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Optical conductivity of the two-dimensional Hubbard model: Vertex corrections, emergent Galilean
invariance, and the accuracy of the single-site dynamical mean field approximation
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We compute the frequency-dependent conductivity of the two-dimensional square lattice Hubbard model at
zero temperature as a function of density to second order in the interaction strength, and compare the results to
the predictions of single-site dynamical mean field theory computed at the same order. We find that despite the
neglect of vertex corrections, the single-site dynamical mean field approximation produces semiquantitatively
accurate results for most carrier concentrations, but fails qualitatively for the nearly empty or nearly filled
band cases where the model exhibits an emergent Galilean invariance. The DMFT approximation also becomes
qualitatively inaccurate very near half filling if nesting is important.
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I. INTRODUCTION

The single-site dynamical mean field theory (DMFT) [1] is
a widely used approximate method for computing properties
of strongly correlated electron systems. It becomes exact for
lattice models in an infinite coordination number (infinite
dimensional) limit, is believed to provide a reasonable approx-
imation to many aspects of the physics of interacting systems
on finite-dimensional lattices, and can be combined with band
theory calculations to provide a chemically realistic descrip-
tion of the properties of wide classes of quantum materials
[2,3]. The single-site DMFT approximation treats the electron
self energy as local in an appropriate orbital basis, and the
magnitude of the errors induced by this approximation is the
subject of active investigation. Much has been understood
about regimes of temperature and carrier concentration where
momentum-dependent correlations are important for static
equilibrium properties [4–6] but in the context of transport
properties, while interesting results have been obtained in a
high-temperature limit [7,8], the situation is less well under-
stood.

A transport property of particular interest is the optical
conductivity σ (ω), which is the linear response function re-
lating an applied long wavelength transverse electric field
E (ω) to a measured current j(ω). σ (ω) is of fundamental
interest because it reveals how electronic motion is affected
by the combination of electron-electron interactions and ionic
potential and of practical interest because it is a convenient
and widely studied experimental probe of quantum materials.

In the standard diagrammatic analysis, theoretical com-
putation of the conductivity requires knowledge of both the
self energy �(p, ω), expressing how carriers move and are
scattered under the influence of interactions, and the “vertex
correction” expressing interaction contributions to the cou-
pling to external fields and also encoding the physics of

conservation laws. In a Galilean invariant system (in other
words, a system with a continuous translation invariance and
a p2/2m electron dispersion), the vertex correction exactly
cancels the self energy [9,10], so that the conductivity takes
exactly the free-particle form, independent of interactions.
The conductivity vertex correction is related to the momentum
dependence of the electron self energy and vanishes in the
single-site dynamical mean field approximation [1]. In any
reasonable model, as the band filling tends zero, the disper-
sion tends to εp ∼ p2, the noninteracting physics becomes
approximately Galilean invariant and one may expect that
vertex corrections, neglected in the dynamical mean field the-
ory, become particularly important to the computation of the
conductivity in the low-density limit.

At frequencies well below the lowest interband transi-
tion the conductivity may be written as σ ∝ 1/( − iω(1 +
�(ω, T )) + �(ω, T )) where � and � represent interaction-
induced mass renormalization and scattering and vanish as
the interaction tends to zero. The presence of �,� in the
denominator means that the conductivity is in general not
perturbatively accessible; however, at T = 0 and at weak
correlations � � 1 and � � ω, implying that a perturbative
treatment is possible. In this paper we exploit this fact to
compute the frequency-dependent conductivity of the two-
dimensional square lattice Hubbard model at zero temperature
as a function of carrier density perturbatively to second order
in the interaction, obtaining results, which are exact to order
U 2 with corrections of higher order. We compare these results
to the predictions of DMFT to the same order in U . A similar
method was applied to Dirac and related systems by Sharma,
Principi, and Maslov [11].

The rest of the paper is organized as follows. In Sec. II we
introduce the formalism and the model. Section III presents
results for the total spectral weight (integral of the real part
of the conductivity over all frequencies). Section IV presents
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results for the functional form of σ (ω) at nonzero frequency.
Section V gives the Drude weight correction. Section VI is a
conclusion.

II. FORMALISM

A. Conductivity: Definitions

We consider a system described by a Hamiltonian Ĥ [A]
depending on a spatially uniform time-dependent vector po-
tential A related to the electric field as E = −∂t A. (In this
paper we choose units such that the speed of light, Planck
constant h̄, and the electric charge are set to unity). The current
operator j = − δĤ

δA , the minimal coupling relation k → k − A,
and standard linear response arguments [9,12] yield the el-
ements of the temperature T = 0 conductivity tensor σα,β

relating the current in the α direction induced by a field in
the β direction) as

σαβ (ω) = 1

iω

[−Kαβ + χ
αβ
j j (ω)

]
, (1)

where

Kαβ =
〈

δ2Ĥ

δAαδAβ

〉
, (2)

and the current-current correlation function is

χ
αβ
j j (t − t ′) = i〈[ ĵα (t ), ĵβ (t ′)]〉θ (t − t ′). (3)

The expectation values are taken in the ground state of the
model. We will specialize to high symmetry situations [in the
two-dimensional case, this would include the O(2) symmetry
of free electrons, C4 symmetry of electrons on a square lattice,
and the C6 symmetry of the hexagonal lattice] where the
conductivity is proportional to the unit tensor and for explicit
calculations take the electric field and current operator to be
in the x direction.

The real σ1 and imaginary σ2 parts of the conductivity obey
a Kramers-Kronig relation,

σ2(ω) = P
∫

dx

π

σ1(x)

ω − x
. (4)

Because the current-current correlation function vanishes
rapidly as ω → ∞, we obtain by comparing the ω → ∞
limits of Eq. (1) and Eq. (4),

K =
∫

dx

π
σ1(x). (5)

In a system with a discrete translational invariance at T =
0, it may be that

lim
ω→0

(K − χ j j (ω)) ≡ KD �= 0, (6)

so that the low-frequency limit of the conductivity may be
written as

σ (ω) = −KD

iω
+ σreg(ω), (7)

defining the “Drude weight” KD. Here limω→0 ωσreg(ω) = 0.
The term proportional to KD represents the fraction of the
carriers that may be freely accelerated by an electric field.

In a Galilean-invariant system the current operator is iden-
tical to the momentum operator and commutes with the
Hamiltonian, so χ j j = 0 independent of interactions and K =
KD = n/m (we have set the charge equal to unity). In a
continuum but not Galilean invariant model (e.g., the band
theory problem of electrons in the presence of a periodic
array of ions) K defined as the integral of the conductivity
over all frequencies (i.e., including all interband transitions
and transitions to the continuum) is equal to n/m independent
of interactions but KD < K , reflecting the fact that the ionic
potential prevents some fraction of the electrons from freely
accelerating in an applied dc field. Our interest in this paper is
in tight-binding models, which describe only a subset of the
orbitals in a real solid. The conductivity in this case refers
only to those transitions involving states described by the
tight-binding model and K will depend on interactions as well
as on band filling.

In summary, we may characterize the conductivity by three
quantities: the “total spectral weight” K [Eq. (5)], the “Drude
weight” of freely accelerating carriers KD [Eq. (6)] and the
form of the frequency-dependent conductivity χ j j/ω. In the
rest of this paper we investigate, within a perturbative approx-
imation to a simple model, the extent to which the dynamical
mean field approximation accurately captures the magnitude
and frequency dependence of these effects.

B. Calculational formalism

As mentioned in the Introduction, at frequencies suffi-
ciently less than the lowest interband transition energy the
conductivity may alternatively be written (neglecting the in-
terband contribution to the low-frequency dielectric constant)
as

σ (ω) = K

−iω(1 + �(ω)) + �(ω)
, (8)

where the “memory function” −iω�(ω) + �(ω) ≡
Kσ (ω)−1 + iω. Because the inverse conductivity is a
physically well-defined response function, ω� and �

also obey a Kramers-Kronig relation, and following from
the properties of σ we see that both � and � are even
functions of ω. At T = 0 in a Fermi liquid with discrete
translational invariance we expect lim

ω→0
� = A + Oω2

and lim
ω→0

� = Bω2 + Oω4. Both � and � vanish at high

frequencies and also vanish in the noninteracting limit, so for
small interactions

σ (ω) = −K

iω(1 + �(ω))
+ K�(ω)

ω2
, (9)

implying

KD = K

1 + A
≈ K (1 − A), (10)

Re[σreg(ω)] = K�(ω)

ω2
, (11)

and, by comparing to Eq. (1),

�(ω) = ωIm[χ j j (ω)]

K
. (12)
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Thus a perturbative calculation of χ j j provides a perturbative
calculation of �, which in the weak coupling, T = 0 limit
provides a complete description of the dissipative part of the
conductivity. At nonzero temperature, this method would fail
at low frequencies because � would have a term proportional
to T 2 so �/ω would not be small below a small frequency of
the order of the square of the interaction times the tempera-
ture. Some kind of resummation would have to be performed,
but this is not considered here.

We calculate the current-current correlation function using
the force-force method [13]. The essential idea is to integrate
by parts, noting that time derivatives correspond to commu-
tators with the Hamiltonian and that the noninteracting term
commutes with the current.

The result is compactly expressed in terms of the force
operator F̂α = [Ĥ , ĵα] as (see Appendix B)

χ xx
j j (iωn) = − 1

(iωn)2

〈[
ĵx(0),

d ĵx(τ )

dτ

∣∣∣∣
τ=0

]〉

− 1

(iωn)2

∫ β

0
dτeiωnτ 〈Tτ F̂ x(τ )F̂ x(0)〉. (13)

The first term is real and does not contribute to the absorptive
part of the conductivity; we will focus on the second term.
For notational convenience we have written the formulas on
the imaginary time axis.

In the dynamical mean field formalism, vertex corrections
vanish and the current-current correlation function is given
[1] as a convolution of two electron Green functions and two
velocity operators,

χ xx
j j (iωn) = −T

∑
νn,σ

∑
k

vkGσ (k, iωn + iνn)vkGσ (k, iνn).

(14)

C. Hubbard model

We specifically study the one-band two-dimensional
square lattice Hubbard model with nearest-neighbor hopping.

The Hamiltonian Ĥ contains a quadratic (hopping) part T̂ and
an interaction part ĤI , where

T̂ = −
∑
i jσ

ti jc
†
iσ c jσ =

∑
kσ

Ekc†
kσ

ckσ ,

ĤI =
∑

i

Uni↑ni↓ = U
∑
kk′q

c†
k↑ck+q↑c†

k′↓ck′−q↓. (15)

For the nearest-neighbor hopping Ek = −2t (cos(kxa) +
cos(kya)). We set t = 1 and lattice constant a = 1 throughout
the paper. The carrier concentration ranges from 0 to 2.

The total spectral weight is found by substituting the first
line of Eq. (15) into Eq. (2) and using the momentum-space
form of the dispersion given below Eq. (15) and the minimal
coupling k → k − A,

K =
∑
k,σ

2t cos(kx )〈c†
kσ

ckσ 〉. (16)

The force operator is, explicitly

F̂ x = [Ĥ , ĵx]

= U
∑
kk′q

c†
k↑c†

k′↓ck′−q↓ck+q↑(vk+q + vk′−q − vk − vk′ ),

(17)

where

vk = ∂Ek

∂kx
= 2t sin(kx ). (18)

Observe that as k → 0, vk → kx and if all momenta are small
F = 0.

We compute perturbatively to order U 2 so this amounts
to evaluating the force-force correlator in the noninteracting
ground state.

In the dynamical mean field approximation to the Hubbard
model the electron Green’s function is

Gσ (k, iωn) = 1

iωn + μ − Ek − �σ (iωn)
, (19)

and the current-current correlation function is

χ xx
j j (iωn) = −T

∑
νn,σ

∑
k

vkGσ (k, iωn + iνn)vkGσ (k, iνn)

≈ −T
∑
νn,σ

∑
k

v2
k

�σ (iωn + iνn)(iνn + μ − Ek ) + �σ (iνn)(iωn + iνn + μ − Ek )

(iωn + iνn + μ − Ek )2(iνn + μ − Ek )2 , (20)

where the second approximate equality holds to order U 2. In
evaluating Eq. (20) we use the DMFT self energies computed
as in Eq. (A6).

We will work in the paramagnetic phase of the model and
will omit spin indices except where necessary.

III. TOTAL SPECTRAL WEIGHT CORRECTION

We first look at the total spectral weight. From
Eq. (16), using 〈c†

kσ
ckσ 〉 = G(k, τ = 0−) and G−1(k, iωn) =

G−1
0 (k, iωn) − �(k, iωn) with G−1

0 (k, iωn) = iωn − εk and

εk = Ek − μ and noting that the frequency sum is absolutely
convergent, we obtain

K = 2T
∑
ωn

∑
k

∂2Ek

∂k2
x

G(k, iωn)

= 2T
∑
ωn

∑
k

∂2Ek

∂k2
x

(
G0(k, iωn) + �(k, iωn)G2

0(k, iωn)
)

(21)
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FIG. 1. Main panel: Total spectral weight correction as a function
of density obtained by numerical integration of Eqs. (22) and (23).
The upper left inset shows the low-density dependence of total spec-
tral weight correction as a function of n2 and the inset in the middle
shows the renormalized difference � between two curves, which is
defined as � = (δKperturb − δKDMFT )/δKperturb.

where the factor of 2 comes from spin and T represents tem-
perature. � ∼ U 2 at small U so the second term of Eq. (21)
gives the spectral weight correction δK to order U 2. In per-
forming the sum the double pole arising from the G2

0 has to be
handled with care. We find (see Appendix A for the details)
that the exact perturbative result is

δK = U 2
∑
kk′q

(1 − f (εk ))(1 − f (εk′ )) f (εk+q ) f (εk′−q)

(εk + εk′ − εk+q − εk′−q)2

× (Tk + Tk′ − Tk+q − Tk′−q), (22)

and the DMFT approximation is

δKDMFT = U 2
∑

kk′qq′

(1 − f (εk ))(1 − f (εk′ )) f (εq) f (εq′ )

(εk + εk′ − εq − εq′ )2

× (Tk + Tk′ − Tq − Tq′ ), (23)

where Tk = ∂2εk

∂k2
x

and f (εk ) = 1

eβεk + 1
is the Fermi function,

here evaluated at T = 0.
Notice the similarity between Eq. (23) and Eq. (22). The

only difference is that in the DMFT expression, the mo-
mentum conservation is relaxed so one has a sum over four
independent momenta.

We have evaluated Eqs. (22) and (23) numerically using
Monte Carlo integration with 107 points. Results are shown in
Fig. 1. We can see that the total spectral weight correction is
almost the same in the two methods.

The very close correspondence of the two results shows
the accuracy of DMFT in calculating local expectation values
even in the two-dimensional case. Note in particular that in
the very low-density limit the two expressions are indistin-
guishable on the scale of the main panel, both vanishing ∼ n2

although with slightly different coefficients (see inset). This
correspondence shows that the n → 0 limit of the Hubbard
model is not precisely a Galilean invariant theory. Although
the dispersion for electrons near the Fermi level approaches
k2, the interaction correction to the total kinetic energy scales

(a)

(c) (d)

(b)

FIG. 2. Optical conductivity for different chemical potential for
the perturbative (solid blue) and DMFT (dashed yellow) cases (ω >

0). The inset in (a) shows the conductivity for half filled case multi-
plied by frequency.

in the same way as any other local interaction effect, namely
∼ n2. If the low-density limit of the model were described
by a theory that became truly Galilean-invariant in the senses
described above, we would expect the correction to vanish as
a higher power of n. The reason that the interaction correction
to the total spectral weight does not vanish more rapidly than
n2 may be seen in Fig. 2: interaction effects cause optical
transitions at very high frequencies: the final states in these
transitions are high up in the band where the dispersion is
not well approximated by k2/2m and arguments based on
Galilean invariance do not apply.

IV. CONDUCTIVITY AT NONZERO FREQUENCY

We evaluate � from Eq. (12) and then compute the con-
ductivity from Eq. (9). Using Eq. (17) for the force operator,
we get (see Appendix B for details) at zero temperature and
positive frequency,

Reσ (ω) = U 2 π

ω3

∑
kk′q

f (εk ) f (εk′ )(1 − f (εk′−q))

× (1 − f (εk+q))(vk+q + vk′−q − vk − vk′ )2

× δ(ω + εk + εk′ − εk′−q − εk+q ). (24)

For the purposes of numerical evaluation it is convenient to
rewrite Eq. (24) as

Reσ (�) = 2U 2

π�3

∑
q

∫ 0

−�

dω[B(2)(q, ω + �)B(0)(−q,−ω)

+ B(1)(q, ω + �)B(1)(−q,−ω)], (25)
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where

Bα (q, ω) = −π
∑

k

( f (εk ) − f (εk+q ))

× δ(ω + εk − εk+q )(vk+q − vk )α,

α = 0, 1, 2. (26)

We evaluate Bα (q, ω) by analytically implementing the
delta function and performing the remaining integral via a
standard trapezoid rule. Then we calculate the convolution to
obtain the conductivity.

The DMFT conductivity is obtained from Eq. (20). Contin-
uing to real frequency we obtain

Imχ xx
j j (ω) = 2

∑
k

(
∂εk

∂kx

)2 ∫
dy

π
( f (y) − f (y + ω))

× �′′(y + ω)

(y + ω − εk − �′(y + w))2 + (�′′(y + ω))2

× �′′(y)

(y − εk − �′(y))2 + (�′′(y))2 . (27)

We assume that the imaginary part of the self energy is
small so we approximate the two Lorentzian above as Dirac
delta function. After calculations (details in Appendix C), we
get at zero temperature and positive frequency,

Reσ (ω) = U 2 π

ω3

∑
kk′ p1 p2

f (εk ) f (εk′ )(1 − f (εp1 ))(1 − f (εp2 ))

× [
v2

k + v2
k′ + v2

p1
+ v2

p2

]
δ(εk + εk′

+ ω − εp1 − εp2 ). (28)

As in the expression for δK , the perturbative and DMFT
approximation differ only by a relaxation of momentum con-
servation, which causes the cross terms in the matrix element
to vanish in the DMFT expression.

Figure 2 presents a detailed comparison between the per-
turbative and DMFT results for the conductivity. At high
frequency the two methods give almost identical conduc-
tivities while at low frequency differences are evident. The
differences are larger for lower μ, becoming qualitative for
μ < −2t . At μ = 0 a qualitatively different low-frequency
behavior is also evident.

First focus on the exact perturbative case. We can see that
when the chemical potential is larger than −2t (or equiv-
alently kF > G/4, here G is a reciprocal lattice vector) as
in panel (b) the conductivity tends to a nonzero constant
as ω goes to zero. When the chemical potential is smaller
than −2t as in panel (d) the conductivity vanishes at low
frequency, with the first correction ∼ ω2. This behavior was
previously noted by Rosch and Howell [14], who showed that
at small chemical potential only cooper channel scattering
(from k,−k to q,−q) is allowed. This zero crystal momentum
process cannot degrade the long time limit of the current but
because the current is not equivalent to the momentum in a
lattice model, the current will have time dependence at shorter
times, leading to the ω2 behavior. However for −2t < μ < 2t
Umklapp scattering processes in which after translation by a

reciprocal lattice vector G a pair of electrons can scatter across
the Fermi surface may occur (see Fig. 3); these processes
change the momentum of the system, resulting in a nonzero
conductivity in the zero-frequency limit. Notice that these are
the results of order U 2. If we go to order U 4, which involves
four particle processes, then the threshold for Umklapp scat-
tering is much smaller.

In the DMFT case, we can see that at all μ the conductivity
remains nonzero as ω goes to zero except around the half-
filled case. This is due to the lack of vertex corrections in
DMFT, in other words, in DMFT all scattering can relax the
current: The DMFT calculation does not capture the effective
Galilean invariance emerging at low densities.

Now we look at the μ = 0 case, which corresponds to half
filling. To better characterize the behavior of the conductivity
at low frequency we plot ωσ (ω) in the inset of Fig. 2. We
can see that for the perturbative case ωσ is weakly increasing
as ω → 0. This divergence arises from the Van Hove and
nesting properties of the nearest neighbor Hubbard model at
n = 1 and t ′ = 0, and is cut off at low frequency by the spin
density wave gap that arises from the nesting. At frequencies
less than the gap scale the real part of the conductivity would
vanish. We do not explicitly consider this physics; our results
are valid only at frequencies sufficiently greater than the gap
scale, which is exponentially small in

√
t/U . At half filling,

DMFT disagrees with the perturbative calculation because the
momentum average wipes out the effects arising from nesting
and Van Hove singularities, leading to an underestimate of the
scattering rate.

To further document the origin of the effect, we add a next-
nearest-neighbor hopping t ′ to our tight-binding model so the
dispersion relation becomes Ek = −2t cos(kx ) − 2t cos(ky) −
4t ′ cos(kx ) cos(ky) and at half filling the perfect nesting is
destroyed and the energy of the Van Hove point is shifted.
Figure 4 shows the optical conductivity for this case for the
same carrier densities as Fig. 2. We can see that now for half
filling at low frequency the conductivity approaches a nonzero
constant.

V. DRUDE WEIGHT

Figure 5 shows the Drude weight KD defined in Eq. (7). KD

characterizes the fraction of the carriers that are freely accel-
erated by an electric field at T = 0. For most of the carrier
concentration range the differences between the DMFT and
exact perturbative calculations are not large, but two features
of the results are noteworthy.

Near half filling the suppression of the Drude weight is
greater in the exact perturbative calculation than in the DMFT
calculation. This may be understood as a precursor of the spin-
density wave state. In the exact perturbative calculation the
spectral weight in the nonzero frequency calculation diverges
at least logarithmically (as follows from the ≈ ω−1 divergence
of the conductivity shown in Fig. 2), implying an infinite
renormalization of the Drude weight. The divergence is cut
off by the spin-density wave gap, which is itself exponentially
small in

√
t/U .

Near the empty band the suppression of the Drude weight
is much less in the exact perturbative calculation than in the
DMFT calculation. Close comparison of the insets to Figs. 1
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(a) (b)

FIG. 3. (a) When the chemical potential μ < −2t , there is no Umklapp scattering at low frequency. (b) When −2t < μ < 2t Umklapp
scattering is allowed at low frequency.

and 5 shows that while in the DMFT calculation the change to
KD is about three times the change in K , in the exact pertur-
bative calculation the change to KD is only about 20% larger
than the change in K . In Fermi liquid theory one may write
the Drude weight as KD = K (U ) m

m∗ (1 + F1S/2), where F1S is
the spin-symmetric Landau parameter with angular momen-
tum L = 1 [10,15]. In a two-dimensional Galilean-invariant
system (1 + F1S/2) = m�

m consistent with the statement that
KD = K . Our result for KD/K then suggests that the effective
low-energy theory describing the low-energy physics while
not quite Galilean-invariant, is close to being so. In this sense
the model develops an emergent approximate Galilean invari-
ance.

VI. CONCLUSIONS

The single-site dynamical mean field approximation is
based on a severe locality approximation; in view of the con-
siderable success of the method it is of interest to critically

(a)

(c) (d)

(b)

FIG. 4. Optical conductivity for the same carrier densities as in
Fig. 2 but with t ′ = 0.1 for the perturbative (solid blue) and DMFT
(dashed yellow) cases (ω > 0).

examine the accuracy of the approximation. In this paper we
have considered the question in the context of the optical
conductivity, a response function, which in certain cases—in
particular for a Galilean-invariant or nearly Galilean-invariant
situation is crucially controlled by nonlocality, and for the
two-dimensional Hubbard model, far from the limit of infinite
dimensionality where dynamical mean field theory is strictly
valid. Our analysis was based on the availability of exact per-
turbative results for the frequency dependence of the T = 0
conductivity.

We found that over relatively wide ranges of density the
dynamical mean field approximation gives semiquantitatively
accurate (within ∼ 20%) results. The two exceptions are very
near to half filling in the perfectly nested model, where the
momentum averaging inherent in the DMFT approximation
leads to an underestimate of the effects of the nesting on
the electron scattering, and at relatively low densities where
an approximate kind of Galilean invariance emerges, leading
to a substantial difference between the scattering processes
that give an electron lifetime and the scattering processes that

FIG. 5. Main panel: Drude weight correction as a function of
density. The upper left inset shows the low-density dependence of
Drude weight correction as a function of n2 and the upper-right
inset shows the renormalized difference between two curves � =
(δKDperturb − δKDDMFT )/δKDperturb . Note that in the exact calculation
−δKDperturb/U 2 diverges as n → 1.
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can degrade a current. We observe that in general in a lattice
model such as the Hubbard model, high-frequency scattering
processes are sensitive to the lattice and can degrade the
current, but at low density, low-frequency processes cannot
degrade the current (see Figs. 2 and 3). For this reason at low
densities the exact low-frequency conductivity differs sub-
stantially from the predictions of the DMFT approximation, in
particular vanishing as frequency tends to zero. This behavior
may be viewed as an effective Galilean invariance of the low-
energy theory, at low dopings. The presence of high-frequency
conductivity, however, means that even in the low-density
limit, the Landau parameter F1S , while significantly different
from zero, is not quite equal to m∗/m.

The results presented here were obtained in the weak-
interaction limit at T = 0 of a two-dimensional model.

Extension to three dimension, to stronger interactions and
to systems near critical points (see e.g., [16]) would be of
interest. An important open question is the temperature de-
pendence of the resistivity. The methods introduced here are
not directly applicable at T �= 0, but the results do imply con-
straints on a T > 0 theory, and it is an important open question
whether the force-force correlation function considered here
can be resummed to obtain a theory of the temperature depen-
dence.
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APPENDIX A: TOTAL SPECTRAL WEIGHT

In this Appendix we present the details of the derivation of Eqs. (22) and (23) of the main text. Evaluating the self energies
as described below we find that Eq. (21) may be written for both the perturbative and DMFT cases as

δK = 2U 2
∑

k,p1,p2,p3

T
∑
ωn

∂2εk
∂k2

x
Sk,p1,p2,p3

(iωn − εk )2(iωn + εp3 − εp1 − εp2 )
, (A1)

where S is a combination of Fermi functions and (in the perturbative case) momentum conserving δ functions.
Evaluating the Matsubara sum in the standard way, taking into account the double pole gives

δK = 2U 2
∑

k,p1,p2,p3

∂2εk
∂k2

x
Sk,p1,p2,p3 ( f (εp1 + εp2 − εp3 ) − f (εk ))

(εk + εp3 − εp1 − εp2 )2
+ 2

∑
k

∂2εk

∂k2
x

Re[�(k, εk )]
df (z)

dz

∣∣∣∣
z=εk

. (A2)

The second term may be interpreted as the leading correction to the difference between the kinetic energy evaluated in a
noninteracting theory using the bare Fermi surface Ek = μ and using the renormalized Fermi surface Ek + Re�(k, 0) = μ. To

see this more concretely, note that the square lattice symmetry means we may replace
∂2εk

∂k2
x

by
1

2
(
∂2εk

∂k2
x

+ ∂2εk

∂k2
y

) = −1

2
Ek = −μ

2
where the last equality follows from the T → 0 limit of df /dz. The term is then recognized as the order U 2 change in particle
density n if the calculation is performed at fixed μ. If the calculation is instead performed at fixed particle density the chemical
potential must be adjusted in a way that compensates for this term, which we will ignore henceforth.

We now turn to the other factors. The self energy � is given by the standard convolution of three bare Green’s functions,

�σ (k, i�n) = −U 2T 2
∑
ω1ω2

∑
p1

∑
p2

G0
−σ (p1, iω1)G0

σ (p2, iω2)G0
−σ (p1 + p2 − k, iω1 + iω2 − i�n). (A3)

Evaluating in the standard way we obtain

�(k, iωn) = U 2
∑
p1 p2

f (εp1+p2−k )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εp1+p2−k )) f (εp1 ) f (εp2 )

εp1+p2−k + iωn − εp1 − εp2

, (A4)

so that

Sk,p1,p2,p3 = ( f (εp3 )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εp3 )) f (εp1 ) f (εp2 ))δp3+k−p1−p2 (A5)

for the perturbative case.
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Combining the Fermi functions using equations such as

f (εp1+p2−k )(1 − f (εp2 ))(1 − f (εp1 )) + (1 − f (εp1+p2−k )) f (εp1 ) f (εp2 ) = eβεp1+p2−k (1 + eβ(εp1 +εp2 −εp1+p2−k ) )

(1 + eβεp1+p2−k )(1 + eβεp1 )(1 + eβεp2 )

and rearranging, this gives Eq. (22).
In the DMFT approximation, we have (correct only when interaction is weak)

�(iωn) =
∑

k

�(k, iωn)

= U 2
∑

p1 p2 p3

f (εp3 )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εp3 )) f (εp1 ) f (εp2 )

εp3 + iωn − εp1 − εp2

, (A6)

so that

Sk,p1,p2,p3 = f (εp3 )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εp3 )) f (εp1 ) f (εp2 ). (A7)

Similar steps give Eq. (23).

APPENDIX B: PERTURBATIVE OPTICAL CONDUCTIVITY

The current-current correlation function is

χ xx
j j (iωn) =

∫ β

0
dτeiwnτ 〈Tτ ĵx(τ ) ĵx(0)〉

= 1

iωn
〈 ĵx(β ) ĵx(0) − ĵx(0) ĵx(0)〉 − 1

iωn

∫ β

0
dτeiωnτ 〈Tτ

d ĵx(τ )

dτ
jx(0)〉.

The first term is zero because it is equal to −〈[ ĵx, ĵx]〉 and is the commutator of current with itself. Using time translational
invariance we have

〈
Tτ

d ĵx(τ )

dτ
ĵx(0)

〉
=

〈
Tτ

d ĵx(τ ′)
dτ ′

∣∣∣∣
τ ′=0

ĵx(−τ )

〉
.

Now integrate by parts,

χ xx
j j (iωn) = − 1

(iωn)2

〈
[ ĵx(0),

d ĵx(τ )

dτ

∣∣∣∣
τ=0

]

〉
+ 1

(iωn)2

∫ β

0
eiωnτ

〈
Tτ

d ĵx(τ ′)
dτ ′

∣∣∣∣
τ ′=0

d ĵx(−τ )

dτ

〉

= − 1

(iωn)2

∫ β

0
dτeiωnτ

〈
Tτ

d ĵx(τ )

dτ

d ĵx(τ ′)
dτ ′

∣∣∣∣
τ ′=0

〉
. (B1)

The term, which contains the commutator of ĵx(0) and
d ĵx(τ )

dτ
is just a constant and does not contribute to the imaginary part of

χ xx
j j (iωn).

Evaluating the time-ordering product (keeping to second order) in Eq. (B1) we get

−
∑
kk′q

∑
mnp

∫ β

0

dτeiωnτ 〈Tτ c†k↑(τ)c†k′↓(τ)ck′−q↓(τ)ck+q↑(τ)c†m↑(0)c†n↓(0)cn−p↓(0)cm+p↑(0)〉0

× (Tk+q + Tk′−q − Tk − Tk′)(Tm+p + Tn−p − Tm − Tn)

=
∫ β

0

dτeiωnτ
∑
kk′q

G0
↑(k,−τ)G0

↓(k
′,−τ)G0

↓(k
′ − q, τ)G0

↑(k + q, τ)(Tk+q + Tk′−q − Tk − Tk′)2

=
∑
kk′q

∫ β

0

dτeiωnτeεkτeεk′τe−εk′−qτe−εk+qτf(εk)f(ε′k)(1 − f(εk′−q))(1 − f(εk+q))

× (Tk+q + Tk′−q − Tk − Tk′)2.
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FIG. 6. Convolution of two bubbles.

Performing the integral over imaginary time, we obtain

χ xx
j j (iωn) = U 2 1

(iwn)2

∑
kk′q

eβ(εk+εk′−εk′−q−εk+q ) − 1

iωn + εk + ε′
k − εk′−q − εk+q

f (εk ) f (εk′ )(1 − f (εk′−q))(1 − f (εk+q))

× (Tk+q + Tk′−q − Tk − Tk′ )2. (B2)

Carrying out analytic continuation iwn → w + iδ and taking the imaginary part of χ j j , we get

Imχ xx
j j (ω) = U 2 −π

w2

∑
kk′q

(eβ(εk+εk′−εk′−q−εk+q ) − 1) f (εk ) f (εk′ )(1 − f (εk′−q))(1 − f (εk+q))

× (Tk+q + Tk′−q − Tk − Tk′ )2δ(ω + εk + εk′ − εk′−q − εk+q ). (B3)

Using the relation Reσ (ω) = Imχ xx
j j (ω)

ω
at finite frequency, we have

Reσ (ω) = U 2 −π

ω3

∑
kk′q

(eβ(εk+εk′ −εk′−q−εk+q ) − 1) f (εk ) f (εk′ )(1 − f (εk′−q))(1 − f (εk+q ))

× (Tk+q + Tk′−q − Tk − Tk′ )2δ(ω + εk + εk′ − εk′−q − εk+q ). (B4)

Then take the zero-temperature limit and focus on positive frequency, we get Eq. (24). Diagrammatically we are just
evaluating the convolution of two bubbles, as shown in Fig. 6.

APPENDIX C: OPTICAL CONDUCTIVITY UNDER DMFT

Using the spectral weight representation, we have

χ xx
j j (iωn) = −2

∑
k

(
∂εk

∂kx

)2

T
∑
νn

∫
dx

π

ImG(k, x)

iωn + iνn − x

∫
dy

π

ImG(k, y)

iνn − y

= −2
∑

k

(
∂εk

∂kx

)2 ∫
dx

π

dy

π

ImG(k, x)ImG(k, y)

iωn + y − x
( f (y) − f (x)). (C1)

Then we take the imaginary part,

Imχ xx
j j (ω) = 2

∑
k

(
∂εk

∂kx

)2 ∫
dx

dy

π
ImG(k, x)ImG(k, y)( f (y) − f (x))δ(ω + y − x)

= 2
∑

k

(
∂εk

∂kx

)2 ∫
dy

π
ImG(k, y + ω)ImG(k, y)( f (y) − f (y + ω))

= 2
∑

k

(
∂εk

∂kx

)2 ∫
dy

π
( f (y) − f (y + ω))

�′′(y + ω)

(y + ω − εk − �′(y + ω))2 + (�′′(y + ω))2

× �′′(y)

(y − εk − �′(y))2 + (�′′(y))2 . (C2)
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We introduce I (x) =
∑

k

δ(x − εk )(
∂εk

∂kx
)
2

and approximate Lorentzian as Dirac delta functions. The real part of the conduc-

tivity is

Reσ (ω) = −2
∫

dy
∫

dx
f (y) − f (y + ω)

ω
I (x)

[
δ(y + ω − x)

�′′(y)

ω2
+ �′′(y + ω)

ω2
δ(y − x)

]

= −2

ω3

∫
dy( f (y) − f (y + ω))[I (y + ω)�′′(y) + �′′(y + ω)I (y)]. (C3)

Using the second order self energy Eq. (A6), we have

Reσ (ω) = U 2 2π

ω3

∫
dy( f (y) − f (y + ω))

∑
kk′ p1 p2

δ(y + ω − εk )

(
∂εk

∂kx

)2

δ(εk′ + y − εp1 − εp2 )

× [ f (εk′ )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εk′ )) f (εp1 ) f (εp2 )]

+ U 2 2π

ω3

∫
dy( f (y) − f (y + ω))

∑
kk′ p1 p2

δ(y − εk )

(
∂εk

∂kx

)2

δ(ε′
k + y + ω − εp1 − εp2 )

× [ f (εk′ )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εk′ )) f (εp1 ) f (εp2 )]

= U 2 2π

ω3

∑
kk′ p1 p2

( f (εk − ω) − f (εk ))[ f (εk′ )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εk′ )) f (εp1 ) f (εp2 )]

× δ(εk + εk′ − ω − εp1 − εp2 )

(
∂εk

∂kx

)2

+ U 2 2π

ω3

∑
kk′ p1 p2

( f (εk ) − f (εk + ω))[ f (εk′ )(1 − f (εp1 ))(1 − f (εp2 )) + (1 − f (εk′ )) f (εp1 ) f (εp2 )]

× δ(εk + εk′ + ω − εp1 − εp2 )

(
∂εk

∂kx

)2

. (C4)

Imposing the delta function, we get

Reσ (ω) = U 2 2π

ω3

∑
kk′ p1 p2

[eβ(εk+ε′
k−εp1 −εp2 ) − 1] f (εk ) f (εk′ )(1 − f (εp1 ))(1 − f (εp2 ))

× δ(εk + εk′ − ω − εp1 − εp2 )

(
∂εk

∂kx

)2

− U 2 2π

ω3

∑
kk′ p1 p2

[eβ(εk+ε′
k−εp1 −εp2 ) − 1] f (εk ) f (εk′ )(1 − f (εp1 ))(1 − f (εp2 ))

× δ(εk + εk′ + ω − εp1 − εp2 )

(
∂εk

∂kx

)2

(C5)

By changing variables we can combine these two terms above,

Reσ (ω) = U 2 −2π

ω3

∑
kk′ p1 p2

[eβ(εk+ε′
k−εp1 −εp2 ) − 1] f (εk ) f (εk′ )(1 − f (εp1 ))(1 − f (εp2 ))

× δ(εk + εk′ + ω − εp1 − εp2 )

[(
∂εk

∂kx

)2

+
(

∂εp1

∂ p1x

)2]
. (C6)

Taking the zero-temperature limit and focus on positive frequency, we obtain Eq. (28).
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