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Theory of shift heat current and its application to electron-phonon coupled systems
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We propose a heat current analog of the shift current, “shift heat current.” We study nonlinear heat current
responses to an applied ac electric field by a diagrammatic method and derive a microscopic expression for
the second-order dc heat current response. As a result, we find that the shift heat current is related to the shift
vector, a geometric quantity that also appears in the expression for the shift current. The shift heat current directly
depends on and can be controlled through the chemical potential. In addition, we apply the diagrammatic method
to electron-phonon coupled systems, and we find that even if only the phonons are excited by an external field,
the amplitude of the shift heat current is determined by the energy scale of electrons, not of phonons.
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I. INTRODUCTION

The nonlinear optical response is a subject of recent
intensive research. For example, second-order optical re-
sponses such as second harmonic generation have been
attracting much attention and studied both theoretically and
experimentally [1–22]. Recently, it is also pointed out that
even in nonlinear regime quantum geometry and topologi-
cal properties of materials are important to understand the
electric/optical responses [9,20]. Among them, the bulk pho-
tovoltaic effect is an important issue for both applications
and fundamental physics. The bulk photovoltaic effect, or
sometimes called photogalvanic effect, is the generation of
photocurrents that can occur in noncentrosymmetric materi-
als, and a mechanism called shift current is proposed and well
established [3,7–9,13,20]. The shift current is characterized
by a quantity called shift vector R, and for two bands systems
with the time reversal symmetry (TRS), the shift current J (shift)

e
induced by an electric field E can be written as [3,9]

J (shift)
e ∝ E2

∫
dkδ(εv (k) − εc(k) + h̄�)|vvc(k)|2R(k), (1)

where εc(k) and εv (k) are the dispersion of the conduction
band and the valence band, h̄� is the energy of the input
photon, vvc(k) is the matrix element of the velocity operator.
Physically, the shift vector R can be interpreted as the spatial
shift of an electron wave packet during the interband transi-
tion due to an excitation by light [Figs. 1(b) and 1(c)] and
contributes to the dc electric current. The shift of wave packet
can contribute other types of transport. Kim et al. pointed
out that the shift can contribute to spin current and proposed
a phenomenon named shift spin current [14]. In the present
work, we propose another current induced by the shift: shift
heat current.

Electrons carry not only charge and spin, but also heat.
Therefore it is natural to expect that there exists a heat current

analog of shift current. In fact, heat transport phenomena and
thermoelectric responses are closely related to electric/optical
responses. It is well known that several universal relations
between thermal responses and electric responses, such as the
Wiedemann-Franz law and the Mott relation, hold [23]. These
universal relations can be derived theoretically by the semi-
classical Boltzmann theory [23], or quantum linear response
theory [24–27]. Within the linear response regime, the Mott
relation or the Sommerfeld-Bethe relation [27] indicates that
the amplitude of the electric current Je and the heat current JQ

when an electric field is applied can be roughly related to each
other as

JQ ∼ t

e
Je, (2)

where e is the charge of an electron and t is the characteristic
energy scale an electron carries as heat. If we assume that
the relation between Je and JQ in Eq. (2) holds even for
nonlinear responses, there should be nonlinear heat responses
corresponding to the shift current, namely, shift heat current.
One can also expect that the shift heat current are related to the
geometric property of the material as the shift current does.

Although the electric current responses and heat current
responses are closely related, the theoretical investigation on
heat transport and thermoelectric effects has not progressed
compared with that of the electric conductivity or the optical
responses. In particular, thermoelectric responses of macro-
scopic systems in nonlinear regime are rarely discussed in
contrast to aforementioned optical responses. In previous
studies, nonlinear thermoelectric effects were studied mainly
for mesoscopic systems [28–33], where large temperature bias
can be relatively easily applied. Although there are several
studies on nonlinear thermoelectric responses to dc external
fields in macroscopic systems [34–37], heat current responses
to ac external fields including the shift current-like responses
have not been studied so far.
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FIG. 1. Schematic pictures of shift current and shift heat current. (a) Illuminating light of frequency ω induces dc electric current (shift
current) and dc heat current (shift heat current). (b) In the momentum space, an incident photon excites an electron from the valence band
(with dispersion εv (k)) to the conduction band [with dispersion εc(k)]. (c) In the real space, the center of a wave packet is shifted during the
interband transition. This shift of the electron wave packet (indicated by the black arrow) induces an electric current, the shift current, and
simultaneously induces the shift of energy of (εc + εv )/2 − μ (indicated by the red arrow), which results in the shift heat current.

In this work, we study the dc heat current responses to
an ac electric field. We extend the diagrammatic method to
calculate nonlinear responses proposed in Ref. [17] to heat
current responses, and find that the relation in Eq. (2) also
holds for the shift current. In particular, for two-band systems
with TRS, the shift heat current response J (shift)

Q can be written
as

J (shift)
Q ∝ E2

∫
dkδ(εv (k) − εc(k) + h̄�)|vvc(k)|2R(k)

×
(

εc(k) + εv (k)

2
− μ

)
. (3)

We also find that the shift heat current directly depends on the
chemical potential μ and thus we can control the shift heat
current through the chemical potential.

Furthermore, we also discuss the phonon-induced shift
heat current. Recently, the phonon-induced shift current is
experimentally observed in BaTiO3 [38]. There, although the
energy of the input photon (∼1 meV) is much smaller than the
band gap of BaTiO3 (∼1 eV), phonons are excited by photons
and then induce a large electric current of the order of 10 μA.
Although the mechanism is different from the usual shift
current, we can also expect the similar relation as Eq. (2). We
theoretically derive the expression for such electron-phonon
coupled systems, and find again that the relation (2) holds. It
should be noted that, although photons excite phonons only,
the energy scale t in Eq. (2) is still that of electrons, not of
phonons.

This paper is organized as follows. In Sec. II, we describe
the theoretical formalism used to calculate the shift heat cur-
rent. In Sec. III, we present the calculation results for the
shift heat current. In addition to the most general formula of
shift heat current, formulas for systems with TRS and TR
symmetric two band systems are also given. In Sec. III D,
we apply our theory to the Rice-Mele model as an example.
In Sec. IV, we study the phonon-induced shift heat current.
Section V is devoted to discussions.

II. CALCULATION METHOD

In this paper, we calculate the nonlinear responses of the
heat current to an electric field. To this end, we follow the

formalism adopted in Ref. [17]. We first summarize our no-
tations regarding the basics of the band theory. We introduce
Bloch Hamiltonian and covariant derivative of k-dependent
operators, which is convenient to expand the Bloch Hamil-
tonian with respect to the applied external field. Then we
introduce the electric current operator, the energy current op-
erator, and the heat current operator.

A. Band theory and covariant derivative

Let us consider a tight binding model of noninteracting
electron systems in a periodic potential, written as

Ĥ0 =
∑
R,R′

ψ̂
†
RHR−R′ψ̂R′ , (4)

ψ̂R = (ψ̂R,1, ψ̂R,2, . . . , ψ̂R,s)T , (5)

ψ̂
†
R = (ψ̂†

R,1, ψ̂
†
R,2, . . . , ψ̂

†
R,s). (6)

Here, R specifies the position of a unit cell. ψ̂R,i (ψ̂†
R,i) is an

annihilation (creation) operator, which annihilates(creates) an
electron in the i-th orbital of the unit cell at R. HR−R′ is an
s × s matrix. Note that we denote the operator in the Fock
space a symbol with a hat(̂ ) while its matrix representation is
denoted by a symbol without .̂

The Hamiltonian in the momentum space representation is

Ĥ0 =
∑

k

ψ̂
†
k H0(k)ψ̂k, (7)

(H0(k))i j =
∑

R

e−ik·(R+ri−r j )(HR)i j, (8)

where ψ̂k,i = 1√
N

∑
R e−ik·(R+ri )ψ̂R,i, N is the total number of

unit cells, and R + ri is the position of the ith orbital in the
unit cell at R.

By diagonalizing the Hamiltonian, one obtain the represen-
tation in the energy eigenstate basis:

Ek = U †
k H0(k)Uk, (9)

where Uk is a unitary matrix and Ek is a diagonal matrix and
its element (Ek)ab = δabεk,a gives the dispersion of the a-th
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band.Then the Hamiltonian can be written as

Ĥ0 =
∑

k

ĉ†
kEkĉk, (10)

where ψ̂k = Ukĉk.
For convenience, we introduce a covariant derivative. Con-

sider an operator of the following form:

Ô =
∑

k

ψ̂
†
k O(k)ψ̂k =

∑
k

ĉ†
kOkĉk, (11)

Ok = U †
k O(k)Uk. (12)

The covariant derivative appears when one considers the k
derivative of the operator, namely,

D[Ô] :=
∑

k

ψ̂
†
k ∇kO(k)ψ̂k. (13)

Substituting ψ̂k = Ukĉk leads to the expression in the energy
eigenbasis,

D[Ô] =
∑

k

ĉ†
kD[Ok]ĉk, (14)

D[Ok] := ∇kOk − i[AkOk], (15)

whereAk is the interband Berry connection defined asAk =
iU †

k ∇kUk. Here,D is the covariant derivative. We note that the
Leibniz rule holds for the covariant derivative:

Dα[O1O2] = (Dα[O1])O2 + O1(Dα[O2]). (16)

B. Electromagnetic interaction

Next, let us consider the Hamiltonian describing the elec-
tromagnetic interaction, and expand it with respect to the
applied electric field.

To express a spatially uniform external electric field E(t ),
we use the velocity gauge. In this gauge, the electromagnetic
interaction with a spatially uniform electric field does not
violate the translational symmetry and is incorporated by the
minimal substitution as

ĤA(t ) =
∑

k

ψ̂
†
k HA(k)ψ̂k, (17)

HA(k) = H0

(
k − e

h̄
A(t )

)
, (18)

where e < 0 is the charge of an electron, and A(t ) is a vector
potential satisfying ∂A(t )/∂t = −E(t ).

To treat the external field perturbatively, we expand the
Hamiltonian with respect to A(t ) up to second order,

HA(k) = H0(k) +
(
− e

h̄

)
Aα (t )∂αk H0(k)

+ 1

2

(
− e

h̄

)2
Aα (t )Aβ (t )∂α∂βH0(k). (19)

Here ∂α = ∂/∂kα
and αk is a spatial index. (In this paper,

greek indices μ, α, β, . . . always represent the spatial indices
with an implicit summation henceforth). This expression is
in the basis ψ̂k. For analytic calculation, it is convenient to
move to the energy eigenstate basis, ĉk. As already discussed,
the k-derivative in the basis ψ̂k becomes the covariant deriva-
tiveD in the basis ĉk. Therefore, up toO(A2), the Hamiltonian

reads

ĤA(t ) = Ĥ0 + V̂ , (20)

V̂ =
∑

k

ĉ†
k(V1,k + V2,k)ĉk, (21)

with

V1,k =
(
− e

h̄

)
Aα (t )hα

k =
∫

dω

2π

ie

h̄ωk
Eα (ω)e−iωt hα

k , (22)

V2,k = 1

2

(
− e

h̄

)2
Aα (t )Aβ (t )hαβ

k

= 1

2

∫
dω1

2π

ie

h̄ω1
Eα (ω1)e−iω1t

×
∫

dω2

2π

ie

h̄ω2
Eβ (ω2)e−iω2t hαβ

k , (23)

where hα1...αn is defined as

hα1...αn = Dα1 . . .Dαn [Ek]. (24)

Although hα1...αn depends on k, we omit k from its notation.
(We often omit k-dependencies in other quantities as well in
the following.) Eα (ω) is the Fourier transform of the electric
field and is related to the Fourier transform of the vector
potential Aα (ω) as

Eα (ω) =
∫

dteiωt Eα (t ) = iωAα (ω). (25)

C. Particle current operator, energy current operator,
and heat current operator

Here we will introduce current operators used in this work.
The current operators defined below change their form in the
presence of an external electric field, and thus we expand them
with respect to the external field, as we did for the Hamiltonian
in the previous section.

It is well known that the total particle current operator Ĵ is
given by the k derivative of the Hamiltonian, i.e.,

Ĵ = 1

V

∑
k

ψ̂
†
k

1

h̄
∇kHA(k)ψ̂k, (26)

where V is the volume of the system. Note that the application
of an electric field changes the form of the electric current
operator in this gauge. This can be rewritten in terms of the
covariant derivative and ĉk as

Ĵμ =
∑

k

ĉ†
kJ

μ(k)ĉk =
∑

k

ĉ†
k

(
Jμ

0 (k) +Jμ
1 (k) +Jμ

2 (k)
)
ĉk,

(27)

with

Jμ
0 (k) = 1

h̄
hμ, (28)

Jμ
1 (k) = 1

h̄

∫
dω

2π

ie

h̄ω
Eα (ω)e−iωt hμα, (29)

Jμ
2 (k) = 1

2h̄

∫
dω1

2π

ie

h̄ω1
Eα (ω1)e−iω1t

×
∫

dω2

2π

ie

h̄ω2
Eβ (ω2)e−iω2t hμαβ. (30)

(Note again that we omit k from the notation of hα1...αn .)
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When we ignore the interaction between electrons, the
total energy current operator in longitudinal responses to an
external electric field is given by

ĴE = 1

V

∑
k

ψ̂
†
k

1

2
(HA(k)J (k) +J (k)HA(k))ψ̂k

= 1

V

∑
k

ψ̂
†
k

1

2h̄
∇k(HA(k)2)ψ̂k. (31)

Equation (31) shows that the application of an electric field
changes the form of the energy current operator in the ve-
locity gauge. This is similar to the electric current operator,
which also changes its form in the presence of a vector
potential.

The energy current operator can be rewritten in terms of
the covariant derivative and ĉk as

Ĵμ
E = 1

V

∑
k

ĉ†
kJ

μ
E ĉk = 1

V

∑
k

ĉ†
k

(
Jμ

E0 +Jμ
E1 +Jμ

E2

)
ĉk,

(32)

with

Jμ
E0(k) = 1

h̄
gμ, (33)

Jμ
E1(k) = 1

h̄

∫
dω

2π

ie

h̄ω
Eα (ω)e−iωt gμα, (34)

Jμ
E2(k) = 1

2h̄

∫
dω1

2π

ie

h̄ω1
Eα (ω1)e−iω1t

×
∫

dω2

2π

ie

h̄ω2
Eβ (ω2)e−iω2t gμαβ, (35)

where gμα1...αn is defined as

gα1...αn = 1
2D

α1 . . .Dαn
[
E2

k

]
. (36)

The heat current operator ĴQ is defined as

ĴQ ≡ ĴE − μĴ

= 1

V

∑
k

ψ̂
†
k

1

h̄
∇k

(
1

2
HA(k

)2

− μHA(k))ψ̂k

= 1

V

∑
k

ψ̂
†
k

1

2h̄
∇k(HA(k) − μ)2ψ̂k, (37)

where μ is the chemical potential. Therefore one obtains the
heat current operator by replacing Ek in Eq. (32) with Ek − μ,
which yields

Ĵμ
Q = 1

V

∑
k

ĉ†
kJ

μ
Q ĉk = 1

V

∑
k

ĉ†
k

(
Jμ

Q0 +Jμ
Q1 +Jμ

Q2

)
ĉk,

(38)

with

Jμ
Q0(k) = 1

h̄
g̃μ, (39)

Jμ
Q1(k) = 1

h̄

∫
dω

2π

ie

h̄ω
Eα (ω)e−iωt g̃μα, (40)

Jμ
Q2(k) = 1

2h̄

∫
dω1

2π

ie

h̄ω1
Eα (ω1)e−iω1t

×
∫

dω2

2π

ie

h̄ω2
Eβ (ω2)e−iω2t g̃μαβ, (41)

and

g̃α1...αn = 1

2
Dα1 . . .Dαn [(Ek − μ)2]. (42)

Our goal is to calculate the expectation value 〈Ĵμ
Q (t )〉.

The heat current responses are characterized by the tensors
αμα1α2...αn (t ; t1, t2, . . . tn) as

〈
Ĵμ

Q (t )
〉 =

∞∑
n=0

1

n!

∫ [
n∏

k=1

dtkEαk (tk )

]
αμα1α2...αn (t ; t1, t2, . . . tn).

(43)

By Fourier transformation, we can write〈
Ĵμ

Q (ω)
〉 =

∫
dteiωt

〈
Ĵμ

Q (t )
〉

=
∞∑

n=0

1

n!

∫ [
n∏

k=1

dωk

2π
Eαk (ωk )

]

× αμα1α2...αn (ω; ω1, ω2, . . . ωn), (44)

αμα1α2...αn (ω; ω1, ω2, . . . ωn)

=
∫

dt

2π
eiωt

∫ [
n∏

k=1

dtk
2π

e−iωktk

]
αμα1α2...αn (t ; t1, t2, . . . tn).

(45)

In particular, the second-order response coefficient
αμαβ (ω; ω1, ω2) can be written with functional derivatives as

αμαβ (ω; ω1, ω2)

=
∫

dt

2π

∫
dt1
2π

∫
dt2
2π

ei(ωt−ω1t1−ω2t2 )

× δ

δEα (t1)

δ

δEβ (t2)

〈
Ĵμ

Q (t )
〉∣∣∣∣

E=0

. (46)

Note that we need to take functional derivatives in the time
domain because we are considering nonlinear regime as in the
case of the electric current responses [17].

We notice a formal similarity between the current operator
and the energy/heat current operator. The current operator
[Eq. (26)] is given by the k-derivative of the Hamiltonian,
while the energy current operator is the k-derivative of the
squared Hamiltonian. By replacing the Hamiltonian H in the
energy current operator with H − μ, we can also obtain the
heat current operator. Because of this similarity, we can cal-
culate the heat current response in the same manner as the one
used for the shift current. Because the rest of the formulation
is almost the same as Ref. [17], we only present the results in
the next section.

III. SHIFT HEAT CURRENT

In this section, we present results for the second-order dc
responses of heat current with respect to an electric field with
frequency �, which we call “shift heat current.” We derive a
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FIG. 2. The Feynman diagrams which contribute to shift heat
current. Solid lines with an arrow and wavy lines represent propa-
gators of electrons and photons, respectively, and black dots with n
photons denote vertices for hα1 ...αn and cross dots with n photons are
the vertex for g̃α1 ...αn .

general expression for the shift heat current, and then reduce
the expression to cases for time reversal invariant systems, and
especially, time reversal symmetric two band systems.

A. General expression for shift heat current

We focus on the second-order dc responses to an electric
field with the frequency �. We also restrict ourselves to longi-
tudinal responses, namely, αxxx(2iη; � + iη,−� + iη) where
η is an infinitesimal positive quantity. First we calculate αxxx

within the imaginary time formalism, and then continue the
result to the real time expressions. From now on, we set h̄ = 1
for simplicity.

The Feynman diagrams which contribute to the second-
order heat current responses are shown in Fig. 2. After
performing the Matsubara frequency summation, we obtain

αxxx(2iη; � + iη,−� + iη) = 1

V

∑
k

e2

�2

[∑
a

g̃xxx
aa fa +

∑
a,b

g̃xx
abhx

ba

(
fab

εab + � + iη
+ fab

εab − � + iη

)
+

∑
a,b

g̃x
abhxx

ba

fab

εab + 2iη

+
∑
a,b,c

g̃x
achx

cbhx
ba

εac + 2iη

(
fab

εab + � + iη
+ fcb

εbc − � + iη
+ (� → −�)

)]
(47)

= 1

V

∑
k

e2

�2

[∑
a

g̃xxx
aa fa +

∑
a,b

g̃xx
abhx

ba

(
fab

εab + �
+ fab

εab − �
− iπ fab(δ(εab − �) + δ(εab + �))

)

+
∑
a,b

g̃x
abhxx

ba

εab
fab +

∑
a,b,c

g̃x
achx

cbhx
ba

εac

(
fab

εab + �
+ fcb

εbc − �

)

−iπ
∑
a,b,c

g̃x
achx

cbhx
ba

εac + 2iη
( fabδ(εab + �) + fcbδ(εbc − �) + (� → −�))

]
, (48)

where εa = εk,a is the band dispersion, fa = f (εa), f (ε) =
(exp(β(ε − μ)) + 1)−1, fab = fa − fb, εab = εa − εb and
T, μ are the temperature and the chemical potential. In the
last line, divergences due to terms such as 1/εab with εa = εb

should be interpreted as zero. This is a general expression
for shift heat current in noninteracing electronic systems. By
replacing g̃ with h, we can see that the expression for αxxx

reduces to the expression for the electric current response
derived in Ref. [17]. The last term in Eq. (48) diverges as
∝1/η if TRS is broken. This term can be interpreted as the
heat current analog of the injection current [6,17,20], and
should explicitly depend on the scattering rate. We also note
that the heat current observed experimentally should include
other contributions. For example, impurities and disorder
can affect the momentum distribution of electrons resulting
in finite ballistic contribution to the dc heat current as in
the case of the electric current [4,21,39,40]. Some of these
contribution does not necessarily depend on the scattering
rate explicitly [21,39] as in the case of the side-jump

contribution to the anomalous Hall effect [41]. Therefore it
would be difficult to fully distinguish the shift heat current
contribution and other contribution due to the scattering in
experiments.

B. Shift heat current under TRS

If the system has TRS, i.e., the Hamiltonian satisfies

H0(k)T = H0(−k), (49)

then the matrix element g̃ and h have the following symmetry:(
g̃(2n+1)

k

)T = −g̃(2n+1)
−k , (50)(

g̃(2n)
k

)T = g̃(2n)
−k , (51)(

h(2n+1)
k

)T = −h(2n+1)
−k , (52)(

h(2n)
k

)T = h(2n)
−k . (53)
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With these symmetry properties, most of the terms in Eq. (48) cancel and only the terms with a delta-function remain.
Specifically, αxxx(2iη; � + iη,−� + iη) will be

αxxx(2iη; � + iη,−� + iη) = 1

V

∑
k

−iπe2

�2

[ ∑
a,b

g̃xx
abhx

ba fab(δ(εab − �) + δ(εab + �))

+
∑
a,b,c

g̃x
achx

cbhx
ba

1

εac + 2iη
( fabδ(εab + �) + fcbδ(εbc − �) + (� → −�))

]
. (54)

Noting that the last term vanishes due to TRS when a = c, one can remove the 2iη in the denominator of the last term. By using
TRS, this can be rewritten as

αxxx(2iη; � + iη,−� + iη) = 1

V

∑
k

πe2

�2

[∑
a,b

Im
[
g̃xx

abhx
ba

]
fab(δ(εab − �) + δ(εab + �))

+
∑
a,b,c

Im
[
g̃x

achx
cbhx

ba

]
εac

( fabδ(εab + �) + fcbδ(εbc − �) + (� → −�))

]

= 1

V

∑
k

2πe2

�2

[∑
a,b

Im
[
g̃xx

abhx
ba

]
fabδ(εab − �) +

∑
a,b,c

Im
[
g̃x

achx
cbhx

ba

] fab

εac
(δ(εab + �) + δ(εab − �))

]
.

(55)

One can also verify that the last term for a = b or b = c vanishes in the presence of TRS. It is clear that for a = b the term
vanishes due to fab. For b = c, using the relation between g̃x and hx,

g̃x
ab = εa + εb

2
hx

ab, (56)

one can conclude Im[g̃x
abhx

bbhx
ba] ∝ Im[|hx

ab|2hx
bb] = 0, and thus the b = c terms vanish. Therefore the last term in Eq. (55)

represents three band contributions. In contrast, the first term corresponds to two band contributions.

C. Two band systems with TRS

Let us consider a two band model with TRS. Such description is justified when a TR symmetric system is effectively described
by only two bands near the Fermi level. In this case, the three band contribution can be neglected, and we obtain

αxxx(2iη; � + iη,−� + iη) = 1

V

∑
k

∑
a,b

2πe2

�2
Im

[
g̃xx

abhx
ba

]
fabδ(εab − �). (57)

By using the Leibniz rule for the covariant derivative [Eq. (16)], one can verify

g̃xx
ab = 1

2
(DxDx[(Ek − μ)2])ab =

(εa + εb

2
− μ

)
hxx

ab + (hxhx )ab. (58)

Because we are considering a two band case, for a �= b Im[g̃xx
abhx

ba] can be rewritten as

Im
[
g̃xx

abhx
ba

] =
(εa + εb

2
− μ

)
Im

[
hxx

abhx
ba

] +
∑

c

Im
[
hx

achx
cbhx

ba

]

=
(εa + εb

2
− μ

)
Im

[
hxx

abhx
ba

] + Im
[
hx

aahx
abhx

ba

] + Im
[
hx

abhx
bbhx

ba

]
=

(εa + εb

2
− μ

)
Im

[
hxx

abhx
ba

] + Im
[(

hx
aa + hx

bb

)∣∣hx
ab

∣∣2]
=

(εa + εb

2
− μ

)
Im

[
hxx

abhx
ba

]
. (59)

Therefore αxxx(2iη; � + iη,−� + iη) is given by

αxxx(2iη; � + iη,−� + iη) = 1

V

∑
k

∑
a,b

2πe2

�2

(εa + εb

2
− μ

)
Im

[
hxx

abhx
ba

]
fabδ(εab − �). (60)
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Furthermore, the matrix element Im[hxx
abhx

ba] in a two band system can be transformed into [9,17]

Im
[
hxx

abhx
ba

] = Im
[(

∂kx h
x
ab − i[Axhx]ab

)
hx

ba

] = Im
[∣∣hx

ab

∣∣2(
∂kx ln hx

ab − i
(
Ax

aa −Ax
bb

)) + iAabhx
ba

(
hx

aa − hx
bb

)]
= Im

[∣∣hx
ab

∣∣2(
∂kx ln hx

ab − i
(
Ax

aa −Ax
bb

)) +
∣∣hx

ab

∣∣2

εab

(
hx

aa − hx
bb

)] = ∣∣hx
ab

∣∣2(
∂kx φ

x
ab − (

Ax
aa −Ax

bb

)) = ∣∣hx
ab

∣∣2
Rx

ab,

(61)

where φx
ab = Im ln hx

ab, and Rx
ab = ∂kx φ

x
ab − (Ax

aa −Ax
bb) is the quantity called shift vector, which also appears in the expression

of the shift current [6]. Therefore the expression for the response coefficient is simplified to the following form:

αxxx(2iη; � + iη,−� + iη) = 1

V

∑
k

∑
a,b

2πe2

�2

(εa + εb

2
− μ

)∣∣hx
ab

∣∣2
Rx

ab fabδ(εab − �). (62)

This is almost the same form as the one for the shift current,
σ xxx(2iη; � + iη,−� + iη):

σ xxx(2iη; � + iη,−� + iη)

= 1

V

∑
k

∑
a,b

2πe3

�2

∣∣hx
ab

∣∣2
Rx

ab fabδ(εab − �). (63)

They only differ by the factor (εa + εb)/2 − μ in α. From
these expressions, one can interpret αxxx(2iη; � + iη,−� +
iη) as the dc heat current that originates from the difference
in the intracell coordinate between conduction and valence
bands. Since this coordinate difference is represented by the
shift vector Rx

ab, we call this nonlinear thermal response as
“shift heat current.” The shift heat current does not explicitly
depend on the scattering rate as in the case of the expression
for the shift current Eq. (63). The independence of the scatter-
ing rate of the shift heat current might be useful to distinguish
from other contributions that explicitly depend on the scat-
tering rate. However, we again note that some contributions
due to impurities and/or disorder do not necessarily depend
on the scattering rate [21,39] and thus it would be difficult to
fully distinguish the shift heat current contribution from those
due to the scattering in experiments.

D. Shift heat current in Rice-Mele model

In this section, to exemplify our theory, we present a nu-
merical calculation of the shift heat current for Rice-Mele
model [42] which is a representative 1D model with broken
inversion symmetry. The Rice-Mele model can be used to
describe, for example, one dimensional dimerized systems
[42,43], single-layer monochalcogenides [44], and perovskite
materials [45]. The Hamiltonian for the Rice-Mele model is
given by

Ĥ =
∑

n

(tABĉ†
nBĉ†

nA + tBAĉ†
n+1,AĉnB + H.c.)

+
∑

n

(
tAAĉ†

n+1,AĉnA + tBBĉ†
n+1,Bĉn,B + H.c.

)

+
∑

n

[(
ε0 + �

2

)
ĉ†

nAĉnA +
(

ε0 − �

2

)
ĉ†

nBĉnB)

]
. (64)

Here n is the index for unit cells, A and B represent the
two sites in a unit cell, and their positions in the unit
cell are given by rA, rB. The system breaks the inversion

symmetry when, for example, � �= 0 and tAB �= tBA and thus
nonvanishing shift current and shift heat current appear.
The second-nearest-neighbor hopping is necessary to break
particle-hole symmetry; otherwise heat current becomes zero
[see Eq. (62)]. We show a schematic picture of Rice-Mele
model in Fig. 3.

We perform the numerical calculation of αxxx(2iη; � +
iη,−� + iη) by directly applying the expression Eq. (47).
The energy broadening η needs to be large enough compared
to the spacing between adjacent energy levels �ε but small
enough compared to the other energy scale. �ε can be es-
timated as �ε ∼ t/N with the energy scale of the system
t and the number of unit cell N , and thus the condition
for η is t/N  η  t . We also perform the calculation for
σ xxx(2iη; � + iη,−� + iη) in the same manner.

In Fig. 4, we show the band structure, the response
coefficients αxxx(2iη; � + iη,−� + iη) and σ xxx(2iη; � +
iη,−� + iη) for a parameter set and several chemical po-
tentials μ shown in the caption of the Fig. 4. We set the
second-nearest neighbor hopping tAA = tBB = 0.1t , and the
other parameters are set following Ref. [45] where ferroelec-
tric Perovskite BaTiO3 is discussed with the Rice-Mele model
(without second-nearest-neighbor hopping) and the Hubbard
interaction. One can see from Fig. 4 that both the shift current
and the shift heat current becomes large at the band gap
around h̄� ∼ t as expected from Eqs. (62) and (63). When
μ is set to zero, i.e., the middle of the conduction band and
the valence band, the shift heat current is small reflecting the
factor of (εa + εb)/2 − μ in Eq. (55). By varying μ, the shift

FIG. 3. An illustration of the Rice-Mele model [Eq. (64)]. In
order to break the particle-hole symmetry, next-nearest-neighbor
hoppings tAA, tBB are included in the model.
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FIG. 4. The shift heat current and the shift current for the Rice-Mele model. We used the parameters: tAB = 0.9t, tBA = 1.1t, tAA =
0.1t, tBB = 0.1t, rA = 0, rB = 0.5a, � = 2t, ε0 = −0.20 with lattice constant a and an energy scale t . ε0 is determined so that the middle
of the minimum of the conduction band and the maximum of the valence band is zero. The temperature T is set to be zero (T = 0). The total
number of the unit cells N is set to be 10 001, and we set η = 0.01t so that t/N  η  t with the energy scale t . (a) The band structure of the
Rice-Mele model for the given parameters. The black, red, and blue dashed lines correspond to the chemical potential μ = 0, −0.1t, 0.1t ,
respectively. (b) The response coefficients for shift heat current αxxx (2iη; � + iη, −� + iη) and shift current σ xxx (2iη; � + iη,−� + iη) as a
function of the photon energy h̄�. αxxx is calculated for μ = 0, −0.1t, 0.1t and σ xxx is calculated for μ = 0.

heat current changes even its sign. We discuss on the sign and
the chemical potential dependence of the shift heat current in
Secs. V B and V C.

IV. PHONON-INDUCED SHIFT HEAT CURRENT

Based on the diagrammatic method that we established for
calculation of general heat current responses, in this section,
we apply the formalism to electron-phonon coupled systems.
Recently, it is experimentally shown that the optical excitation
of phonons in a semiconductor induces large shift current
responses in THz regions [38]. Specifically, a semiconductor
BaTiO3 shows large second-order responses to an electric
field with frequency much smaller than its band gap energy.
This can be understood as a phonon-induced shift current [38].

The physical picture for the phonon-induced shift current
is as follows. In general, excitation of phonons in noncen-
trosymmetric systems is accompanied by finite electronic
polarization P due to the electron-phonon coupling. When
phonons are excited by illumination of light, the number of
phonons will increase in time, and thus the polarization P
also increases accordingly even at steady state in noncen-
trosymmetric systems. Since the polarization P is related to
an electric current J through J = dP/dt , the excitation of
phonons results in a dc electric current. A more detailed the-
oretical description is given in Ref. [38]. It should be noted
that the electrons are excited only virtually in this mecha-
nism. This is in sharp contrast to, for example, a proposal in
Ref. [46], where phonons create real excitations of electrons
in a narrow gap quantum well. If the band gap of the system
is sufficiently large compared to the energy of phonons, the
phonon cannot create real excitations of electrons, in which
case the contributions studied in Ref. [38] and the present
paper are dominant.

From the analogy between shift current and shift heat
current, we can also expect that the shift heat current can be
induced by phonon excitations. Namely, we expect “electronic
heat polarization“ PQ is induced through electron-phonon cou-
pling along with P when phonons are excited, and it also

increases in time, resulting in finite dc heat current JQ =
dPQ/dt . Following Ref. [38], let us calculate the phonon-
induced shift heat current. We consider only one mode of
phonon with wave vector q = 0 for simplicity. The Hamilto-
nian for the phonon is

Ĥph = εphâ†â, (65)

where â (â†) is the annihilation (creation) operator of the
phonon, and εph is the energy of the phonon. The electron-
phonon interaction is described by the following Hamiltonian:

Ĥel−ph =
∑

k

ĉ†
k

λk√
V

ĉk(â† + â), (66)

where λk is an s × s hermitian matrix (k in λk is often
suppressed below). The diagrams corresponding to phonon-
induced shift heat current are shown in Fig. 5. By calculating

FIG. 5. The Feynman diagrams which describe the phonon-
induced shift heat current. Here, curly lines are phonon propagators
and open dots are the electron-phonon interaction. Solid lines rep-
resent propagators of electrons. Black dots and crossdots represent
vertices for h and g̃ as in Fig. 2.
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these diagrams, αxxx
ph (iω; iω1, iω2) is obtained as

αxxx
ph (iω; iω1, iω2) = A(iω1)D(iω1)B1(iω1, iω2)

+ A(iω1)D(iω1)B2(iω1, iω2)

+ (iω1 ↔ iω2), (67)

with

A(iω1) = 1

V

∑
k

∑
a,b,εn

ie

iω1
hx

abGa(iεn + iω1)Gb(iεn)λba

= 1

V

∑
k

∑
a,b

ie

iω1
λbahx

abIba
2 (iω1), (68)

B1(iω1, iω2) = 1

V

∑
k

∑
a,b,εn

λabGa(iεn + iω1)
ie

iω2
g̃xx

baGb(iεn)

= 1

V

∑
k

∑
a,b,εn

ie

iω2
λabg̃xx

baIba
2 (iω1), (69)

B2(iω1, iω2)

= 1

V

∑
k

∑
a,b,c,εn

ie

iω2
Ga(iεn)g̃x

acGc(iεn + iω)λcb

× Gb(iεn + iω2)hx
ba + 1

V

∑
k

∑
a,b,c,εn

ie

iω2
Ga(iεn)g̃x

ca

× Gc(iεn − iω)λbcGb(iεn − iω2)hx
ab

= 1

V

∑
k

∑
a,b,c

ie

iω2

[
g̃x

acλcbhx
baIabc

3 (iω2, iω1)

+ g̃x
caλbchx

abIabc
3 (−iω2,−iω1)

]
, (70)

and D(iω) is the propagator of the phonon,

D(iω) = 1

iω − εph
− 1

iω + εph
. (71)

By analytic continuation iω1 → � + iη, iω2 → −� +
iη, iω → 2iη, we obtain the phonon-induced shift heat
current. In the following, we assume that �(> 0) is much
smaller than the band gap and of the order of the phonon
energy, εph.

In the presence of TRS, λk satisfies

λT
k = λ−k. (72)

After the analytic continuation, the following relations hold:

A(�) = A(� + iη) = A(−� + iη) = A(−�), (73)

Bi(�,−�) = Bi(� + iη,−� + iη)

= −Bi(−� + iη,� + iη)

= −Bi(−�,�) (i = 1, 2), (74)

for inifinitesimal η. Therefore the expression for αxxx
ph after the

analytic continuation reduces to

αxxx
ph (2iη; � + iη,−� + iη)

= −2π iδ(� − εph )A(�)(B1(�,−�) + B2(�,−�)).
(75)

For simplicity, we consider a two-band case with TRS
below. By straightforward calculation, we obtain

A(�) = e

V

∑
k

∑
a,b

Im
[
λbahx

ab

] fba

ε2
ba − �2

, (76)

B1(�) = −ie

V �

∑
k

∑
a,b

Re
[
λabg̃xx

ba

] fbaεba

ε2
ba − �2

, (77)

B2(�) = 2ie

V �

∑
k

∑
a<b

fab

[
1

ε2
ab − �2

Re
[
g̃x

abλba
](

hx
aa − hx

bb

)

+ 1

ε2
ab − �2

Re
[
g̃x

bahx
ab

]
(λaa − λbb)

+ ε2
ab + �2(

ε2
ab − �2

)2 Re
[
λabhx

ba

](
g̃x

aa − g̃x
bb

)]
. (78)

This is almost of the same form as the phonon-induced shift
current. One can obtain the expression for the phonon-induced
shift current by replacing g̃ by h.

V. DISCUSSIONS

A. Symmetry condition to observe shift heat current

In order to observe shift heat current, the system needs to
break the spatial inversion symmetry. This is obvious from
symmetry consideration of the nonlinear response tensor, but
we can also confirm explicitly that the response coefficient
αxxx vanishes in centrosymmetric systems as follows. If the
system preserves the spatial inversion symmetry, the Hamilto-
nian satisfies

H0(−k) = P†H0(k)P, (79)

where P is the unitary matrix which expresses the spatial
inversion. For example, in the case of Rice-Mele model in
Sec. III C, P = σx, where σx is the Pauli matrix.

Under the inversion symmetry, the matrix element g̃ and h
have the following symmetry:

g̃(2n+1)
k = −g̃(2n+1)

−k , (80)

g̃(2n)
k = g̃(2n)

−k , (81)

h(2n+1)
k = −h(2n+1)

−k , (82)

h(2n)
k = h(2n)

−k , (83)

where g̃(m)
k denotes (1/2)(Dx )m[E2

k] and similar for h(m)
k . We

also explicitly show the k-dependence of g̃ and h. Therefore
all the terms in Eq. (48) are odd in k and vanish after the k-
summation. This means that the spatial inversion symmetry
breaking is necessary to induce the second-order response of
the heat current, as in the case of the electric current.

One can also verify that the phonon-induced shift heat
current vanishes under the inversion symmetry by using λk =
λ−k.

B. Sign of shift heat current

The sign of shift heat current is determined by two factors.
One is the shift vector or equivalently the polarity of the
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system, and the other is the factor of (εa + εb)/2 − μ ap-
pearing in Eq. (62). The shift vector represents the inversion
symmetry breaking of the system, and it also determines the
direction of shift current. If the polarity of the system is
reversed, the shift vector will be also reversed, hence shift heat
current changes its sign. In noncentrosymmetric systems, the
inversion symmetry breaking often results in finite polariza-
tion. In that case, the polarity of the system and the direction
of shift heat current can be reversed by applying an electric
field. This property is the same as shift current.

The other factor, (εa + εb)/2 − μ, is characteristic to heat
transport and its sign is determined in a similar way to the
Seebeck coefficient. Let us consider the case of insulators with
finite band gap. If (εa + εb)/2 − μ < 0 where εa represents
a conduction band while εb represents a valence band, the
chemical potential is closer to the conduction band. Therefore
the situation is quite similar to a Seebeck effect where the
dominant carrier is electron and the Seebeck coefficient is
negative. However, we note that we are considering insulators
here and thus there is almost no carriers nor the concept of the
dominant carrier itself. A more appropriate interpretation may
be the following: in the shift heat current, a pair of an electron
and a hole excited by an incident photon carries the heat of
(εa + εb)/2 − μ in total. In this case, the number of excited
electrons and holes are the same, but the net heat carried by
them is finite.

C. Chemical potential and temperature dependence
of shift heat current

As seen from the definition of the heat current Eq. (37),
the heat current explicitly depends on the chemical potential
μ. In the case of linear dc responses in metals or doped
semiconductors, only the carriers in levels near μ contributes
to the transport and the change of μ results in change of
both the electric current and the heat current. In contrast, shift
current and shift heat current occur in insulators. In this case,
as long as the change of Fermi distribution function due to the
change of chemical potential is negligible, the shift current
is almost independent of μ while the shift heat current does
depend on μ, as seen from Eqs. (63) and (62). Therefore, if the
chemical potential is shifted by �μ because of, for example,
impurities, the shift heat current changes by ∼(�μ/e)J (shift)

e
with shift current J (shift)

e . (Here we neglect the change of
the shift current.) In other words, one can control the shift
heat current by varying the chemical potential. Since the
chemical potential in insulators strongly depends on the ex-
istence of impurities, we can also expect that a small amount
of impurities induces a large shift of the chemical potential
and thus drastically changes the magnitude of the shift heat
current.

The temperature dependence of the shift heat current
in insulators is determined almost only by the temperature
dependence of the chemical potential. If the change of tem-
perature �T satisfies kB�T  EG, then the shift heat current
Eq. (62) changes by ∼(�μ/e)J (shift)

e , where �μ is the change
due to the temperature variation.

For example, if the density of states of conduction band and
that of valence band are respectively given by Dc(ε + εc0) =
Acε

sc and Dv (εv0 − ε) = Avε
sv , where εc0(v0) is the bottom

(top) of the conduction (valence) band and Ac, Av, sc, and sv

are constants. If one further assumes that εc0 − μ � kBT ,
μ − εv0 � kBT and the charge neutrality condition∫ ∞

εc0

f (ε)Dc(ε)dε =
∫ εv0

−∞
(1 − f (ε))Dv (ε)dε, (84)

then the temperature dependence of chemical potential is

μ � εv0 + εc0

2

+ kBT

2

[
ln

(
Av

Ac

�(sv + 1)

�(sc + 1)

)
+ (sv − sc) ln kBT

]
. (85)

Here, �(x) = ∫ ∞
0 e−t t x−1dt is the Gamma function. In par-

ticular, if both the conduction and valence band are parabolic
with effective mass mc, mv , then sc = sv = (d − 2)/2 with the
spatial dimension d and

μ � εv0 + εc0

2
+ d

4
kBT ln

mv

mc
. (86)

Therefore �μ ∝ �T and thus the shift heat current is linearly
dependent on the temperature in this case.

D. Candidate materials and order estimation

Materials that break inversion symmetry can support
nonzero shift heat current responses. Because of the simi-
larity between shift heat current [Eq. (62)] and shift current
[Eq. (63)], one can expect that materials which exhibits large
shift current responses also shows large shift heat current
responses. Namely,

J (shift)
Q ∼ t

e
J (shift)

e , (87)

where J (shift)
Q and J (shift) are the shift heat current and the shift

current, and t is the characteristic energy scale corresponding
to the factor (εa + εb)/2 − μ in Eq. (62). As mentioned at
the end of Sec. V B, the factor t can be interpreted as a net
heat carried by the excited electron and hole, and Eq. (87) is a
generalization of Eq. (2) to the second-order response. We can
expect that the relation (87) holds also for general multiband
systems with an appropriate modification of an expression for
t , because the general expression for αxxx (Eq. (48)) differs
from σ xxx only by g̃ in place of h.

One representative material which shows the shift current
response is SbSI [16,19]. SbSI exhibits shift current of the
order of 0.1 nA when illuminated by a cw laser with h̄ω =
1.95 eV, and 10 μA at peak when irradiated by a pulsed laser
with h̄ω = 2.05 eV and the power 0.6 μJ [16]. In this case, as
the energy scale t is estimated as t ∼ 1 eV, the expected shift
heat current is J (shift)

Q ∼ 0.1 nW for the cw excitation, while

J (shift)
Q ∼ 10 μW at peak is expected when the laser pulse is

applied.
Another promising candidate is TaAs. TaAs is a Weyl

semimetal with broken inversion symmetry that shows large
shift current responses [18]. It is experimentally observed
that a photocurrent ∼1 μA can be induced by a laser with
wavelength 10.6 μm (117 meV) and power ∼100 mW. If we
assume that the Weyl semimetal TaAs has Hamiltonian of
the form H = v0k + vμνkμσ ν , where μ, ν run over x, y, z,
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then t for photon with energy h̄ω can be estimated as t ∼
(v0/2v)h̄ω − μ. Furthermore we estimate v

2v0
∼ 0.2 and μ ∼

10 meV [47], then t ∼ 10 meV and one obtains from Eq. (87),

J (shift)
Q ∼ 10 nW. (88)

As for the phonon-induced shift heat current, a material
which exhibits a large shift current is promising as well. Since
the expressions for the phonon-induced shift heat current is
different from that of the electric current only by the factor g̃
in the place of h, Eq. (87) also holds for the phonon-induced
currents. We emphasize that t is determined by the energy
scale of electrons even for the phonon-induced currents. In
an experiment, it is observed that BaTiO3 shows a phonon-
induced shift current as large as ∼10 μA [38]. Assuming
t ∼ 1 eV for BaTiO3, the phonon-induced shift heat current
is estimated as

J (shift,ph)
Q ∼ 10 μW, (89)

which is quite large compared to the response of TaAs.
We also note that by varying chemical potential, the

shift heat current in the above materials can be changed by
∼(�μ/e)J (shift)

e as discussed in Sec. V C.

In conclusion, we have established a diagrammatic formu-
lation of the nonlinear heat current response to an ac electric
field, and calculated the second-order response, which we call
shift heat current. We have derived the microscopic expression
for the shift heat current and confirmed that the shift heat
current is determined by the shift vector, as in the case of
the shift current. The amplitude of shift heat current J (shift)

Q

is roughly estimated as J (shift)
Q ∼ (t/e)J (shift)

e , where t is the
characteristic energy scale of electrons, and can be controlled
by changing the chemical potential. We have also calculated
the phonon-induced shift heat current and found that even
for phonon-induced cases, J (shift,ph)

Q ∼ (t/e)J (shift,ph)
e still holds

and the amplitude of J (shift)
Q is determined by the energy scale

of electrons, not that of phonons.
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