interesting situation occurs when
the impurity has an inner magnetic moment. The break of
time-reversal symmetry required for the skew scattering can
then be provided by the scatterer magnetic moment rather than
by incident electron spin polarization; consequently, the AHE
can emerge even for nonpolarized electrons [11,23–25].

While some discussion is going on for metallic systems
[19–21], the effects of the interplay between impurity inner
moment and SOC-affected band structure on the anomalous
transport in semiconductors are much less investigated. In
semiconductors the features of the skew scattering can be an-
alyzed analytically in the vicinity of the Brillouin zone center
(� point). That makes it possible to clarify the physics respon-
sible for the modification of AHE. For metallic systems an
accurate analysis of the skew scattering requires more detailed
description of the band structure thus requiring DFT-based
numerical approaches [19–21].

In the present paper we consider various cases of skew
scattering of electrons and holes resulting from the combina-
tion of the SOC in the host nonmagnetic crystal and an inner
magnetic moment of an impurity. On the basis of k · p theory
for an electronic band structure we derive analytical results for
the skew-scattering rates and the associated AHE conductivity
covering both bulk and two-dimensional types of spectrum.
We demonstrate that the properties of skew-scattering induced
AHE and SHE are essentially sensitive to microscopic details
of the considered material systems, as well as to the features
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of the impurities providing richer access to the microscopic
physics of the effect.

The crystal band structure accounted for in our considera-
tions also gives rise to intrinsic mechanisms of AHE and SHE
[7,18], so it is worth commenting on conditions when the con-
sidered extrinsic contribution would play the dominant role
in experiments. The skew scattering appears in the first order
with respect to the scattering time σH ∝ τ , while other mech-
anisms of AHE, including Berry’s phase, side jump, or cluster
skew scattering [26], behave as σH ∝ τ 0 leading to different
scaling laws between transversal and longitudinal resistivities
for the skew scattering ρH ∝ ρxx and ρH ∝ ρ2

xx for all others.
Therefore, the analysis presented in this paper is valid for
sufficiently clean samples [27] (ρ2

xx � ρxx) with some fraction
of impurities having finite magnetic moment. One example
of a nonmagnetic semiconductor where the AHE is argued
to be driven by carrier skew scattering on magnetic dopants is
high-mobility electron gas in ZnO-based structures [23]. Also,
we focus on essentially nonmagnetic semiconductors when
the small density of magnetic impurities does not lead to the
spontaneous spin splitting of the band states. In this sense we
expect the Berry’s phase dissipationless contribution to AHE
[28] to be entirely suppressed.

Various intrinsic mechanisms underlying SHE and AHE
in semiconductors have been discussed for the valence band
holes [28–33]. The skew scattering of the holes in III-V
semiconductors in the context of the extrinsic AHE has been
believed to be similar to that of the electrons. Moreover, the
effect is expected to be stronger as there is no small parameter
�/E0 (where � is the spin-orbit splitting and E0 is the band
gap) controlling SOC for the conduction band electrons. How-
ever, in a dilute p-type (Ga,Mn)As magnetic semiconductor
for low resistivities the transverse vs longitudinal resistance
scaling is quadratic or at least considerably superlinear sug-
gesting that the dominating mechanism of AHE can be other
than the skew scattering [34–36]. In metals such scaling
can be also explained by inelastic scattering of electrons on
phonons and spin waves [6]. Essentially, the domination of su-
perlinear scaling mechanisms is favored for a larger resistance
assuming the system is still beyond hopping conductivity [28].
Moreover, the microscopic mechanism of the valence band
holes’ skew scattering in semiconductors and its difference
from the electron skew scattering has not been investigated
theoretically. Neither has skew scattering of holes on magnetic
centers been studied so far.

The paper is organized as follows. In Sec. II we present the
model framework for analysis of asymmetric scattering con-
tribution to the AHE. In the following sections the approach
is applied to the relevant cases.

II. GENERAL THEORY

We analyze skew-scattering driven contributions to the
transverse electric and spin Hall currents (see Fig. 1) on the
basis of the Boltzmann kinetic equation:

(eEvs)
∂ f 0

s

∂ε
= St[δ fs], (1)

where fs = f 0
s + δ fs is the carrier distribution function (index

s accounts for the spin states), which consists of the equilib-

FIG. 1. Illustration of spin-independent (a) and spin-dependent
(b) contributions to the skew scattering leading, respectively, to
charge Hall effect and spin Hall effect.

rium f 0
s and nonequilibrium δ fs parts, E is an applied electric

field, and vs = ∂εs/∂ p is a velocity in the s subband. The
collision integral can be written as

St[δ fs(k)] = 2π

h̄
ni

∑
k′s′

δ
(
εs

k − εs′
k′
)(∣∣T ss′

kk′
∣∣2

δ fs′ (k′)

− ∣∣T s′s
k′k

∣∣2
δ fs(k)

)
, (2)

where ni is the impurity concentration, εs
k is a particle energy

in the s subband, and T ss′
kk′ is the corresponding scattering T -

matrix element for the scattering from the state (k, s) into the
state (k′, s′).

The skew-scattering contributions are related to the asym-
metric parts of |T ss′

kk′ |2. In this paper we treat the electron
scattering on an impurity characterized by a potential V̂ per-
turbatively. The corresponding T matrix can be expanded in
Born series

T̂ = V̂ + V̂ Ĝ0V̂ + . . . , (3)

where Ĝ0 is the free Green’s function of mobile carriers in a
semiconductor. As is well known, the skew scattering does not
appear in the first Born approximation so one should keep the
second order in (3). The asymmetric term W ss′

kk′ in |T ss′
kk′ |2 takes

the form [18]

W ss′
kk′ = 2π

∑
l

νl (ε)
〈
Im

(
V s′s

k′k V sl
kqV ls′

qk′
)〉

�q
, (4)

where the sum is over the spin of the intermediate state, νl

is the density of states (DOS) in l subband, and 〈 〉�q denotes
averaging over the angles of the intermediate state wave vector
q. Note that in some cases the third-order contribution to W ss′

kk′
might vanish, so one should go in higher orders of the Born
series [17,37]. In this paper we deal with systems where the
third-order contribution plays the major role. In the following
sections we analyze the features of W ss′

kk′ for different cases and
describe the related properties of the emerging Hall response.

We assume the relaxation time approximation and split the
collision integral into two parts:

St[δ fs(k)] = St1[δ fs(k)] + St2[δ fs(k)],

St1[δ fs(k)] = 2π

h̄
ni

∑
s′,k′

δ
(
εs

k − εs′
k′
)∣∣V ss′

kk′
∣∣2

δ fs′ (k′) − δ fs(k)

τs
,

St2[δ fs(k)] = 2π

h̄
ni

∑
s′,k′

δ
(
εs

k − εs′
k′
)
W ss′

kk′ δ fs′ (k′), (5)

085203-2



INTRICATE FEATURES OF ELECTRON AND HOLE SKEW … PHYSICAL REVIEW B 106, 085203 (2022)

where τs is the quantum scattering time:

1

τs
= 2π

h̄
ni

∑
s′,k′

δ
(
εs

k − εs′
k′
)∣∣V s′s

k′k

∣∣2
. (6)

The first part St1 of the collision integral is of the second order
in V̂ and determines the longitudinal current. The second part
St2 is of the third order; it describes the scattering asymmetry
leading to the transverse current. With the nonequilibrium
part of the distribution function obtained from the kinetic
equation the charge current is given by

j = e
∑
s,k

vs fs(k). (7)

In a 3D case it is convenient to expand the nonequilibrium
part of the distribution function in the first spherical harmonics
Yx, Yy, and Yz:

δ fs(k) = f s
x (k)Yx + f s

y (k)Yy + f s
z (k)Yz,

Yx =
√

3

4π
sin θ cos ϕ, Yy =

√
3

4π
sin θ sin ϕ,

Yz =
√

3

4π
cos θ. (8)

Higher harmonics appear to give no contribution to the trans-
verse current. Let the external electric field E be aligned along
the x axis. As will be shown below Wkk′ and |Vkk′ |2 can be
represented in the following form:

W ss′
kk′ = wss′ (Y ′

xYy − Y ′
yYx ),∣∣V ss′

kk′
∣∣2 = const. + uss′ (YxY

′
x + YyY

′
y + YzY

′
z ), (9)

where a prime symbol denotes the spherical harmonic func-
tion dependence on (ϕ′, θ ′) rather than on (ϕ, θ ).

In the 2D case these formulas keep the same form
with angular harmonics being Yx = π−1/2 cos ϕ, Yy =
π−1/2 sin ϕ, Yz = 0. Then the kinetic equation (1) can be
rewritten in the matrix form (see Supplemental Material [48]
for details),

eEx
∂ f 0

∂ε

(
V
0

)
=

(
A −B
B A

)(
Fx

Fy

)
, (10)

where V is a vector composed of the velocities in each spin
subband, Fx and Fy are vectors containing the unknown co-
efficients for the expansion of the nonequilibrium part of the
distribution function in angular harmonics, and A and B are
ns × ns matrices originating from the first and second parts of
the collision integral, respectively (here, ns is the number of
spin subbands and ν ′ is the DOS in the s′ subband):

V =
⎛
⎝v1

...

vns

⎞
⎠, Fx =

⎛
⎝ f 1

x
...

f ns
x

⎞
⎠, Fy =

⎛
⎝ f 1

y
...

f ns
y

⎞
⎠,

Ass′ = ν ′uss′ − δss′τs
−1, Bss′ = ν ′wss′

. (11)

Neglecting the second part of the collision integral (of the
higher order in V ), we find the coefficients f s

x :

Fx = eEx
∂ f 0

∂ε
A−1V. (12)

The longitudinal conductivity is further calculated
according to

jx = e
∑
s,k

vs
xδ fs. (13)

Then, using the second part of the collision integral, the coef-
ficients f s

y are expressed in terms of f s
x :

Fy = −A−1BFx = −eEx
∂ f 0

∂ε
A−1BA−1V. (14)

At zero temperatures one has ( f 0)′ = −δ(ε − εF ) and the
transverse charge current can be calculated from

jy = e
∑

s

∫
νs

〈
vs

yδ f s
〉
�

dε

= e
∑

s

∫
νsvs f s

y dε = e2Ex

∑
s

νsvs(A
−1BA−1V )s. (15)

One should note that the presence of asymmetric scattering
does not guarantee the emergence of a charge Hall current.
First, the contributions to W ss′

kk′ from different spin subbands
can compensate each other when substituted into the collision
integral so that all the coefficients f s

y will be equal to zero.
Second, even for nonzero f s

y , canceling can occur when the
transverse current is summed over different subbands with a
nonzero current in each.

III. BULK ZINC-BLENDE SEMICONDUCTORS

In this section we consider skew scattering of the mo-
bile carriers for bulk semiconductors with zinc-blende crystal
structure. Throughout our calculations we use the 14-band
k · p model for GaAs-like semiconductors as shown in Fig. 2.
For the electrons the k · p coupling between the �c

6 conduc-
tance band and �v

7,8 valence band is essential to capture the
appearance of the skew scattering. However, as will be shown
below this coupling remains crucial for the skew scattering

FIG. 2. Band diagram for a semiconductor with zinc-blende
crystal structure.
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of the valence band holes, as well as the coupling with p-like
states corresponding to high-lying conduction bands �c

7,8.
We model the scattering potential of an impurity with the

following expression,

V̂ = u(r) + ûX (r)J · σ̂, (16)

where the first scalar term describes the electrostatic potential
of an impurity and the second term ûX represents exchange
interaction of itinerant electrons and localized spin J of the
impurity. The electron spin is described by the Pauli matrices
operator. In this work we treat the impurity spin J as a fixed
vector and do not account for its dynamics (though some
interesting effects can arise in the Kondo regime [22]). Let
us assume that a weak external magnetic field is applied to a
sample to maintain impurity magnetization J = Jez.

The T matrix includes matrix elements of both scalar and
exchange parts of the scattering potential. We keep to a short-
range impurity potential and describe its scalar part by a single
matrix element u0 unique for all Bloch states:

u0 = 〈S|u|S〉 = 〈X |u|X 〉 = 〈X ′|u|X ′〉, (17)

where S, (X,Y, Z ), (X ′,Y ′, Z ′) denote the Bloch amplitudes
of the conductance band �c

6, valence band �v
7,8, and upper

conductance band �c
7,8, respectively. The matrix elements of

the exchange interaction part calculated for different Bloch
amplitudes are taken differently:

αex = 〈S|uX |S〉, βex = 〈X |uX |X 〉, γex = 〈X ′|uX |X ′〉; (18)

the off-diagonal matrix elements are assumed to be zero [38].

A. Conduction band �c
6

Let us describe the skew scattering of electrons in the
conduction band �c

6. The main effect leading to a finite skew
scattering comes from the inner spin-orbit coupling responsi-
ble for the valence band splitting � into �v

7 and �v
8 states [14]

(see Fig. 2). The electron wave function accounting for the
admixture of spin-orbit split valence bands has the following
form [14,39]:

�k,s = eikr{S + iR[Ak − iB(σ̂ × k)]}|χs〉, (19)

A = P
3E0 + 2�

3E0(E0 + �)
, B = −P

�

3E0(E0 + �)
, (20)

P = ih̄

m
〈S| p̂x|X 〉, (21)

where S is the Bloch amplitudes for the conduction band �c
6

and R = (X,Y, Z ) are the degenerate valence band states at
the � point in the absence of spin-orbit splitting �15; |χs〉 =
| ↑,↓〉 denotes the electron spin. The parameter B appears
only due to nonzero �; this term is vital for the appearance
of the scattering asymmetry.

The matrix element of the scattering potential given by
Eq. (16) calculated between the �k,s and �k′,s′ states is
given by

V̂kk′ = u0[1 + (A2 + 2B2)(k · k′) + i(2AB + B2)σ̂ · (k × k′)] + αex(J · σ̂ )

+ βex[i(2AB − B2)J · (k × k′) + A2(J · σ̂ )(k · k′) − B2(J · k)(σ̂ · k′) − B2(σ̂ · k)(J · k′)]. (22)

Being interested in the asymmetric scattering, one should drop
all the k-dependent terms from Eq. (22) which are symmetric
to k ↔ k′. Indeed, the skew-scattering rate Eq. (4) is quadratic
in k in the leading order so only chiral terms of the form k × k′

should be kept.
The exchange interaction part of the scattering poten-

tial also contributes to the longitudinal conductivity [40,41].
When the impurities are spin-polarized the transport time
from Eq. (6) becomes spin-dependent:

1

τ↑,↓
= 2π

h̄
niν(u0 ± αexJ )2. (23)

In the linear order with respect to uX /u0 the difference be-
tween the times is

�τ = τ↓ − τ↑ = 4αexJτ

u0
,

1

τ
= 2π

h̄
niνu2

0. (24)

Substituting the expressions for the scattering times into ma-
trix A of Eq. (11), we get for the longitudinal conductivity σxx

from Eq. (13)

σxx = σ ↑
xx + σ ↓

xx, σ s
xx = n0e2τs

2m
, (25)

where n0 is the electron concentration. Due to the difference
between spin-up and spin-down conductivity σ ↑

xx 
= σ ↓
xx an

electrical current is accompanied with the spin current qxz

(spin along z flows in the x direction): qxz = e−1(σ ↑
xx − σ ↓

xx )Ex.
We further calculate the skew-scattering rate according to

Eq. (4) with the matrix elements from Eq. (22). In the leading
order with respect to uX /u0 we obtain

W ss′
kk′ = −2πνu2

0(k × k′)z(σ ss′
z Z0 + δss′ZX ),

Z0 = u0(2AB + B2),

ZX = βexJ (2AB − B2) + 2αexJ (2AB + B2). (26)

Let us emphasize the appearance of two terms having different
dependence on the electron spin state. The term related to
the scalar potential contains the Pauli matrix σz and describes
spin-dependent asymmetric scattering leading directly to the
SHE. The second term with ZX originates from the exchange
interaction, being sensitive to the impurity magnetic moment
rather than to the spin of the mobile electron. This type of
the asymmetric scattering is spin-independent and it leads to
the formation of the electric charge current even at vanishing
electron spin polarization [25]. The spin-dependent contri-
bution to the skew scattering leading to the transverse spin
current and the spin-independent contributions are illustrated
in Fig. 1.
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The anomalous Hall conductivity can be obtained by com-
bining τs and Wkk′ in Eqs. (14) and (15). The resulting
expression for nonpolarized electron gas is given by

σyx =
(

Psθ0 + θX − θ0
�τ

τ

)
n0e2τ

m
, Ps = n↑ − n↓

n↓ + n↑
, (27)

where θ0,X = Z0,X
2π
3 νk2

F have the meaning of the correspond-
ing Hall angles, and Ps is an electron spin polarization. Note
that at Ps = 0 there are two terms in σyx. The first one θX orig-
inates from the asymmetry independently of the electron spin
due to the exchange scattering; the second one θ0 results from
the conversion of the transverse spin current into electrical
current due to τ↑ 
= τ↓.

From the experimental point of view the anomalous Hall
response in a semiconductor lightly doped with magnetic
impurities turns out to be a combined effect of SOC in the
host material and inner structure of the magnetic impurity.
Note that the admixture of the valence band is crucial for the
effect. This is of no surprise for the conduction band electrons.
However, as we will see further, the admixture of other bands
will be also crucial for the skew scattering in the valence band,
which is affected by SOC already in the zeroth order of the
k · p theory.

B. Valence band

Let us now address the skew scattering of valence band
holes populating the �v

8 band. It would be rather natural to
expect that the magnitude of the skew-scattering contribution
to the AHE in the �v

8 band would be much larger than that for
the conduction band due to larger impact of SOC. However,
as we demonstrate below, this argumentation fails as skew-
scattering rate remains of the same order of magnitude with
respect to band-structure parameters. Moreover, a magnetic
moment of the scatterer becomes of key importance to have
any skew scattering at all.

Let us first consider skew scattering for the valence band
holes described by the Luttinger Hamiltonian in spherical
approximation:

H = h̄2

2m0

[(
γ1 + 5

2
γ2

)
k2 − 2γ2(k · Ĵ )2

]
; (28)

here γ1, γ2 are Luttinger parameters, and Ĵ are the matrices
of angular momentum 3/2. We use the helicity basis for the
heavy-hole �hh and light-hole �lh wave functions [42]:

�lh,+(k) = �lh,−(−k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−√
3 sin θ

2 cos2 θ
2 e− 3iϕ

2(
3 cos2 θ

2 − 2
)

cos θ
2 e− iϕ

2

−(
3 sin2 θ

2 − 2
)

sin θ
2 e

iϕ
2

√
3 sin2 θ

2 cos θ
2 e

3iϕ
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(29)

�hh,+(k) = �hh,−(−k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos3 θ
2 e− 3iϕ

2

√
3 sin θ

2 cos2 θ
2 e− iϕ

2

√
3 sin2 θ

2 cos θ
2 e

iϕ
2

sin3 θ
2 e

3iϕ
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (30)

These wave functions are the eigenvectors of the helicity
operator η̂ = (k/k) · Ĵ . The notation ± stands for the posi-
tive or negative helicity, namely 〈�hh,±|η̂|�hh,±〉 = ±3/2 and
〈�lh,±|η̂|�lh,±〉 = ±1/2. In this basis the scattering times
for the light holes and heavy holes entering matrix A [see
Eq. (11)] are equal:

τ−1
lh,± = τ−1

hh,± = 8π2

h̄
ni〈ν〉u2

0, 〈ν〉 = νlh + νhh

2
. (31)

The scattering asymmetry matrix B is explicitly written in the
Supplemental Material [48]. We note here that the asymmet-
ric scattering rate W νμ

kk′ contains multiple angular harmonics.
Only the first angular harmonics with l = 1 are relevant for
the electrical current, while higher harmonics could contribute
to other physical phenomena. The rates describing skew scat-
tering in all the scattering channels appear to have the form

W = ζ 〈ν〉u2
0βexJ (Y ′

xYy − Y ′
yYx ), (32)

ζ being a numerical factor, given explicitly in the Supplemen-
tal Material [48]. Note that these rates are linear in βex, so
that there is no skew scattering without the exchange part of
the impurity potential. Moreover, even in the presence of the
exchange interaction the electric Hall current calculated by
substituting A, B matrices into Eq. (15) turns out to be zero
as the contributions from different channels cancel each other
out.

Let us note that the skew-scattering rates generally trans-
form when changing the wave function basis. In particular,
using the basis for �v

8 as in Ref. [39] (rather than fixed chi-
rality basis) we find that the matrix of asymmetry turns out to
be zero B = 0 so the absence of AHE can be seen in this case
right from the very beginning.

Since there is no skew scattering for the Luttinger Hamilto-
nian we further consider the Kane model and analyze whether
taking into account the k · p admixture of remote bands would
give rise to a finite skew scattering of the valence band
holes. First, let us take into account the admixture of the �c

6
states of the conductance band. The heavy holes are not af-
fected δ�hh,+ = δ�hh,− = 0; for the light holes the linear in k
correction to the �v

8 wave function appears:

δ�lh,+ = ikP

E0

√
6

3

(
cos

θ

2
e− iϕ

2 |S ↑〉 + sin
θ

2
e

iϕ
2 |S ↓〉

)
,

δ�lh,− = kP

E0

√
6

3

(
cos

θ

2
e

iϕ
2 |S ↓〉 − sin

θ

2
e− iϕ

2 |S ↑〉
)

. (33)

Using Eq. (19) one verifies 〈�hh,+|�ks〉 = 〈�hh,−|�ks〉 = 0,
so the k · p coupling between the �c

6 and �v
8 bands is only via

electron–light hole states. Similarly to the conduction band
states considered in the previous section, the admixture of the
�c

6 states to the light holes gives rise to the skew scattering;
the corresponding asymmetric rates are given by

W (1)
lh+,lh+ = W (1)

lh+,lh− = W (1)
lh−,lh−

= −2π2〈ν〉kk′P2

9E2
0

u2
0(αex + 10βex )J. (34)

We note that skew-scattering rates are nonzero only if an
impurity has an inner magnetic moment. The sign of the
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scattering asymmetry is unique for all scattering channels
within the light-hole sector as it is determined by the impurity
magnetic moment.

The appearance of the same sign skew scattering is in con-
trast to the case of electrons from �c

6; in particular it implies
that the conductivity difference mechanism of the anomalous
Hall resistivity driven by the scalar part of the impurity po-
tential is suppressed for the light holes. Using Eqs. (14) and
(15) we derive the following expression for the electric Hall
current,

jy = e2Ex
(2mlhεF )3

8π5h̄7ni

( P

E0

)2 (αex + 10βex )J

18〈ν〉u2
0

. (35)

Interestingly, the leading contribution to the AHE stems en-
tirely from the light-hole species. Besides, the magnitude of
the AHE for the holes and for the electrons appears to be
comparable despite the itinerant SOC of the �v

8 states.
A skew scattering for a heavy-hole state is also possi-

ble but it emerges in a higher order in k. In particular, we
considered a 14-band k · p model and took into account
the admixture of p-like (X ′,Y ′, Z ′) conduction band states
�c

7,8 The corresponding wave functions are summarized in
the Supplemental Material [48]. We take into account only
Q = (ih̄/m)〈X ′| p̂y|Z〉, E ′

0, and � parameters (see Fig. 2) and
neglect �− as the latter appears to give no contribution to the
asymmetric scattering rates:

W (1)
lh+,lh+ = W (1)

lh−,lh− = W (1)
lh+,lh− = u2

0

[
2

9
π2

( P

E0

)2

〈ν〉k2
lh(αex + 10βex )J

+ 〈ν〉
135

π2

(
Q

E ′
0 + �

)2

k2
lh(2βex − γex )J + 2

27
π2

(
Q

E ′
0

)2

〈ν〉k2
lh(10βex + γex )J

]
(Y ′

xYy − Y ′
yYx ), (36)

W (1)
lh+,hh+ = W (1)

lh−,hh− = W (1)
lh+,hh− = W (1)

lh−,hh+ = u2
0

[ 〈ν〉
15

π2

(
Q

E ′
0 + �

)2

khhklh(2βex − γex )J

]
(Y ′

xYy − Y ′
yYx ), (37)

W (1)
hh+,hh+ = W (1)

hh−,hh− = W (1)
hh+,hh− = u2

0

[
3

5
π2

(
Q

E ′
0 + �

)2

〈ν〉k2
hh(2βex − γex )J

]
(Y ′

xYy − Y ′
yYx ). (38)

The magnetic component of the scattering potential eventually
gives rise to the Hall current, which would be otherwise zero
in the case of nonmagnetic scatterers. Also, the matrix element
γex = 〈X ′|Ĵex|X ′〉 of the exchange interaction for the higher
conductance band appears in the expression for the symmet-
rical rates. Thus, the admixture of the conduction band states
to the valence band states is an important factor behind the
formation of AHE driven by holes in zinc-blende semicon-
ductors.

We would like to propose that the discovered suppression
of the skew scattering of the heavy holes on nonmagnetic
centers is likely to contribute to the known superlinear trans-
verse vs longitudinal resistance scaling in p-type (Ga,Mn)As
[36,43].

IV. QUANTUM WELLS

In this section we turn to low-dimensional systems and
investigate the skew-scattering features for the degenerate
electron gas in a quantum well (QW).

A. Rashba Hamiltonian

It is worth noting that there are different scenarios for the
material SOC to affect the electron dynamics in a QW. A
particularly important one is due to the so-called structure
inversion asymmetry [38,44], when due to asymmetric poten-
tial profile of the QW linear in the electron momentum terms
appear in the effective Rashba Hamiltonian:

HR = h̄2k2

2m
+ λR(σxky − σykx ). (39)

Here m is the in-plane effective mass, and λR is the strength
of the Rashba-type SOC. The eigen-wave-functions �± =
eikru± corresponding to energies ε± = h̄2k2/2m ± λRk are

given by

u± = 1√
2

(±ie−iϕ

1

)
. (40)

We note that in this model electrons exhibit strong spin-
momentum locking; i.e., the orientation of Sk = ±(ez × k)/2
is determined by k.

Spin transport in systems with the Rashba term is be-
ing intensively studied [6,7,45]. It is now established that
the skew-scattering induced AHE can behave differently de-
pending on multiple factors. In particular, for the Rashba
ferromagnet model, when in addition to Eq. (39) a mag-
netic Zeeman spin splitting is taken into account, the skew
scattering depends crucially on the position of the Fermi en-
ergy. When both spin subbands are partially populated the
third-order contributions to the asymmetric scattering rates
from Eq. (4) vanish [16,18,46] and one has to go in higher
orders of the Born approximation [17,37]. For a single spin
subband at the Fermi energy the skew scattering is typically
preserved in the third order [13]. On the contrary, considering
a nonmagnetic system (meaning when no Zeeman spin split-
ting is taken into account) the skew scattering due to a scalar
impurity does not appear at all. However, as we demonstrate
below, the absence of skew scattering in 2D for this simplified
model does not have a universal character and its properties
can be strongly modified by various microscopic factors.

For instance, in full analogy with �v
8 states considered in

Sec. III B, the electrons described by HR scatter asymmetri-
cally if the scatterer potential has an exchange part due to the
impurity spin. Indeed, let us consider a short-range scattering
potential of the form

V̂ = (u0 + uX Jσ̂z )δ(r); (41)
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here u0 and uX correspond to the electrostatic and exchange
interaction, respectively. Using the eigenstates from Eq. (40)
we get the following expression for the skew-scattering rates:

B = πuX
(
u2

0 − u2
X J2

)〈ν〉
(

ν+ −ν−
−ν+ ν−

)
, (42)

where 〈ν〉 = (ν+ + ν−)/2 is an average DOS at the Fermi
energy E , and the DOS ν± in each subband is given by

ν± = m

2π h̄2

[
1 ∓

(
1 + 2h̄2E

mα2

)−1/2
]
. (43)

Thus, we attest to the appearance of finite skew-scattering
rates due to nonzero exchange interaction constant uX .

In contrast to the the Luttinger Hamiltonian case consid-
ered above, here the asymmetry in the scattering rates does
lead to the appearance of finite anomalous Hall conductivity.
Indeed, let us calculate the electric current for this model. We
keep to the strong SOC regime in the sense that we assume
that the broadening of DOS due to electron scattering does not
exceed the Rashba spin splitting λRkF τ/h̄  1. In this case
the electron transport can be described using the approach of
Sec. II with the unperturbed expressions for ν± from Eq. (43)
and exact Rashba spectrum from Eq. (39). Calculating the
longitudinal part of the collision integral using the eigenstates
Eq. (40) we obtain

A =
(−τ−1

R + γ+ −γ−
−γ+ −τ−1

R + γ−

)
,

τ−1
R ≈ 2π

h̄
niu

2
0〈ν〉, γ± = 2π

h̄
ni

u2
0

4
ν±; (44)

here the parameters τ−1
R , γ± are given in the leading order with

respect to uX /u0. Using Eqs. (14) and (15) we calculate the
Hall current,

jy = e2Ex2πv2
F τRuX J (ν+ − ν−)2. (45)

Therefore, in the presence of magnetic scatterers the trans-
verse current is not canceled out restoring AHE for the
2D Rashba-type Hamiltonian. It is important to emphasize
that apart from the exchange interaction strength the Hall
current is also proportional to the difference in DOS for
the two subbands ν+ − ν− at the Fermi level. The strong
SOC regime assumed in this calculation ensures ν+ 
= ν−;
otherwise the disorder-induced smearing of the DOS would
eliminate the spin-dependent part ν+ ≈ ν− leading to the van-
ishing of the Hall current.

B. Size-quantization effects

Let us consider another microscopic scenario capable of
restoring the significance of the skew scattering in semicon-
ductor QW systems. Besides the Rashba Hamiltonian model,
the SOC can be explicitly inherited by QW conductive band
electrons from the bulk band structure considered in detail
in Sec. III B. Indeed, considering the size-quantization effect
along the QW growth axis of electron states given by Eq. (19)
one can derive [47] the following expressions for the electron

wave functions in a QW:

�s,k(r) = ckeik·r[us(z) · S + vsk(z) · R], (46)

vsk = i(AK − iBσ × K )us(z), (47)

where K = (k,−i∂z ) and us(z) = ϕ(z)|s〉 contains an enve-
lope wave function reflecting the size quantization ϕ(z). The
dominant part of the matrix element of the scattering potential
u0(r) calculated using the wave functions from above can be
expressed as [47]

Vkk′ = V0{1 + aσ[(k + k′) × ez]},

a = (2AB + B2)
∫

u0ϕ
∗(z)

∂

∂z
ϕ(z), (48)

where a = (2AB + B2)〈ϕ|u0∂z|ϕ〉z; here the average goes
over the QW growth axis z. Using this matrix element we
calculate the skew-scattering rates from Eq. (4),

W ss′
kk′ = 2πνV 3

0 a2σ ss′
z (k × k′)z. (49)

In fact, the obtained expression mimics the skew-scattering
rates of the �c

6 electron in bulk but the coefficient a now
contains information on the QW size quantization. In partic-
ular, when impurities do not possess an additional magnetic
moment (hence no exchange interaction part), the emergence
of skew scattering visible from Eq. (49) is already sufficient to
give rise to nonzero spin Hall conductivity. Indeed, perform-
ing the standard procedure according to Eq. (14) we arrive at
the following expression for the Hall current js

H for electrons
with spin projection s:

js
H = −e2Exh̄νv

niV0
(kF a)2. (50)

The nonvanishing spin Hall current can be converted into the
electric transverse signal upon nonequilibrium carrier spin
polarization.

The presented analysis reveals that in the 2D case the skew
scattering is not universally suppressed but rather depends on
the microscopic details of the SOC-induced conduction band
states and the scatterer structure. Moreover, for the Rashba
SOC the skew scattering emerges when an impurity possesses
a magnetic moment.

V. SUMMARY

We have clarified the important differences in microscopic
mechanisms and emergent features of the skew scattering
of conductance band electrons and valence band holes on
nonmagnetic and paramagnetic centers in zinc-blende semi-
conductors. As we have demonstrated the effect of SOC on the
band structure and the skew scattering are not directly related
although based on the same physics of SOC. In particular,
for a bulk semiconductor the skew scattering is determined
by the wave function properties. While SOC leads to a rather
large splitting of the spectra for the valence band, the skew
scattering is suppressed for the heavy holes. For the light
holes it is of a similar magnitude as for the conduction band
electrons subject to k · p driven coupling between the bands.
We also demonstrated that presence of a magnetic impurity
qualitatively modifies the skew-scattering properties. Most
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brightly it is seen for the 3D holes and 2D Rashba electrons.
In these cases the scattering on a magnetic center allows for
the asymmetry leading to the extrinsic contribution to the
anomalous Hall effect otherwise suppressed. The exchange
interaction between the magnetic moment of the scatterer
and the incident carrier spin leads to the spin-independent
scattering asymmetry, hence, to the anomalous Hall effect
even in the absence of the spin polarization of the mobile
carriers.

Our findings enrich the understanding of the spin-
dependent transport and motivate further experimental probes

of the revealed intricate properties of the skew scattering in
semiconductors.

Further calculation details and intermediate formulas are
given in the Supplemental Material [48].
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