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The unrivaled robustness of topologically ordered states of matter against perturbations has immediate
applications in quantum computing and quantum metrology, yet their very existence poses a challenge to
our understanding of phase transitions. In particular, topological phase transitions cannot be characterized
in terms of local order parameters, as it is the case with conventional symmetry-breaking phase transitions.
Currently, topological order is mostly discussed in the context of nonlocal topological invariants or indirect
signatures like the topological entanglement entropy. However, a comprehensive understanding of what actually
constitutes topological order enabling precise quantitative statements is still lacking. Here we show that one can
interpret topological order as the ability of a system to perform topological error correction. We find that this
operational approach corresponding to a measurable quantity both lays the conceptual foundations for previous
classifications of topological order and also leads to a successful classification in the hitherto inaccessible case of
topological order in open quantum systems. We demonstrate the existence of topological order in open systems
and their phase transitions to topologically trivial states. Our results demonstrate the viability of topological
order in nonequilibrium quantum systems and thus substantially broaden the scope of possible technological
applications.
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I. INTRODUCTION

Topologically ordered phases are states of matter that
fall outside of Landau’s spontaneous symmetry breaking
paradigm and cannot be characterized in terms of local order
parameters, as it is the case with conventional symmetry-
breaking phase transitions. From a broad perspective, they
can be classified into symmetry-protected topological order
or intrinsic topological order [1]. For the former, the exis-
tence of a symmetry is required to maintain topological order,
i.e., when the symmetry is broken the system immediately
returns to a topologically trivial state. In some cases, topolog-
ical order can be captured in terms of topological invariants
such as the Chern number [2,3], but being based on single-
particle wave functions, their extension to interacting systems
is inherently difficult [4]. Alternatively, topological order has
been discussed in terms of nonlocal order parameters often
related to string order [5–8], but the main difficulty of this
approach is that such string order can also be observed in
topologically trivial phases [9]. From a conceptual point of
view, a particularly attractive definition of topological order
is the impossibility to create a certain quantum state from
a product state by a quantum circuit of finite depth [10].
However, since this is equivalent to the uncomputable quan-
tum Kolmogorov complexity [11], it has very little practical
applications. Hence, most analyses of topological ordered
systems have been centered around indirect signatures such
as the topological entanglement entropy [12–14] or minimally
entangled states [15,16], but even those quantities can prove
difficult to interpret [17,18].
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Here, we overcome the limitations of the previous ap-
proaches to topological order by understanding topological
order as the intrinsic ability of a system to perform topological
error correction, giving rise to an operational definition of
topological order that can be readily computed. Our defini-
tion is thus connected to taking the robustness of topological
phases as its defining property [19,20]. To make our definition
mathematically precise, we call a system to be in a topo-
logically ordered state if it can be successfully corrected by
a local error correction circuit of finite depth, which gives
rise to a completely generic approach to topological order,
which is also closely connected to topological robustness.
One key advantage of our approach is that the error correc-
tion circuit does not have to be optimal, as it only requires
to reproduce the correct finite-size scaling properties, which
can be expected to be universal across a topological phase
transition. This puts our approach in stark contrast with the
classification of topological error correction codes in terms
of their threshold values [21], as the latter is a nonuniversal
quantity. Symmetry protected topological order can be rep-
resented within our error correction formalism by imposing
certain symmetry constraints on the error correction circuit.
Compared to previous approaches to topological order, an-
other striking advantage of our error correction method is that
it corresponds to an actual observable, which can be measured
in an experiment, especially in platforms where single-shot
readout of the entire system is readily available [22–24].

II. OPERATIONAL DEFINITION FOR CLOSED SYSTEMS

A. From topological robustness to error correction

Let us describe how to perform a generalized construction
of error correcting models for topologically ordered phases.
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We start by considering a topologically ordered phase having
degenerate ground states {|gα〉}, where any quasilocal operator
V satisfies

〈gα|V |gβ〉 = vδαβ + c, (1)

with c being either zero or vanishing in the thermodynamic
limit [19]. Here, the ground-state index α defines a topolog-
ical quantum number. We can take this topological quantum
number to be the eigenvalue of an operator Otopo encoding
topological order. For example, in the case of the toric code,
Otopo is related to the nontrivial loop operators around the
torus. We now separate the Hamiltonian H into a part contain-
ing the operator Otopo and a remaining part H0, by partitioning
the Hilbert space into two parts, H = H0 ⊗ Htopo, where
Htopo and H0 encodes the topological and nontopological
degrees of freedom, respectively. In terms of the Hamiltonian,
this partitioning leads to

H = H0 ⊗ 1topo + lim
h→0

h 10 ⊗ Otopo, (2)

where 10,topo refer to identities on the respective Hilbert
spaces. Here, we assume that the limit h → 0 is taken first
and the thermodynamic limit is taken only at the end of
the calculation of the error statistics. Since the topological
quantum numbers describing a topological phase are good
quantum numbers by construction, we have [H, Otopo] =
[H0, Otopo] = 0, at least in the thermodynamic limit. Impor-
tantly, H0 has a unique ground state, as the topological ground
state degeneracy of H is given by dim(Otopo).

While it is tempting to try to analyze topological order
by considering the operator Otopo [5], its inherent nonlocal-
ity severely limits the possibility to make general statements
about its properties. For example, arguments related to sponta-
neous symmetry breaking do not apply and hence do not allow
to treat 〈Otopo〉 as a topological order parameter. Therefore,
we completely neglect the operator Otopo in the following and
entirely focus our discussion on the Hamiltonian H0.

As already mentioned, H0 has a unique ground state |ψ0〉,
which is also invariant under all (possibly nonlocal) symme-
try transformations US of the original Hamiltonian H , i.e.,
US|ψ0〉|α〉 = |ψ0〉|β〉, as the topological degrees of freedom
have been separated off in Eq. (2). This means that |ψ0〉
describes a quantum paramagnet (for spin systems) or an
insulator (for bosons or fermions). Without loss of generality,
we will use the terminology of spins systems in the follow-
ing. Crucially, a paramagnet is adiabatically connected to the
ground state |ψp〉 of the Hamiltonian

HB = B
∑

μ

Oμ, (3)

with quasilocal commuting operators Oμ and B being a con-
stant describing an effective magnetic field. The operators
Oμ can be chosen such that their smallest eigenvalue is zero,
meaning that the ground state satisfies Oμ ≡ 0. Here, we use
the index μ to indicate that the degrees of freedom of HB are
defined on a different lattice than the original model. Note
that this does not imply that H0 can be written in the form
of Eq. (3), as the fusion and braiding rules concerning excited
states on top of |ψp〉 represent highly nontrivial interactions
terms that are absent in Eq. (3).

In the following, we choose the state |ψr〉 = |ψp〉|α〉 to
serve as the reference state. Which value of α is chosen
to define the reference state is actually not important as it
will not affect any of the Oμ operators. Importantly, errors
with respect to the reference state are described by viola-
tions of the constraint Oμ = 0. Since the topological phase
is protected by the gap of the paramagnet, the paramagnetic
phase of H0 is equivalent to the topologically ordered phase
of H .

All that is left to complete the operational definition of
topological order in terms of its error correction abilities is
to describe how to construct the syndrome operators Oμ from
the reference state and how to perform the error correction.
Since the error syndrome operators Oμ are quasilocal, it is
rather straightforward to identify them once the reference
state is defined. In particular one can perform an operator
expansion in terms of quasilocal operators Oi (defined on the
original lattice) to identify the lattice sites μ and the associated
operators Oμ in the space of excitations on top of the reference
state. For example, performing an operator expansion on top
of the ground state of the toric code in terms of Pauli matrices
gives rise to the well-known Ising map of the anyons [25].
The set {Oμ} is the set of syndrome operators that needs
to be measured before the error correction procedure can be
carried out.

In the following, we assume that the syndrome operators
Oμ have been measured M times, yielding a set of O(r)

μ mea-
surement results, where r running from 1 to M indicates the
individual measurement run. The classification of the phase
then reduces to a purely classical problem: Which opera-
tions need to be applied, such that the reference state having
Oμ ≡ 0 is reached for a given configuration O(r)

μ at fixed
r? Since the configurations differ for each value of r, this
introduces a statistical element to the error correction circuit.
However, since the problem is classical, the required error
correction circuits can be computed for very large system
sizes.

Let us now refer to the circuit depth nd as a suitable
statistical measure (e.g., the mean or the variance) over all
M measurement results. The required operations can be con-
structed from the quasilocal operators Oi used to define the
syndrome operators, as applying their inverse will map the
system back onto the reference state. Remarkably, these op-
erations actually describe the fusion rules of the topological
phase.

Denoting by dH the Hamming distance (or higher-
dimensional equivalent) to the reference state, i.e., the number
of fusion processes needed to reach the reference state, we can
introduce a simple error correction strategy. From each site μ

containing an error, we perform a search of the surroundings
of μ to find other nearby errors. Whenever we find a configu-
ration that allows an operation that lowers dH , it gets carried
out. Although this error correction algorithm is not necessarily
optimal, it is guaranteed to result in the desired reference
state as d is decreasing monotonously. Importantly, the circuit
depth of the corresponding error correction circuit remains fi-
nite in the topologically ordered phase, see Appendix A, while
in the trivial phase the circuit depth diverges, see Appendix B.

For the toric code discussed below, this strategy pre-
cisely yields the error correction algorithms described in
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FIG. 1. Topological order in a quasi-1D toric code model. (a) The Av and Bp operators are arranged along two rails of sites such that the
perturbation on the lower rail (orange) maps onto the 1D transverse field Ising model. (b) Example of the error correction procedure for N = 8
Ising spins containing four errors, with the state of the system shown after t timesteps of the algorithm. The errors are fused along the horizontal
strings, with the total error correction depth being td = 2. (c) Derivative ∂nσ /∂h of the standard deviation nσ of the circuit depth with respect to
the perturbation strength h for different system sizes. Above the topological transition, the circuit depth diverges in the thermodynamic limit,
with a finite-size scaling analysis of the position of the maximum (inset) yielding critical value of hc = 1.003(1).

Appendix D. Importantly, the same strategy can also be
applied for models featuring errors described by non-Abelian
anyons [26].

B. Topological order in toric code models

In our operational definition, we call a state |ψ〉 to be
topologically ordered if it can be corrected to a reference
state |ψr〉 by a local error correction circuit of finite depth.
Importantly, the error correction circuit has to be capable to
correct all possible errors (e.g., both phase and bit-flip errors).
This differentiates topological phases from those exhibiting
spontaneous symmetry breaking, as for the latter one can
always find a circuit that corrects a trivial product state into
a symmetry-broken state [10]. The locality of the circuit does
not only refer to the actual error correction part, but also
includes the circuits for syndrome measurement and classi-
cal decoding of the measurement results. For example, this
implies that commonly employed error correction algorithms
based on the minimum-weight perfect matching [27] cannot
be employed, as they involve classical operations that are
highly nonlocal. Similarly, phases related to subsystem codes
characterized by nonlocal stabilizers [28] lie outside of our
definition and hence are not topological, which is perfectly
consistent with previous analyses [17].

The focus on the reference state |ψr〉 implies that our defi-
nition can be used to decide whether a given state |ψ〉 is in the
same topological phase as |ψr〉. Hence, |ψ〉 is topologically
ordered if and only if there exists a reference state |ψr〉 to
which the state |ψ〉 can be corrected by a finite-depth circuit.
We note that classifying topological phases in terms of the ref-
erence state |ψr〉 is actually not that different from classifying
conventional Landau symmetry breaking phases in terms of
local order parameters, as each order parameter also defines a
set of reference states that maximize the order parameter.

To demonstrate the viability of our error correction ap-
proach in a concrete setting, we turn to the toric code model,

which serves as a paradigm for intrinsic topological order
[29]. Its Hamiltonian is given by a sum over two classes
of spin 1/2 operators describing four-body interactions, Av

and Bp, acting on vertices v and plaquettes p, respectively,
according to

HTC = −E0

⎛
⎜⎝∑

v

σ x
ασ x

βσ x
γ σ x

δ︸ ︷︷ ︸
Av

+
∑

p

σ z
μσ z

ν σ
z
ρσ

z
σ︸ ︷︷ ︸

Bp

⎞
⎟⎠, (4)

where σ x,z
i denotes the Pauli matrix acting on site i. The

robustness of topological order of the ground state can be ana-
lyzed with respect to the response of a perturbation describing
a magnetic field, i.e., H = HTC − h

∑
i σ

x
i . Importantly, the

perturbed toric code can be mapped onto an Ising model
in a transverse field using a highly nonlocal unitary trans-
formation [30]. The phase transition from the topologically
ordered to the trivial state then corresponds to the phase
transition between the paramagnet and the ferromagnet in
the Ising model [25]. Here, we will be interested in the case
where the perturbed toric code can be mapped exactly onto
the one-dimensional (1D) Ising model, which can be realized
by imposing the right boundary condition [18], see Fig. 1.
Our approach has the advantage that the critical point of the
topological phase transitions is known to be exactly at hc = 1.
As there is no intrinsic topological order in 1D systems, the
phase for h < 1 is actually a symmetry-protected topological
phase, with the protected symmetry being the Z2 symmetry
of the associated Ising model. This symmetry also needs to
be imposed on the error correction circuits, i.e., operations
removing single anyons are forbidden. Additionally, note that
the quasi-1D nature of the toric code model results in the
four-body interactions in Eq. (4) being replaced by three-body
interactions.

For the topological order arising in the toric code, the
required topological error correction can be readily expressed
in terms of the Ising variables Sv = Av and Sp = Bp, where
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FIG. 2. Topological absorbing state transition. Error density ne (a) and circuit depth nσ (b) within Monte Carlo simulations for
N = 300 sites and different values of γ , showing subcritical behavior (blue), critical behavior indicated by a vanishing curvature (orange),
and supercritical behavior (green). Initial states were chosen to have maximum ne or nσ , respectively. Finite-size scaling leads to γc = 8.30(2)
[(a), inset] and γc = 8.34(5) [(b), inset] in the thermodynamic limit.

each spin having Sz
i = −1 corresponds to the presence of an

error. As a first step of the error correction algorithm, a syn-
drome measurement is performed, i.e., all the Ising spins are
measured in their Sz basis, corresponding to the measurement
of both the Av and Bp degrees of freedom in the original toric
code model. Under the perturbation, the observables Sz

i exhibit
quantum fluctuations, therefore it is necessary to perform a
statistical interpretation of the depth of the error correction
circuit. Here, we find that the standard deviation of the circuit
depth exhibits substantially better finite-size scaling behavior
than the mean, hence we use the former for the detection of
topological order in the following. The error correction circuit
is then implemented in a massively parallel way by decorating
each of the detected errors by a walker that travels through
the system until it encounters another error, upon which the
two errors are fused and removed from the system [31], see
Appendix D for details. Figure 1 demonstrates that our error
correction approach is indeed able to detect the topological
phase transition, including the identification of the correct
critical point at hc = 1. Crucially, we want to stress that our
notion of error correction is not limited to toric code models,
but allows for a complete generalization both to fractional
quantum Hall liquids and even to more exotic cases such
as fracton order [32] in the cubic code model [33], see Ap-
pendix C 2 for details.

III. TOPOLOGICAL ORDER IN OPEN
QUANTUM SYSTEMS

Let us now extend our approach to mixed quantum states,
where previous works have shed some light on topological
properties [34–39], but a universally applicable definition of
topological order has remained elusive so far. This extension
is straightforward, as the implementation of the topological
error correction channel can be applied to mixed states as well.
For the toric code at finite temperature [27,40,41], we can im-
mediately see the breakdown of topological order according
to our operational definition, as there is a finite probability

to create anyon pairs separated by a thermodynamically large
distance, which results in a diverging circuit depth.

Next, we consider mixed states arising in open quantum
systems with purely dissipative dynamics given in terms of
jump operators ci according to the Markovian quantum master
equation dρ/dt = ∑

i ciρc†
i − {c†

i ci, ρ}/2. Dissipative vari-
ants of the toric code can be constructed by considering the
jump operators

cv
i = √

γvσ
z
i (1 − Av )/2, i ∈ v, (5)

cp
i = √

γpσ
x
j (1 − Bp)/2, j ∈ p, (6)

with rates γv,p, which result in the toric code ground states
being steady states of the quantum master equation [42]. As
before, we now consider the robustness of topological order to
an additional perturbation. Here, we will first consider again a
quasi-one-dimensional model analogous to Fig. 1(a), in which
the perturbation is given by

ch
i = √

γ σ x
i (1 − Bp)/2, i ∈ p + 1, (7)

with i being restricted to the upper rail. Note that in contrast
to the jump operator of Eq. (5), this jump operator involves a
spin that is part of the plaquette p + 1 and not of the plaquette
p. This multiplaquette operator leads to a heating process
introducing new errors, while the jump operators of Eqs. (5)
and (6) describe cooling processes that remove errors from
the system. Importantly, the creation of a new error on the
plaquette p + 1 requires the existence of another error on
the neighboring plaquette p. After mapping the system onto
Ising variables Si, see Appendix E for details, we obtain a
purely classical master equation, despite the basis states being
highly entangled. Here, we take the limit γv → ∞ such that
the dynamics is restricted to the Ising spins related to the Bp

operators. In the basis of the Ising spins Si, we obtain the jump
operators

cp
i = √

γpSx
i Sx

i+1

(
1 − Sz

i

)
/2, (8)

ch
i = √

γ Sx
i+1

(
1 − Sz

i

)
/2. (9)
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FIG. 3. Effective critical exponents according to Eq. (10) for the absorbing-active transition (a) and the topological transition (b) (m = 4).
The critical value of the transition is taken where δeff remains constant. Error bars correspond to all values consistent with a constant value in
the long time limit. Finite-size scaling leads to δ = 0.163(5) [(a), inset] and δ = 0.18(2) [(b), inset] in the thermodynamic limit. Errors are
given by the sum of the uncertainty in the linear fit and the difference in δ between m = 4 and m = 2.

The resulting model falls into the well-known class of
absorbing state models [43], with the toric code ground state
corresponding to the absorbing state. Such absorbing state
models can exhibit phase transitions to an active phase where
the absorbing state is no longer reached asymptotically when
starting from a different initial state. Here, we indeed find such
a phase transition in the density of errors, see Fig. 2. More-
over, this absorbing-to-active transition is also accompanied
by a divergence of the depth of the error correction circuit,
i.e., by a topological transition to a trivial phase. We also track
the critical exponent δ measuring the algebraic decay of the
density of errors ne or the circuit depth nσ , respectively, by
considering the quantity

δeff(t ) = − 1

log m
log

ne,σ (mt )

ne,σ (t )
, (10)

which remains constant for a fixed value of m [43]. In the
limit of large system sizes, both the critical strength for the
transition and the critical exponent are in close agreement
between the absorbing-to-active transition and the topological
transition, see Fig. 3, belonging to the universality class of
one-dimensional directed percolation (δ = 0.163 [43]).

Importantly, our approach to topological order can also be
readily applied to higher-dimensional systems. Here, we will
be interested in a two-dimensional absorbing state model, in
which both error types are present. In particular, the creation
of Av errors is conditional on the existence of a neighboring
Bp error and vice versa. Hence, we consider jump operators of
the form

chv
i = √

γ σ x
i (1 − Av )/2, (11)

chp
i = √

γ σ z
i (1 − Bp)/2. (12)

Importantly, the lack of boundary processes now leads to a
conservation of the parity of both type of errors. This model
can be expected to be in the same universality class as two-
dimensional branching-annihilating random walks with two
species [44]. While the model is active for any finite γ , it
exhibits nontrivial critical behavior, having an exponent δ = 1

with logarithmic corrections. Figure 4 shows the data collapse
for different system sizes for both the error density and the
circuit depth, confirming this picture. Strikingly, the logarith-
mic corrections in the topological case include a quadratic
term that is not present in the error density, pointing to a
different critical behavior. This demonstrates that topological
criticality cannot be predicted using only the properties of an
accompanying conventional phase transition.

IV. SUMMARY

In summary, we have introduced an operational ap-
proach to topological order based on the ability to perform
topological error correction. Our method reproduces known
topological phase transitions and can be readily applied to
previously inaccessible cases such as topological transitions
in open quantum systems, and has the additional benefit that
it corresponds to a measurable observable, which constitutes a
crucial advantage over essentially unobservable entanglement
measures, which are also exponentially hard to compute in
the general case. Furthermore, we would like to note that
our approach can be readily applied to other topologically
ordered systems. For instance, we have recently demonstrated
that an analogous error correction strategy can be performed
within topological insulator systems [45]. Finally, our paper
paves the way for many future theoretical and experimental
investigations, such as the application of our approach to
fracton [32,33,46] or Floquet [47,48] topological order, or the
direct experimental realization of the error correction protocol
presented in our paper for the development of future quantum
technological devices.
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FIG. 4. Two-dimensional topological criticality. Error density ne (a) and circuit depth nσ (b) for N = 512 sites and γ = 0 (dashed) and
γ = 0.025 γp (γp = γv). The insets show the logarithmic corrections to a t−1 decay, with a linear behavior for the error density (a) and a
quadratic behavior for the topological transition (b) before finite-size effects become relevant.
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APPENDIX A: MANY-BODY PERTURBATION
THEORY IN THE TOPOLOGICAL PHASE

Let us now turn to a scaling analysis of the circuit depth nd

of this error correction strategy. In the topologically ordered
phase, we can define all the ground states in terms of a pertur-
bative expansion on top of the Hamiltonian HB and its ground
state |ψp〉, respectively [49]. Formally, the ground state of the
perturbed Hamiltonian H = HB + λV can be expressed as

|ψ〉 = P

〈ψp|P|ψp〉 |ψp〉 (A1)

using the projector P = |ψ〉〈ψ | given by

P = |ψp〉〈ψp| +
∞∑

k=0

λkA(k). (A2)

Here, the operators A(n) have the form

A(k) =
∑
(k)

−Sl1V Sl2V · · ·V Slk+1 , (A3)

with the sum running over all sets of li satisfying li � 0 and∑
i li = k. The resolvent operators Sl are given by

Sl =
{|ψp〉〈ψp| for l = 0∑

n

|n〉〈n|
(E0−En )l for l > 0 , (A4)

where |n〉 are the excited states of HB with energies En. Im-
portantly, the perturbation series is convergent as long as we
stay in the topological phase, as there is no closing of the
energy gap. Then, we can truncate the series at kmaxth order,
leaving an error in nd that is exponentially small in kmax, i.e.,
nd < Cnd,kmax , where C is a constant chosen to be independent
of the system size N and nd,kmax is the circuit depth of the state
truncated at order kmax [10]. Since this expression does not
involve the system size, it is clear that there exists a local
finite-depth error correction circuit. This finite-depth scaling

is also reached by the error correction strategy described
above, as it is bounded by the largest cluster size encountered
in the perturbative expansion, which again is a function of kmax

and not of the system size.

APPENDIX B: MAXIMALLY RANDOM ERRORS
IN THE TRIVIAL PHASE

Importantly, the perturbative argument discussed above
breaks down once the system is outside the topological phase,
e.g., in a trivial phase, as the perturbation series diverges in
this case. Note that a similar situation arises if the state is in
a different topological phase than the one corresponding to
the reference state. To establish the circuit depth scaling for
trivial states, let us turn to the error correction properties of
topological phases. We consider a topologically trivial product
state of all spins pointing in the x direction. Such a state has
no bit-flip errors (or higher dimensional equivalents), meaning
the Obit

μ describing such errors are still zero. On the other

hand, the Ophase
μ related to phase flip errors are maximally

random. This maximum randomness is reached if all configu-
rations of the phase error syndrome {Ophase

μ } are equally likely.
In the following, we consider the mean circuit depth, i.e.,

n̄d = 1

M

∑
r

n(r)
d , (B1)

where n(r)
d refers to the circuit depth for a given set of mea-

surements O(r)
μ . We then proceed by noting that n(r)

d can be
bounded from below by considering a 2D torus topology
containing a single error type (encoding the aforementioned
phase errors) that can be removed by an m-ary fusion pro-
cess, as adding more error types, higher dimensionality, or
open boundaries will always increase n(r)

d . However, treating
different m separately is necessary as we will see below that
there is no choice of m that leads to a minimal n(r)

d for all
error configurations. For m = 2, this simplification yields the
toric code model in the limit of an infinite magnetic field.
Now, let us show that for the trivial state introduced above, the
circuit depth diverges in the thermodynamic limit. To achieve
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FIG. 5. Removal of the last errors. Two parts of the system I and
II , each containing N/p sites are introduced. With finite probability,
the last error in the part I has to be fused across an empty region II ,
requiring at least d steps for the error correction to complete.

this, we look at two neighboring parts within the bulk of the
system, one being a circle and the other a ring surrounding
the first part, see Fig. 5. Each part contains N/p sites, where
p is a constant independent of the system size N . To simplify
the analysis, we neglect all error correction steps that occur
before we arrive at less than m errors in the two patches.
Obviously, the remaining steps n(r)

p set again a lower bound

on n(r)
d . Since all error configurations are equally likely in the

topologically trivial state under consideration, the remaining
number of errors Nε is uniformly distributed between 0 and
m − 1. Let us now specialize on the case Nε = 1, which occurs
with a probability of 1/m. Again, the one remaining error can
be located in either of the two patches with a probability of
1/2. In the case where this single error is located in the outer
ring, one might get lucky and find the remaining m − 1 fusion
partners just outside the ring and the remaining circuit depth
is small. However, when the final error is located in the center
patch, finding the fusion partners will require at least

d = (√
2 − 1

)√ N

π p
(B2)

steps as the width d of the empty ring has to be crossed.
Since this configuration occurs with a probability of 1/2m,
the overall circuit depth has to satisfy

nd �
√

2 − 1

2m

√
N

π p
, (B3)

which diverges in the thermodynamic limit.
Consequently, the circuit depth nd is always finite in the

topologically ordered phase, while it diverges in the trivial
phase. This demonstrates that the circuit depth can be success-
fully used in the classification of topologically ordered phases
of matter.

APPENDIX C: ERROR CORRECTION BEYOND
TORIC CODE MODELS

1. Fractional quantum Hall states

Fractional quantum Hall states are topological states of
matter that occur in two-dimensional materials in large mag-
netic fields. They are characterized by a rational filling

fraction ν, which describes the ratio of electrons to magnetic
flux quanta. Different filling fractions correspond to distinct
phases of matter, and since the transition between fractional
quantum Hall states does not involving any spontaneously
broken symmetries, such states of matter are topologically
ordered.

Identifying suitable reference states for our operational
definition is straightforward, as we can employ the tremen-
dously successful trail wave-functions introduced to describe
fractional quantum Hall systems, e.g., the celebrated Laughlin
states [50]. The Laughlin wave function for N particles with a
filling fraction of ν = 1/m is given by

ψ (zi) =
∏
i< j

(zi − z j )
me

−
N∑

i=1
|zi|2/4l2

B
(C1)

where m is an odd integer, zi’s refers to the position of particles

and lB =
√

h̄
eB refers to the magnetic length. It also possible

to construct similar wave-function containing quasiholes or
quasielectrons as anyonic excitations [51].

For simplicity, we consider fractional quantum Hall sys-
tems on a lattice [52–54], as it makes the connection to our
operational definition easier to follow. Having specified the
Laughlin state as our reference state, we need to identify the
Oμ operators encoding the errors on top of the reference state
and construct a suitable error correction algorithm. Crucially,
quasielectrons or quasiholes can be detected due to a variation
of the density in contrast to the locally uniform Laughlin state
[55]. Hence, we tile the system into different regions and
assign to each of these regions an index μ. The corresponding
error operators are then given by

Oμ =
∑

i

(nμ,i − ν), (C2)

where nμ,i refers to the density at the ith site inside the region
μ with the index i running over all sites contained in this re-
gion. For a successful application of the operational definition,
the size of each region should be larger than the magnetic
length but small compared to the system size. Note that the
reference state implicitly defined by Oμ ≡ 0 is not identical
to the Laughlin state, but adiabatically connected to it.

Since the number of electrons is a conserved quantity,
the number of quasiholes must be identical to the number
of quasielectrons. We can then formulate the error correc-
tion algorithm as a procedure that fuses the quasielectrons
and quasielectrons in terms of their measured Oμ values ac-
cording to the algorithm analogous to the one discussed in
Appendix D, with a walker associated with each quasihole or
quasielectron. Quasielectron and holes can be moved with the
help of local potentials [54], although this step is not required
to be actually implemented in order to compute the depth of
the error correction circuit.

As an example, we can consider the fractional quantum
Hall effect in the presence of disorder. At low disorder
strengths, quasielectrons and quasiholes are bound and the
error correction depth remains finite. However, when the dis-
order dominates, the quasielectrons and quasiholes become
unbound, resulting in a diverging error correction depth sig-
naling a trivial state. We would also like to stress that this
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(a) (b)

FIG. 6. Sketch of the cubic code model. Decomposition of the
operators Ac (a) and Bc (b) in terms of Pauli matrices σx and σz, with
σ0 being the identity.

prescription is not limited to fractional quantum Hall states
described by a Laughlin wave-function, but can be readily
extended towards different classes such as Moore-Read [56]
or Jain [57] states. This demonstrates that the operational def-
inition is also capable to correctly describe topological order
in fractional quantum Hall states.

2. The cubic code

The cubic code [33] is a paradigmatic model for fracton
excitations, i.e., the fusion of the errors in no longer described
by a linear string operator as in the toric code, but an operator
that involves the sites inside the volume spanned by the errors
in a fractal shape. The Hamiltonian of the cubic code has the
same structure as the toric code, i.e.,

H = −E0

∑
c

(Ac + Bc). (C3)

The crucial properties of the cubic code arise from the defi-
nition of the Ac and Bc operators. As shown in Fig. 6, both
operators are defined in terms of the cubes c, with each vertex
of the cube supporting two spin-1/2 lattice sites. Owing to
the arrangement of the Pauli matrices σx and σz, flipping a
single spin will result in the appearance of four errors arranged
in a tetrahedron, see Fig. 7. These errors can no longer be
moved around by additional flips of single spins, as such
an operation would remove one error and create three addi-
tional ones, i.e., changing the number of errors and thus the
energy of the system. Instead, moving errors require the ap-
plication of an operator that involves the spins inside the
tetrahedron in a fractal shape.

Nevertheless, error correction in the cubic code can be
implemented in the same way as in Appendix D, with the
reference state being one of the ground states of Eq. (C3).
Here, each walker has to search for the existence of two other
errors located at the vertices of a tetrahedron. If such triples
of errors can be found, fusion using the fractal operator will
lower the Hamming distance to the reference state, even if the
fourth vertex of the tetrahedron does not contain an error.

Having specified the error correction algorithm, we can
also look into the consequences for the circuit depth. In
the fracton phase, the perturbative argument introduced in
Sec. II A holds and the circuit depth is finite. For the trivial

FIG. 7. Errors of the cubic code. (a) Applying a single spin-flip
operator (red) to the ground state creates four errors (blue) shaped in
a tetrahedron form. (b) The errors can be moved around by increasing
the size of the tetrahedron by applying three additional spin-flip
operators.

phase, we consider the case where all error syndromes for
one error type (e.g., Ac) are equally likely. In this case, there
are again configurations occurring with finite probability that
require the application of a thermodynamically large fractal
operator (i.e., diverging with N). From this, we conclude that
we can also successfully classify fracton phases using our
error correction approach.

APPENDIX D: ERROR CORRECTION CIRCUITS
FOR TORIC CODE MODELS

The error correction scheme for the detection of topolog-
ical order is based on the results from the error syndrome
measurements, which can be cast in terms of the spin variables
Sv and Sp. In cases where there are both error types being
present, the error correction can be realized independently.
As the figure of merit, we are interested in the depth of
the classical error correction circuit, which maps the initial
erroneous state onto the topologically ordered state with-
out any errors. Our error correction procedure is massively
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FIG. 8. Schematic representation of the error correction proce-
dure. Two errors are associated with walkers wi (blue) and w j

(black), located at the errors at t = 0. The colored numbers indicate
the timestep at which a particular walker visits a site. Once a walker
encounters a site already visited by the other walker (yellow), the
two errors can be fused along the dotted path. In one dimension (a),
the walkers alternate in a left-right pattern, in two dimensions (b),
the walkers proceed in diamond-shaped patterns corresponding to a
constant Manhattan distance from the initial sites.

parallelized, i.e., within a topologically ordered phase, it is
able to remove a thermodynamically large number of errors
in constant time. This is in stark contrast to the conventional
maximum-likelihood error correction [27], as this will always
require an error correction circuit whose depth scales with
the system size. The same argument also holds for assessing

topological order based on circuit complexity [58], as the
circuit complexity is an extensive quantity even in the topo-
logically ordered phase.

For each error, we decorate the associated site with a
walker wi, which continuously explores the surroundings of
the original site, looking for the presence of other errors.
In one spatial dimension, the walker alternates between in-
vestigating sites on the left and on the right, while in two
dimensions, this is generalized to continuously exploring sites
with an increasing Manhattan distance to the original site, see
Fig. 8. For simplicity, we assume that changing the site of
a walker takes exactly one unit of time, irrespectively of the
distance traveled. Once a walker encounters a site with either
an error or a site previously visited by a walker w j originating
from another error, the error correction procedure starts. For
this, the errors on site i and j are fused together along the
shortest path, removing them and their associated walkers
from the system. Here, we assume that the fusion is instan-
taneous, which does not modify the overall finite-size scaling
properties of the error correction circuit. The error correction
procedure is performed until all errors have been removed
from the system. In the one-dimensional case, we also allow
for errors being removed via the left or right boundary of
the system, preventing the case of a single error remaining
without a potential fusion partner.

APPENDIX E: ISING-MAPPED JUMP OPERATORS

After mapping the system onto Ising variables Si, we obtain
a purely classical master equation, despite the basis states
being highly entangled. Here, we take the limit γv → ∞ such
that the dynamics is restricted to the Ising spins related to the
Bp operators. In the basis of the Ising spins Si, we obtain the
jump operators

cp
i = √

γpSx
i Sx

i+1

(
1 − Sz

i

)
/2,

ch
i = √

γ Sx
i+1

(
1 − Sz

i

)
/2.
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