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Phenomenological classification of metals based on resistivity
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Efforts to understand metallic behavior have led to important concepts such as those of strange metals, bad
metals, or Planckian metals. However, a unified description of metallic resistivity is still missing. An empirical
analysis of a large variety of metals shows that the parallel resistor formalism used in the cuprates, which includes
T -linear and T -quadratic dependence of the electron scattering rates, can be used to provide a phenomenological
description of the electrical resistivity in all metals, where these two contributions are shown to correspond to
the first two terms of a Taylor expansion of the resistivity, detached from their physics origin, and thus valid for
any metal. Here, we show that the different metallic classes are then determined by the relative magnitude of
these two components and the magnitude of the extrapolated residual resistivity. These two parameters allow us
to categorize a few systems that are notoriously hard to ascribe to one of the currently accepted metallic classes.
This approach also reveals that the T -linear term has a common origin in all cases, strengthening the arguments
that propose the universal character of the Planckian dissipation bound.
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I. INTRODUCTION

Interactions of electrons with other (quasi)particles (e.g.,
phonons, magnons, or electrons themselves) are responsible
for the electrical transport of metallic systems. In simple
metals, electron-electron interactions lead to a Fermi-liquid
description [1] of the resistivity at low temperatures (T ) as a
T 2 dependence, while a linear increase of resistivity is usually
observed at high T because of the boosted scattering strength
between electrons and phonons. However, this well-defined
regime is met with problems in strongly correlated metals.
This can happen when the metallic system is driven close to
a quantum critical point, which gives rise to a T dependence
of resistivity of the type T n, with 1 � n < 2 at low T [2,3].
Among those, the “strange metals,” such as the optimally
doped cuprates, present a puzzling linear-T dependence of
resistivity that can range from very low T (thus discarding
phonon scattering) to high T .

Deviations from the standard behavior also take place at
high temperatures, when the increased scattering drives the
mean free path (�) to approach the Mott-Ioffe-Regel (MIR)
limit [4,5], which compels the resistivity to show saturation
at high T [6]. However, in some so-called incoherent or “bad
metals,” the resistivity overcomes this upper limit, implying
such large scattering rates that, according to Heisenberg’s
principle, the uncertainty in the quasiparticle energy prevents
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their coherence, thus disqualifying the quasiparticle descrip-
tion altogether [7,8].

Different conduction mechanisms become dominant at dif-
ferent temperatures and thus an overall description of metallic
resistivity over a wide temperature range requires considering
the combined effect of the various contributions in a phe-
nomenological manner. T -linear resistivity has been typically
associated with electron-phonon scattering and thus such de-
pendence was not expected at low temperatures. However, it
is now well established that T -linear resistivity can emerge
well below the Debye temperature in various systems, from
simple metals to strongly correlated metals, as long as the
scattering rate (1/τ ) per degrees Kelvin of the charge carriers
reaches a universal bound, kB/h̄. This so-called Planckian
dissipation limit (PDL) is independent of the distinct behavior
and conduction mechanism [9]. These findings challenge the
significance of a specific scattering mechanism in determining
“strange” metallic transport and motivates the search for a
phenomenological description that applies to a large variety
of metals. In this paper we propose such a description.

II. RESULTS AND DISCUSSION

In Fig. 1(a), the ρ(T ) curves of a wide diversity of metallic
systems are plotted together. These systems include cuprates
with different doping levels, ruthenates, heavy fermions,
alkali-doped C60, iron pnictides, transition metals, and
monovalent metals. These materials have been classified as
simple metals, correlated metals, strange metals, bad metals,
or Planckian metals. Compared with the slowly increasing
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FIG. 1. Resistivity of various metallic systems. (a) Compilation plot showing the resistivity of various metallic systems. (b) Blow-up of
the intermediate region in (a). The dashed line indicates the linear-T -resistivity slope of 1 μ� cm; the arrow shows the MIR limit (0.7 m� cm)
of La2−xSrxCuO4. [Data source: Cu, Nb [6,10–12]; Al, Co, and Pd [13]; Pb [14]; La2−xSrxCuO4 with x = 0.17–0.33 [15], with x = 0.04 and
0.07 [16,17]; Bi2Sr2Ca0.89Y0.11Cu2Oy [18]; Rb3C60 [19,20]; YBa2Cu3O6.45 [21]; Sr2RuO4 [22]; CeRu2Si2 [23,24]; CrO2 [25–28]; VO2 [29];
Nb3Sb [30]; SmNiO3 [31]; Nd0.825Sr0.175NiO2 [32]; Nd-LSCO (p = 0.24) and Bi2212 (p = 0.23) [33]; Ba(Fe1/3Co1/3Ni1/3)2As2 [34];
Sr3Ru2O7 [9].]

resistivity of simple metals (in the yellow region), for the
metals displayed in the blue region, the slope of ρ(T )
at around 300 K (which in most cases is the maximum
slope) is large, as expected from strong electron scattering.
Among them, the underdoped cuprates and Rb3C60 are
well-established bad metals [6]. The resistivity in these
systems can cross the ρMIR limit at relatively low temperatures
and approach a value far beyond it at high temperatures,
violating the quasiparticle scenario.

Notably, most correlated metals are located in an
intermediate region between the good metals and the bad
metals, as shown with more detail in the blow-up plot of
Fig. 1(b). Interestingly, a number of these intermediate
systems remain unclassified, such as Sr2RuO4 [22] and
CrO2 [25], which have been reported to possess properties
of both conventional and bad metals. Other systems, such as
Sr3Ru2O7, La1.6−xNd0.4SrxCuO4 (Nd-LSCO) for hole doping
x ≈ p = 0.24, Bi2Sr2CaCu2O8 + δ (Bi2212) for hole doping
x ≈ p = 0.23, and Ba(Fe1/3Co1/3Ni1/3)2As2, have been
discussed as Planckian metals [9,33,34]. However, regardless
of their different origin and classification, the resistivity of all
the metallic systems in the intermediate region show many
comparable features. For instance, the maximum slope of
resistivity in most of the materials is well below an upper limit
of 1 μ� cm/K. The same limit has been reported in high-Tc

cuprates and was associated with the momentum-averaged
scattering rate (h̄/τ ∼ πkBT ) [35], which corresponds to the
PDL. As mentioned earlier, the PDL concept has been put
forward as the common origin of the linear-T resistivity in
systems with very different scattering mechanisms, including
high-Tc superconductors, other electron-correlated systems,
and even simple metals [9].

In an effort to unify the behavior of the different metal-
lic systems, we follow the seminal work of Hussey et al.
in high-Tc cuprates [15], which shows that the resistivity of
La2−xSrxCuO4 at various doping levels can be successfully
described by a parallel resistor formalism [36] as

ρ(T )−1 = ρideal(T )−1 + ρ−1
sat , (1)

where ρideal is the resistivity in the absence of saturation,
which is shunted by the large value of ρsat at high tempera-
tures. An adequate definition of ρideal is then needed in order
to describe ρ(T ) in a wide temperature range. Based on a large
body of experimental data, a dual-component model, with lin-
ear and quadratic terms, has been used in the cuprates [15,37]
as

ρideal(T ) = ρ0 + A1T + A2T 2, (2)

where ρ0 represents the residual resistivity, and the other two
terms reflect the temperature dependence of the scattering
rate with an isotropic T -quadratic component (assigned to
electron-electron scattering) and an anisotropic T -linear com-
ponent that is consistent with the PDL [15]. Generalizing this
to other types of metals, A1 and A2 cannot be assigned to a spe-
cific scattering mechanism and the previous equation should
be generally considered as a Taylor expansion of ρ(T ).

Here, we show that this dual-component parallel-resistor
formalism (DC-PRF) can describe the metallic behavior of
very distinct systems, independently of the dominant scat-
tering mechanism. The DC-PRF has been used to fit the
remarkable variety of resistivity data shown in Fig. 1, from the
bad metals to the good metals. As shown in Figs. 2(a)–2(c)
and the Supplemental Material [38], the electrical resistivity
of all these materials can be well described by Eqs. (1) and (2).
In all cases A2 < A1, reflecting a strong linear component at
low temperatures (see Fig. S34 [38]). This analysis provides
us with a unified view of metallic behavior. As shown in
Figs. 3(a) and 3(b), the fitting of resistivity to all those metallic
systems reveals a clear evolution of A1 and A2 as a function
of their room-temperature resistivity (ρ300 K). Interestingly,
the data include NdNiO3 (NNO), which we consider in the
present work as both a test case and an illustration of the
utility of the formalism. In fact, this compound is attracting
significant attention, since superconductivity was reported in
the related infinite-layer system Nd1−xSrxNiO2 [39], and is
a remarkable example of a material whose metallic behavior
has been particularly difficult to classify [31,40,41]. For the
present study, we have used epitaxial NNO films grown on
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FIG. 2. Fitting of the electrical resistivity of various metallic systems using Eq. (1). (a) Underdoped cuprate. (b) Ruthenates. (c) Simple
metals. (d) Nickelate (NdNiO3). The triangle in (d) indicates the temperature above which the data deviate from a T -linear dependence. (Data
sources: The resistivity of NdNiO3 is measured in the present work, while the data of other systems are extracted from Refs. [9,13,16,22],
respectively.)

LaAlO3 substrates, which have been characterized in detail in
our previous work [42,43]. The high-angle annular dark field
(HAADF) scanning tunneling electron microscopy (STEM)
image shown in Supplemental Material Sec. 1 demonstrates
the high crystalline quality of the NNO films with an atom-
ically sharp interface with the substrate [38]. In this 10-nm
film, a first-order metal-to-insulator transition occurs below
150 K. Here, measurements of resistivity in an extended
temperature range allow for a clear determination of the T
dependence in the metallic state.

As shown in Fig. 2(d), a linear-T resistivity is observed
in NNO in an ultrawide temperature range (about 400 K). In
our previous works, we showed that this T -linear behavior
can be achieved in optimized NNO films with low epitaxial
strain and low defect content [42] and, more interestingly, it
has signatures of Planckian dissipation [43]. With a further
increase of T , the rise of ρ(T ) shows an obvious deviation
from the linear dependence, which is caused by the addition
of a parallel saturation resistance that takes over the behav-
ior in the high-temperature regime [6,7,36]. Moreover, as in
NdNiO3 strong electron-electron interactions are expected,
the combined effect of all these contributions should be con-
sidered. Indeed, we can show that the metallic resistivity of the
NdNiO3 film over a temperature range of 600 K can be well
fit with the DC-PRF of Eqs. (1) and (2) with A2 being more
than two orders of magnitude smaller than A1 (see Fig. S27 in
the Supplemental Material [38]).

One of the interesting features unveiled in Fig. 3 is that the
increase of A1 saturates at a maximum value ∼1 μ� cm/K,

which we have previously discussed in relation to the defi-
nition of the intermediate region of Fig. 1(a). However, the
DC-PRF allows us to extract the linear contribution to resis-
tivity in a wider variety of metallic systems and in a wider
temperature range. In this way, we find that the upper limit is
actually obeyed by all the correlated systems, even in those
well-established bad metals.

The same A1 ∼ 1 μ� cm/K limit has been reported in
high-Tc cuprates [35] and has been associated with the PDL.
Indeed, we notice that the extracted A1 from those strange
metals (inside the yellow-encircled region) approximately
approaches this upper limit. Despite being derived for sim-
ple and isotropic Fermi surfaces, one can use the Drude
formula of conduction to estimate the universal Planckian
bound on dissipation (1/τ = kBT/h̄) and obtain that A1 =
(m∗/n)(kB/e2h̄), which includes the carrier density (n) and
carrier effective mass (m∗). This bound is therefore sys-
tem specific and explains that normal metals, due to their
lower m∗/n ratio [see Fig. 3(c) and Supplemental Material
Sec. 3 [38]], display smaller A1 values than the correlated
metals. Indeed, as shown in the inset of Fig. 3(c), the product
A1n/m∗, which characterizes the PDL, confirms that such a
limit is generally obeyed [9]. Thus, our analysis shows that
the Planckian bound is a significant contribution to the ρ(T )
in all investigated metals. The relevance of this limit also in
systems that show nonlinear-T resistivity [44] is then clearly
demonstrated using this approach.

In contrast, the quadratic A2 coefficient does not display a
bound and continues increasing to reach the largest values in
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FIG. 3. Observed trends in the DC-PRF coefficients. From the fit of ρ(T ) in various metals to the DC-PRF model of Eqs. (1) and (2),
the coefficients (a) A1 and (b) A2 are obtained and plotted as a function of the corresponding room-temperature resistivity (ρ300 K). The blue
dashed line in (a) indicates the maximum value obtained for A1 ∼ 1 μ� cm/K. Error bars are also obtained from the fitting results. Encircled
in yellow are the strange metals. Shadows are a guide to the eye showing the general evolution of the coefficients. (c) The m∗/n ratio is plotted
as a function of ρ300 K, showing a trend similar to A1. In the inset, A1n/m∗ is shown to remain at, or slightly below, kB/(e2 h̄), which corresponds
to the Planckian dissipation limit (PDL), also for the normal metals and bad metals. (d) Saturation resistivity (ρsat) as a function of residual
resistivity (ρ0). Encircled in blue are the bad metals.

bad metals [see Fig. 3(b)]. Even though A2 cannot be asso-
ciated with a unique physical process through all the metal
classes, its magnitude reflects the strength of the electron
scattering, with the smallest A2 for the normal metals and
the largest for the bad metals, as expected. Interestingly, in
most of the investigated bad metals, ρ0 (obtained from the
DC-PRF fits) is also significantly larger than in other metals
[see Fig. 3(d)], confirming the widespread notion that bad
metals are dirty metals [45]. This fact, and the large A2 values,
are responsible for the increased ρsat values that characterize
bad metals. Despite the large uncertainties associated with
the values of ρsat [46], the results of the fits in the systems
known as bad metals give rise to ultralarge values of ρsat, well
above what has been generally considered to be their MIR
limit (<1 m� cm [6,7]), as expected in this class of metals.

However, it is worth pointing out, first, that the role of the
saturation term in the DC-PRF expression is in some cases
(i.e., normal metals) that of linearizing the parabolic increase
in resistance that arises from Eq. (2), in order to reproduce the
linear electron-phonon regime at intermediate temperatures,
while in some other cases, where the data show signs of
saturation, this term can be directly associated with the MIR
limit. This further emphasizes the phenomenological charac-
ter of the DC-PRF expression. Second, the exact magnitude
of the MIR limit for electron correlated metals is difficult

to determine and it has been proposed that the small Fermi
surfaces of these materials can lead to MIR values much larger
than the ones earlier proposed [47].

Thus, our analysis shows that the different behavior of
ρ(T ) in various systems is mainly determined by the rela-
tive importance of A1 and A2, which can be assessed by the
magnitude of T ∗ = A1/A2, that is, the temperature at which
the linear and quadratic terms in ρ(T ) become equal [48], and
their ρ0. Figure 4(a) shows ρ0 as a function of T ∗, evidencing
that the bad metals show the smallest values of T ∗, while the
strange metals show the largest T ∗. Indeed, the strange metals
have a significantly smaller A2, compared to bad metals, and
similar A1, which leads to a strongly decreased quadratic con-
tribution, as expected from their close to linear dependence
in an extended temperature range. Ayres et al. [49] proposed
that the strange metals host two charge sectors, one containing
coherent quasiparticles, and the other one containing scale-
invariant “Planckian” dissipators [49]. This is well consistent
with our findings, with T ∗ = A1/A2 representing the tempera-
ture at which one sector takes over the other one.

According to Fig. 4, there are metals with low ρ0

(<10−3 m� cm), intermediate ρ0 (∼10−2 m� cm), and large
ρ0 (∼1 m� cm), and they can have low T ∗ (< 30 K), interme-
diate T ∗ (30 K < T ∗ < 300 K), or large T ∗ (> 300 K). Good
metals are characterized by a low ρ0, while bad metals are
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FIG. 4. Key parameters for the general classification of metals.
(a) Residual resistivity (ρ0) vs T ∗ = A1/A2. Bad metals, recognized
by their large ρ0, are shown to display the largest A2 and the lowest
T ∗ (the quadratic term dominates the scattering in the widest tem-
perature range), while in strange metals (encircled in orange in all
the figures) it is the linear term that dominates at most temperatures.
(b) ρ0 vs A2, representing the magnitude of coherent contributions to
the electron scattering rate.

characterized by a large ρ0; the rest of the metals (mostly
correlated electron systems) display intermediate values of
ρ0 and some of them show a large T ∗ [see Fig. 4(a)]. These
are the strange metals. We have mentioned the difficulties in
the classification of some systems such as Sr2RuO4, CrO2,
or NdNiO3. Our analysis suggest that these materials may be
classified as belonging to the intermediate A2 regime of cor-
related materials and are quite far from the values of bad and
good metals [see Fig. 4(b)]. Interestingly, these three materials
happen to be unexpectedly clean, according to the ρ0 obtained
from the DC-PRF analysis, which are comparable to those of
the simple metals, as shown in Fig. 3(d). This observation is
an example of the potential benefit of the present proposal to
provide a consistent classification of metallic transport on the
basis of these two simple parameters.

It is also worth noticing that, in those cases in which A2 �
A1, the description of ρideal(T ) with a linear and quadratic
term is a very good approximation to the actual data, while
larger A2 values, approaching A1, indicate that adding higher-
order terms in the Taylor expansion is needed in order to
better reproduce the data. We have done that in the case
of Bi2Sr2Ca0.89Y0.11Cu2Oy (Fig. S35 in the Supplemental
Material [38]), Rb3C60 (Fig. S36 in the Supplemental

Material), and YBa2Cu3O6.45 (Fig. S37 in the Supplemental
Material), showing that this indeed gives better fits. Both
the residual resistivity and the linear coefficient are kept un-
changed with respect to the original fit. The addition of a
higher-order term reduces both A2 and ρsat, emphasizing the
phenomenological character of these values, and showing that
A2 in Fig. 3 encompasses the nonlinear contributions to the
scattering rate.

III. CONCLUSION

The customary classification of metals as normal, bad,
or strange runs short to describe the complexity of electron
correlated systems, often leading to controversial conclusions.
We show that the Hussey formalism applied to cuprates,
which consist of T -linear (A1) and T -quadratic (A2) com-
ponents added to the residual resistivity and in parallel with
a saturation term, can describe the behavior of metals far
more generally, offering the opportunity for a unified descrip-
tion. Moreover, we also showed that defining a temperature
T ∗ = A1/A2 may provide a general framework to classify
metals in accordance with the relative magnitude of ρ0 and
T ∗. In strange metals, T ∗ describes the crossover from co-
herent quasiparticle scattering to scale-invariant “Planckian”
dissipation. Generally, A1 and A2 do not have a well-defined
physical origin and they simply represent the incoherent dissi-
pation and the coherent quasiparticle scattering contributions
to the resistivity, respectively. A1 is found to reach an upper
bound, for sufficiently large (m∗/n) ratios. The clear link of
this bound with the Planckian dissipation limit supports its
proposed universality [9,33], extending its scope to a larger
number of metals and evidencing that all metals may obey the
Planckian constrain.

The data that support the findings of this study are openly
available at the following Ref. [46].
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[49] J. Ayres, M. Berben, M. Čulo, Y.-T. Hsu, E. van Heumen, Y.
Huang, J. Zaanen, T. Kondo, T. Takeuchi, J. Cooper et al.,
Nature (London) 595, 661 (2021).

085141-6

https://doi.org/10.1103/RevModPhys.75.1085
https://doi.org/10.1080/14786430410001716944
https://doi.org/10.1103/PhysRevB.65.092405
https://doi.org/10.1126/science.1227612
https://doi.org/10.1103/PhysRevB.34.4331
https://doi.org/10.1103/PhysRevB.35.1728
https://doi.org/10.1016/0040-6090(88)90478-6
https://doi.org/10.1088/0305-4608/11/3/010
https://doi.org/10.1126/science.1165015
https://doi.org/10.1103/PhysRevLett.69.2975
https://doi.org/10.1103/PhysRevB.72.060511
https://doi.org/10.1016/0921-4534(96)00227-4
https://doi.org/10.1103/PhysRevB.48.9945
https://doi.org/10.1080/08957950600652939
https://doi.org/10.1103/PhysRevLett.70.3995
https://doi.org/10.1103/PhysRevB.58.R10107
https://doi.org/10.1016/0038-1098(85)90796-3
https://doi.org/10.1016/0921-4526(95)00028-8
https://doi.org/10.1103/PhysRevB.55.10253
https://doi.org/10.1103/PhysRevB.58.11597
https://doi.org/10.1063/1.364682
https://doi.org/10.1126/science.278.5343.1607
https://doi.org/10.1103/PhysRevB.48.4359
https://doi.org/10.1103/PhysRevLett.36.1084
https://doi.org/10.1038/nphys2907
https://doi.org/10.1103/PhysRevLett.125.027001
https://doi.org/10.1038/s41567-018-0334-2
https://doi.org/10.1038/s42005-020-00448-5
https://doi.org/10.1098/rsta.2010.0196
https://doi.org/10.1103/PhysRevLett.38.782
https://doi.org/10.1088/0953-8984/20/12/123201
http://link.aps.org/supplemental/10.1103/PhysRevB.106.085141
https://doi.org/10.1038/s41586-019-1496-5
https://doi.org/10.1126/sciadv.1500797
https://doi.org/10.1038/ncomms3714
https://doi.org/10.1038/s41467-020-16740-5
https://doi.org/10.1038/s41535-021-00374-x
https://doi.org/10.1038/s41535-021-00383-w
https://doi.org/10.34894/A1AHZR
https://doi.org/10.1103/PhysRevB.103.L020501
https://doi.org/10.1038/s41586-021-03622-z

