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Bloch’s theorem is the centerpiece of topological band theory, which itself has defined an era of quantum mate-
rials research. However, Bloch’s theorem is broken by a perpendicular magnetic field, making it difficult to study
topological systems in strong flux. For the first time, moiré materials have made this problem experimentally
relevant, and its solution is the focus of this paper. We construct gauge-invariant irreps of the magnetic translation
group at 2π flux on infinite boundary conditions, allowing us to give analytical expressions in terms of the Siegel
theta function for the magnetic Bloch Hamiltonian, non-Abelian Wilson loop, and many-body form factors. We
illustrate our formalism using a simple square lattice model and the Bistritzer-MacDonald Hamiltonian of twisted
bilayer graphene, obtaining reentrant ground states at 2π flux under the Coulomb interaction.
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I. INTRODUCTION

Motivated by developments in the fabrication of moiré
materials with greatly enlarged unit cells [1–8], this paper
revisits the solution of continuum Hamiltonians in strong flux
from the modern perspective of topological band theory. The
essential difficulty of the problem was identified by Zak who
demonstrated that translations do not commute in generic
magnetic flux and instead form a projective representation of
the translation group [9]. As such, Bloch’s theorem does not
apply. The result is a fractal energy spectrum as a function of
magnetic flux known as the Hofstadter butterfly [10–13]. In
this paper, we present a formalism to obtain the exact band
structure and topology of a continuum Hamiltonian when
the flux through a single unit cell is 2π . At 2π flux, corre-
sponding to ∼25 T in magic angle twisted bilayer graphene
(TBG) [14], the magnetic translation group commutes due
to the Aharonov-Bohm effect, allowing reentrant Hofstadter
phases [9,10]. Although methods already exist to study the
spectrum in arbitrary magnetic fields [15–29], they are unsuit-
able for determining the topology and dominant many-body
effects essential to moiré physics. Our formalism is mani-
festly gauge-invariant, leading to analytical expressions for
the magnetic Bloch Hamiltonian, non-Abelian Berry connec-
tion, and many-body form factors. Importantly, numerical
implementation is also straightforward, and we are able to
study reentrant phases, which have recently become of in-
terest [30,31], without using simplified models. The methods
detailed here were used to study reentrant correlated insulators
[32] in twisted bilayer graphene, which have been observed in
experiment [33].

We begin with a general discussion of the symmetry oper-
ators in Sec. II, which are used to construct gauge-invariant
magnetic translation group irreps on infinite boundary con-
ditions in Sec. III. A discussion of the Siegel theta function
[34–36], a multidimensional generalization of the Jacobi theta

function, which appears in our states, may be found in the
Supplemental Material [37]. We provide a general expression
for the magnetic Bloch Hamiltonian in Sec. IV and compute
the band structure for a square lattice model. Then in Sec. V,
we define the Berry connection, which receives two magnetic
contributions (Abelian and non-Abelian), and we discuss the
topological transition between the strong flux or Landau level
regime where the kinetic energy dominates and the crystalline
regime where the potential dominates. In Sec. VII, we give
convenient expressions for the form factors of generic density-
density interactions. Finally in Secs. VIII and IX, we study
the Bistritzer-MacDonald (BM) Hamiltonian [14] of twisted
bilayer graphene, which reaches 2π flux at ∼25 T. We discuss
the symmetries of TBG at 2π and find that the degree of
particle-hole breaking strongly determines the topology of the
flat bands, which realize a decomposable elementary band
representation [38].

We note that the Hofstadter spectrum of tight-binding mod-
els under the Peierls substitution [39] is periodic in flux with
the period equal to an integer multiple of 2π depending on
the orbitals [40]. This is because gauge fields on the lattice
are compact. Such systems differ from the continuum mod-
els considered here where there is no exact periodicity in
φ (although see Ref. [41] for a discussion of approximate
periodicity) and we are not reliant on the validity of the Peierls
approximation. Notably, the spectrum and topology of the BM
model we obtain at 2π flux compares well to tight-binding
calculations of twisted bilayer graphene at a small commen-
surate angle [42].

II. SYMMETRY ALGEBRA

We consider a two-dimensional Hamiltonian minimally
coupled to a background gauge field A(r) in the form

H = h(−i∇ − eA) + U (r), ∇ × A = B > 0, (1)
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where we study h(p) = p2/2m and h(p) = vF (pxσx + pyσy)
and set h̄ = 1. Here e > 0 is the electron charge, the magnetic
field B is perpendicular to the plane, and the cross product is
a scalar in two dimensions. We neglect the Zeeman coupling,
but it is trivial to add. The potential U (r) is periodic: U (r) =
U (r + R) where R is on the Bravais lattice with basis vec-
tors a1, a2 oriented so a1 × a2 = � > 0 [43]. The reciprocal
lattice is spanned by the vectors 2πbi satisfying ai · b j = δi j .
The magnetic flux is φ = eB�, which is dimensionless (set-
ting h̄ = 1).

In absence of a periodic potential, the Hamiltonian h(p) in
flux can be solved in terms of Landau levels by introducing an
oscillator algebra. The algebra is formed from the canonical
momentum π = −i∇ − eA obeying

[πμ, πν] = ie(∂μAν − ∂νAμ) = ieBεμν (2)

where throughout this section, greek letters correspond to
cartesian indices, e.g., μ, ν ∈ {x, y}, and we sum over repeated
indices. We define the ladder operators [a, a†] = 1 by

a = πx + iπy√
2eB

, a† = πx − iπy√
2eB

. (3)

In the simplest case of h(p) = p2/2m = eB(a†a + 1/2) in
magnetic field, the eigenstates are Landau levels given by
powers of a†. The macroscopic degeneracy of the Landau
levels is accounted for by the guiding center momenta Qμ.
The gauge-invariant definition is

Qμ = πμ − eBεμνxν = −i∂μ − e(Aμ + Bεμνxν ) . (4)

The guiding center operators commute with the canonical
momenta and obey

[Qμ, πν] = [πμ − eBεμρxρ, πν] = ieBεμν − ieBεμν = 0,

[Qμ, Qν] = [πμ − eBεμρxρ, πν − eBενσ xσ ] = −ieBεμν .

(5)

The guiding centers form a separate oscillator system with
[b, b†] = 1 defined by (see Supplemental Material [37])

b = (a1 − ia2) · Q√
2φ

, b† = (a1 + ia2) · Q√
2φ

. (6)

Note that the b oscillators commute with the a-oscillators
by Eq. (5). Comparing Eq. (6) and Eq. (3), we see that the
a, a† operators are defined using cartesian variables while the
b, b† operators are defined using the lattice vectors. This is
because the a, a† operators are used to build the continuum
kinetic term, which has SO(2) rotation symmetry, while the
b, b† operators will be used to construct states that respect the
lattice periodicity.

The kinetic term h(π ), which is built out of a and a† oper-
ators, commutes with b, b†. Hence without a potential, every
Landau level eigenstate has an infinite degeneracy (on infinite
boundary conditions) from acting repeatedly with b† because
[h(π ), Q] = 0. A periodic potential breaks this degeneracy.
However, we observe that the magnetic translation operators

Tai = exp (iai · Q) (7)

formed from the Qi algebra commute with a periodic poten-
tial. Using the Baker-Campbell-Hausdorff (BCH) formula, we

check

eiai ·QU (r)e−iai ·Q =
∞∑

n=0

1

n!
([iai · Q, )nU (r)]

=
∞∑

n=0

1

n!
([iai · (−i∇ ), )nU (r)]

= eai ·∇U (r)e−ai ·∇

= U (r + ai ) = U (r) ,

(8)

where the nested commutator ([X, )nY ] = [X, [X, . . . ,Y ]] has
n factors of X and in the last line we used the lattice pe-
riodicity. This is sufficient to prove that Tai commutes with
the whole Hamiltonian H (kinetic plus potential) because
[Q, π ] = 0 and the kinetic term only contains π operators.
Note that [H, Q] �= 0 but [H, eiai ·Q] = 0 for a periodic poten-
tial. The algebra of the Tai operators is derived from the BCH
formula by

Ta1 Ta2 = exp([ia1 · Q, ia2 · Q])Ta2 Ta1 = eiφTa2 Ta1 . (9)

Equation (9) shows that the magnetic translation operators
define a projective representation of the translation group. For
generic φ ∈ R, Ta1 and Ta2 do not commute and there is no
band structure. The cascade of band splitting that occurs as
the flux is increased leads to the fractal Hofstadter energy
spectrum [10]. The a† and b† operators form a basis of the
Hilbert space, which is used to solve continuum Hamiltonians
in terms of degenerate Landau levels. In Sec. III, we will
produce basis states, which are magnetic translation operator
irreps by recombining the b† basis.

So far, the flux φ = eB� has been unrestricted. In the fol-
lowing sections, we fix φ = 2π where Eq. (9) shows that the
magnetic translation operators commute. This is an intrinsi-
cally quantum mechanical effect because 2π flux corresponds
to one flux quantum h/e piercing each unit cell where h is
Planck’s constant. In a conventional crystal where the unit-cell
area is on the order of 10 Å2, φ = 2π corresponds to extreme
fields between 104 T and 105 T. However, moiré materials
have an effective unit cell, which is larger by a factor of θ−2

where θ is the twist angle. For angles near 1◦, the moiré unit
cell is enlarged by a factor of 3000 allowing ∼25 T fields to
probe the Hofstadter regime.

III. MAGNETIC TRANSLATION GROUP IRREPS

In this section, we construct wavefunctions, which are ir-
reps of the magnetic translation group at φ = 2π on infinite
boundary conditions in a gauge-invariant manner. These states
are the building blocks of all subsequent calculations. To
motivate them, we first revisit Bloch’s theorem in zero flux.

A. Bloch’s theorem

Let us briefly recall the traditional Bloch theorem. The
translation group in zero flux on infinite boundary conditions
is isomorphic to the infinite group Z2, which is Abelian.
Hence its irreducible representations (irreps) are all one di-
mensional. They are eigenstates of the translation operators
labeled by a crystal momentum k = k1b1 + k2b2 where ki ∈
(−π, π ) defines the Brillouin zone (BZ). It is trivial to
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construct the first-quantized eigenstates of the zero-flux trans-
lation operators TR = eR·∇ with eigenvalue eik·R where R =
R1a1 + R2a2, Ri ∈ Z: the functions ψ

φ=0
k,n (r) = eik·ruk,n(r)

are momentum eigenstates for any periodic function uk,n(r) =
uk,n(r + ai ), which we normalize to∫

�

d2x u∗
k,m(x)uk,n(x) = δmn (10)

by integrating over the unit cell �. Hence the functions
u∗

k,m(x) form a complete basis of periodic functions on the

unit cell at each k. In this case, the Bloch waves ψ
φ=0
k,n (r)

normalized on infinite boundary conditions as∫
d2r ψ

φ=0
k,m (r)∗ψφ=0

k′,n (r)

=
∑

R

ei(k′−k)·R
∫

�

d2x ei(k′−k)·xu∗
k,m(x)uk′,n(x)

(11)

= (2π )2δ(k − k′)
∫

�

d2x u∗
k,m(x)uk,n(x)

= (2π )2δmnδ(k − k′)

using the identity (2π )2δ(k − k′) = ∑
R eiR·(k−k′ ) with k −

k′ ∈ BZ . The periodic functions uk,n(r) form an orthonor-
mal basis of states within a single unit cell, and can be
chosen as the eigenstates of the effective Bloch Hamiltonian
e−ik·rHeik·r, which is a function of k. Note that there are an in-
finite number of eigenstates uk,n(r) because the Hilbert space
is infinite dimensional. At each k ∈ BZ , n = 1, 2, . . . indexes
Bloch waves of increasingly high energy. This contrasts the
tight-binding approximation where only a finite number of
Bloch waves are kept and the local Hilbert space is finite
dimensional.

To parallel our construction at φ = 2π in Sec. III B, we
now give an alternative representation for the Bloch waves.
We introduce the Wannier functions

w
φ=0
R,n (r) ≡ TRwφ=0

n (r) =
∫

d2k

(2π )2
eik·(r+R)uk,n(r), (12)

which, being formed from states at different k, are generally
not energy or momentum eigenstates. Instead the Wannier
functions w

φ=0
Rn (r) form a local basis of the Hilbert space,

which is complementary to the entirely delocalized Bloch
wave basis (see Ref. [44] for a thorough discussion). A Bloch
state can be built from the Wannier functions according to

ψ
φ=0
k,n (r) =

∑
R

e−ik·RTRwφ=0
n (r), (13)

which can be proven directly from Eq. (12),

∑
R

e−ik·RTRwφ=0
n (r) =

∫
d2k′

(2π )2

∑
R

ei(k−k′ )·Reik′ ·ruk′,n(r)

= ψ
φ=0
k,n (r). (14)

Note that the construction in Eq. (13) is guaranteed to be a
momentum eigenstate (if not an energy eigenstate) for any
wφ=0

n (r), not necessarily a Wannier function. We now make
use of this observation to produce magnetic translation group
eigenstates at φ = 2π .

B. Magnetic Bloch theorem at φ = 2π

At 2π flux, the magnetic translation group commutes [see
Eq. (9)] and is isomorphic to Z2. Hence its irreps are again
labeled by k = k1b1 + k2b2 ∈ BZ , which we refer to as the
momentum. This quantum number is essential to determin-
ing the topology of the Hamiltonian. This differentiates our
approach from the open momentum space diagonalization
technique developed in Ref. [27], which does not make use
of the momentum, but achieves a sparse matrix representation
of the Hamiltonian at all fluxes.

To derive a magnetic Bloch Hamiltonian in each k sector,
we must construct eigenstates ψk,n(r) of the magnetic transla-
tion operators. We will do so on infinite boundary conditions
so that k is continuous. Using the explicit operators in Eq. (7),
there is a natural construction by summing over the infinite
Bravais lattice R [45] One can also construct states on a finite
lattice in the same way. However, in this case one cannot
perform the normalization sum in Eq. (18) analytically. Hence
we only focus on the infinite case in this work. Noting that
R · bi ∈ Z, we define the states

ψk,n(r) = 1√
N (k)

∑
R

e−ik·RT R·b1
a1

T R·b2
a2

wn(r) (15)

where wn(r) is a function to be chosen momentarily. Impor-
tantly, the states Eq. (15) take the same form in any gauge.
It is direct to check that Taiψk,n(r) = eik·aiψk,n(r) because
[Tai , Ta j ] = 0 at φ = 2π . Hence the states ψk,n are orthogonal
in k ∈ BZ . Similar states have been constructed for tight-
binding models in Ref. [40]. To achieve orthogonality in n,
we use the a, a† operators, which commute with Tai to define

wn(r) = a†n

√
n!

ψ0(r), aψ0(r) = bψ0(r) = 0 . (16)

It follows that the states ψk,n(r) are orthogonal because they
are eigenstates of the Hermitian Landau level operator a†a
with eigenvalue n. We will not need an explicit expression for
the Landau level ground state ψ0(r), but one can be obtained
because a and b are commuting linear differential operators,
so the first-order differential equations in Eq. (16) can be
directly integrated [46] In the symmetric gauge, it is well
known [93,94] that ψ0(r) ∼ exp(−φ r2

4�
) = exp(−|z|2/42

B)
where z = x + iy is the holomorphic coordinate and B =
1/

√
eB is the magnetic length.

Lastly, the normalization N (k) in Eq. (15) is defined by
requiring∫

d2r ψ
†
k,m(r)ψk′,n(r) = (2π )2δ(k − k′)δmn, (17)

which, after a detailed calculation contained in the
Supplemental Material [37], yields

N (k) = ϑ

(
(k1, k2)

2π

∣∣∣∣�
)

, � = i

2

(
1 i
i 1

)
. (18)

The function ϑ (z|�) is called the Siegel theta function [47].
It is a multidimensional generalization of the Jacobi theta
function defined for z ∈ C2 by

ϑ (z|� ) =
∑
n∈Z2

e2π i( 1
2 n·�·n−z·n) . (19)
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The matrix �, which defines the Siegel theta function is
sometimes called the Riemann matrix. For the sum in Eq. (19)
to converge, Im � must be a positive definite matrix. In the
Supplemental Material [37], we show that � is a special “self-
dual” Riemann matrix, which permits the Siegel theta function
to be written in terms of Jacobi theta functions at φ = 2π . It
is apparent from Eq. (19) that N (k + 2πbi ) = N (k), which
matches the periodicity of the BZ. The Siegel theta function
is quasi-periodic for complex z. A self-contained derivation
of the quasiperiodicity may be found in the Supplemental
Material [37]. We show in the Supplemental Material [37]
that N (k) � 0 for k ∈ BZ but at πb1 + πb2, N (k) has a
quadratic zero. Thus the states ψk,n do not exist exactly at
k∗ = πb1 + πb2. We show in the Supplemental Material [37]
that the wavefunction can be defined in patches by shifting
the operator Q → Q + p, which shifts the undefined states
to k∗ + p. In fact, the existence of a zero is topologically
protected because the states ψk,n carry nonzero Chern number
(see Sec. V) and hence cannot be well-defined and periodic
everywhere in the BZ. We will show in Sec. IV that the
magnetic Bloch Hamiltonian used to compute the spectrum is
an analytic function of k, so the zero in N (k) only introduces
a removable singularity in the Hamiltonian. Lastly, we give
a gauge-invariant proof in the Supplemental Material [37]
that the ψk,n basis is complete when acting on suitable test
functions.

For brevity, we now define braket notation for the magnetic
translation operator eigenstates Eq. (15):

|k, n〉 ≡ 1√
N (k)

∑
R

e−ik·RT R·b1
a1

T R·b2
a2

|n〉 , |n〉 = a†n

√
n!

|0〉 ,

(20)

and a |0〉 = b |0〉 = 0. For Hamiltonians with additional de-
grees of freedom indexed by α, such as spin, sublattice, valley,
or layer (see Sec. VIII), the basis states of the Hamiltonian
can be defined |k, n, α〉 = |α〉 ⊗ |k, n〉. In braket notation,
Eq. (17) reads

〈k, m|k′, n〉 = (2π )2δmnδ(k − k′) (21)

and it should be implicitly understood that k = πb1 + πb2

is excluded from the basis. While discussing single-particle
physics in Sec. IV and Sec. V, the braket notation is useful
for shortening expressions. Lastly, the structure of the states
in Eq. (20) generalizes to the q-dimensional irreps of the
magnetic translation group at rational flux φ = 2π p

q . We leave
this construction to future work.

Before concluding this section, we will
emphasize the difference between our gauge
invariant construction and the commonly used Landau
gauge states (see e.g., Ref. [16,26,28]). In the Landau gauge
A = B(0, x), which preserves translation along the y direction
for instance, a basis of “Landau level states” can be labeled
by ky and a Landau level index n. These states are fully
delocalized along y and localized on the scale of the magnetic
length in harmonic oscillator wavefunctions along x [28].
To form eigenstates of the magnetic translation group, these
states are resummed to obtain magnetic translation invariance
along x. This process is somewhat involved and obscures
the physical symmetry of the system since it treats x and

y differently due to the asymmetry of the Landau gauge.
In contrast, our gauge-invariant construction in Eq. (20) is
manifestly symmetric under the magnetic translation group
and is immediately valid for arbitrary lattices. It has many
practical advantages: All calculations can be performed using
the oscillator algebra Eq. (5), and the singularity due to the
Chern number of the states is made explicit. This latter feature
in particular has not been discussed in earlier treatments, and
makes it possible for us to apply the tools of topological
band theory in direct analogy to the Bloch wave formalism at
zero flux.

IV. MATRIX ELEMENTS

Because the Hamiltonian Hφ=2π commutes with the mag-
netic translation group, it must be diagonal in k because of the
selection rule

〈k′, m|Hφ=2π |k, n〉 = ei(k−k′ )·ai 〈k′, m|Hφ=2π |k, n〉 , (22)

which shows that if ki − k′
i �= 0 mod 2π , then

〈k′, m|Hφ=2π |k, n〉 = 0. Equation (22) follows from inserting
1 = T †

ai
Tai and commuting Tai through Hφ=2π . Having

constructed a basis of states, which is diagonal in k, we define
an effective “Bloch” Hamiltonian Hφ=2π

mn (k) according to

(2π )2δ(k − k′)Hφ=2π
mn (k) = 〈k′, m|Hφ=2π |k, n〉 , (23)

which can be diagonalized after imposing a Landau level
cutoff. To compute the effective Hamiltonian, we need for-
mulas for the matrix elements of Eq. (1). The kinetic term
is simple because h(π ) is composed of a, a† operators, so it
only acts on the m, n indices and its matrix elements will not
depend on k (see Sec. VI for an example). Hence we focus
on the potential term U (r), which causes scattering between
different Landau levels. Recall that U (r) is periodic so can be
expanded as a Fourier series. Hence we need to compute the
general scattering amplitude

〈k, m|e−2π iG·r|k, n〉 , G = G1b1 + G2b2, G1, G2 ∈ Z.

(24)

It is possible to perform the calculation exactly without choos-
ing a gauge for A(r) because G · r can be expressed simply in
terms of π and Q using

(eB)−1εμν (Qν − πν ) = −εμνενρxρ = xμ, (25)

which allows the us to perform the calculation using BCH.
The details may be found in the Supplemental Material [37].
The result is

〈k′, m|e−2π iG·r|k, n〉
= (2π )2δ(k − k′) e−iπG1G2−i(G1k2−G2k1 )H2πG

mn (26)

where we have defined the Landau level scattering matrix for
a general momentum q with qi = q · ai and z j = (x̂ + iŷ) ·
a j/

√
�,

Hq
mn = 〈m| exp (iεi jqiZ j ) |n〉 , Zj = z̄ ja + z ja†

√
2φ

. (27)

Here i, j ∈ {1, 2} are the crystalline indices, which are
summed over. A closed-form expression for the unitary matrix
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Hq in terms of Laguerre polynomials is provided in Eq. (140)
of the Supplemental Material [37]. With Eq. (26), the action
of any periodic potential on the magnetic translation group
eigenbasis is easily obtained. The kinetic term in Eq. (23)
does not depend on k because it only contains a, a† operators
and creates flat Landau levels. We observe that all the k
dependence of Eq. (23) is contained in the potential term ma-
trix elements Eq. (26) in the form exp(i�k × G) = exp ( −
i(G1k2 − G2k1)) and hence Hφ=2π (k) is analytic in k. From
the k dependence of Eq. (20), we deduce that |k + 2πG, n〉 =
|k, n〉. Thus Hφ=2π

mn (k + 2πG) = Hφ=2π
mn (k) is explicitly peri-

odic in k, so no embedding matrices [40] are required.

V. BERRY CONNECTION

Our basis of magnetic translation eigenstates [Eq. (15)] is
built from continuum Landau levels. These states are known
to carry a Chern number [48], and it will be important to see
how this arises in our formalism. To study the topology, we
need to compute the continuum Berry connection,

(2π )2δ(k − k′)Amn(k) = 〈k′, m|r|k, n〉 . (28)

In zero flux where the basis states are plane waves or Fourier
transforms of localized orbitals, Amn(k) would be trivial.
However, the basis states at 2π flux are built out of Landau
levels, which by themselves are topologically nontrivial. We
can see this directly by computing 〈k′, n|r|k, n〉 (here the Lan-
dau level index n is unsummed), the Abelian Berry connection
of the nth Landau level, using the oscillator algebra. The result
from the Supplemental Material [37] is

Ann
i (k) = −1

2
εi j∂ j log ϑ

(
(k1, k2)

2π

∣∣∣∣�
)

(29)

where ∂i = ∂
∂ki

here for brevity, Ai = bi · A, and we empha-
size that Ann(k) is independent of n. Interestingly, a similar
formula has appeared recently in flat band Chern states in
Ref. [49]. We now show that the connection Eq. (29) has
Chern number −1 [50]. In the Supplemental Material [37],
we show with a direct computation that the Berry curvature is
given by

εi j∂iAnn
j = 1

2
∂2 log ϑ = − 1

2π
+ 2πδ(k − πb1 − πb2)

(30)

and has two contributions. The −1/2π term in Eq. (30) is
the constant and nonzero Berry curvature of a Landau level
[28,49]. The delta function appearing at k∗ = πb1 + πb2 is
an artifact of the undefined basis states at k∗ where N (k∗) = 0
and is discussed fully in the Supplemental Material [37]. In
fact, the 2π delta function is unobservable in the Wilson loop
winding because the Berry phase is only defined mod 2π .
To see this, we explicitly calculate the Abelian Wilson loop
(or Berry phase) in the Supplemental Material [37] and show
the result in Fig. 1(b) where we see that the Wilson loop
eigenvalues are indeed continuous mod 2π . Hence we can
think of the the basis states in Eq. (15) as lattice-regularized
Landau levels. We also see that the zero in the normalization
factor N (k) (see Sec. III) is an essential feature of the basis
rather than a pathological one: it is a manifestation of the

(a) (b)

FIG. 1. (a) The Siegel theta function N (k) [see Eq. (18)] is
plotted with arrows denoting the vector field Ann(k). The winding
in A around the zero located at k1 = π, k2 = π leads to a Chern
number in the basis states. (b) The Wilson loop W (k1) = eiθ (k1 ) of
a single Landau level integrated along k2 is plotted as a function of
k1. The Wilson loop is computed analytically in the Supplemental
Material [37] to be W (k1) = e−ik1 (shown in solid blue), which winds
once crossing the vortex at (π, π ). The numerical approximation of
W (k1) is dotted.

topology of the basis states. If there were no zero, then we
would have written down wavefunctions, which were periodic
and differentiable on the entire BZ, hence precluding a Chern
number [51].

Finally, we obtain an explicit expression for the non-
Abelian Berry connection AMN (k) in the occupied bands
indexed by M, N ,

(2π )2δ(k − k′)AMN (k)=
∑
mn

[U †(k′)]M
m 〈k′, m|r|k, n〉U N

n (k)

(31)

where U (k) is the NLL × Nocc matrix of eigenvectors. Nocc is
the number of occupied bands and NLL is the dimension of the
matrix Hamiltonian, which is truncated at NLL Landau levels.
Leaving the details of the calculation to the Supplemental
Material [37], we give the general formula

AMN
i (k) = [U †(i∂i − εi j Z̃ j )U ]MN

− δMN

2
εi j∂ j log ϑ

(
(k1, k2)

2π

∣∣∣∣�
)

.
(32)

The Abelian term in the second line of Eq. (32) describes
the Chern numbers of the basis states as in Eq. (29). Note that
it is proportional to the identity δMN and so can be factored
out of the Wilson loop to give an overall winding factor per
Landau level as shown in Fig. 1(b). The new non-Abelian
term U †Z̃ jU of Eq. (32) describes coupling between Landau
levels where the Hermitian matrix [Z̃ j]mn = 〈m|Zj |n〉 is given
in Eq. (27). Returning to Eq. (32), we write the non-Abelian
Wilson loop as the path-ordered matrix exponential

[WC]MN =
[

exp

(
i
∮
C

dk · A(k)

)]MN

= e−i
∮
C dk× 1

2 ∇ log ϑ

(
(k1 ,k2 )

2π |�)

×
[

exp

(
i
∮
C

dki U †(i∂i − εi j Z̃ j )U

)]MN

(33)
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with a sum over i, j implied. For numerical computations,
Eq. (33) should be expanded into an ordered product form
using the projectors Pk = U (k)U †(k). This procedure can
be carried through exactly (the details may be found in the
Supplemental Material [37]) and the result is

WC = exp

[
−i

∮
C

dk × 1

2
∇ log ϑ

(
(k1, k2)

2π

∣∣∣∣�
)]

× U †(kL )H−dkL

(
(L−1)←1∏

n

P(kn)H−dkn

)
U (k0) (34)

where C is a closed path with starting at k1, which is bro-
ken into L segments labeled by kn, and dkn = kn − kn−1.
The insertions of non-Abelian terms Hdk = eiεi j dkiZ̃ j act off-
diagonally on the Landau level index [see Eq. (27)]. The
appearance of these non-Abelian terms reflects the fact that
the Landau level states in Eq. (15) are not localized below
the magnetic length, which is 1/

√
φ in dimensionless units.

In Sec. VI, we use the results of this section to calculate the
Wilson loop in a square lattice model tuned through a topo-
logical phase transition at 2π flux by increasing the strength
of the crystalline potential.

VI. SQUARE LATTICE EXAMPLE

The simplicity of implementing our formalism is illustrated
with a model of a scalar particle mass m = 1, which feels a
square lattice cosine potential. While it may be possible to
simulate this type of model on an optical lattice [52–54], we
intend this example to be pedagogical rather than physically
motivated. We take the lattice vectors and reciprocal vectors to
be 1 = b1 = (1, 0), 2 = b2 = (0, 1) so � = 1 and define the
zero-flux Hamiltonian as

Hφ=0 = −1

2
∇2 + w

2
(e−2π ib1·r + e−2π ib2·r + H.c.), (35)

where we have taken h̄ = 1. When w = 0, the Hamiltonian
Hφ=0 has continuous translation symmetry and solutions can
be labeled by momentum k. When w is nonzero, the contin-
uous translation symmetry is broken to a discrete symmetry,
which weakly couples the plane wave states and opens gaps
at the corners of the BZ. By Bloch’s theorem, the states
are labeled by momentum k in the BZ and the effective
Hamiltonian reads

Hφ=0
G,G′ (k) = 1

2 (k − G)2δGG′

+ w

2
(δG,G′−2πb1 + δG,G′−2πb2 + H.c.) (36)

and G = G1b1 + G2b2, Gi ∈ Z (see the Supplemental Mate-
rial [37] for details). We show the Bloch band structure in
Fig. 2 in the weak and strong potential regimes. In flux, the
Hamiltonian Eq. (35) is written in terms of the canonical
momentum

Hφ = 1

2
π2 + w

2
(e−2π ib1·r + e−2π ib2·r + H.c.), (37)

that is, Landau levels in a lattice potential. In 2π flux using
the matrix elements in Eq. (139) of the Supplemental Material

(a) (b)

(c) (d)

(e) (f)

FIG. 2. [(a),(b)] Square lattice in zero flux, at low potential w =
1 and high potential w = 7 respectively. [(c),(d)] Square lattice in 2π

flux, at low potential and high potential respectively. [(e),(f)] Wilson
loops of the square lattice in flux. At low hoppings, the Hamiltonian
resembles a Landau level system, resulting in nearly flat bands and a
winding in the Wilson loop for the lowest band. At large hoppings, a
gap closing occurs and allows the lowest band to have Chern number
zero.

[37], the magnetic Bloch Hamiltonian is

wHφ=2π
mn (k) = φ

(
m + 1

2

)
δmn

+ w

2
(e−ik2H2πb1

mn + eik1H2πb2
mn + H.c.) (38)

and recalling that the kinetic term acts on the |k, m〉 basis
as 1

2π2 = φ(a†a + 1
2 ). The potential term H2πG

mn couples the
Landau levels, giving nontrivial dispersion. We numerically
calculate the band structure in the weak coupling (w = 1) and
strong coupling (w = 7) regimes. The Landau level regime in
weak coupling exhibits nearly flat bands [Fig. 2(c)], and its
lowest band carries a Chern number, as exemplified by the
winding of the Wilson loop shown in Fig. 2(e). Increasing
w pushes the model through a phase transition with a band
touching at the � point. At strong coupling (w = 7), the 2π

flux spectrum is gapped [Fig. 2(d)] and its lowest band has
zero Chern number [Fig. 2(f)]. Hence the lowest band cannot
be interpreted as a Landau level, despite the strong flux.

VII. MANY-BODY FORM FACTORS

Thus far, we have discussed the single-particle spectrum
and Wilson loop topology of continuum Hamiltonians at 2π

flux. In this section, we extend our formalism to many-body
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physics and derive a convenient expression for the Coulomb
Hamiltonian

Hint = 1

2

∫
d2rd2r′ n(r)V (r − r′)n(r′) (39)

in terms of the magnetic translation operator eigenbasis
Eq. (15). Here n(r) = c†(r)c(r) is the local density operator
at r and c(r), c†(r) are the continuum fermion operators sat-
isfying {c†(r), c(r′)} = δ(r − r′). In Sec. IX, we will project
the Coulomb interaction on the flat bands of TBG in order
to study its many-body insulating ground states, as done in
zero flux in Refs. [55,56]. The calculation for TBG is more
involved because there are additional indices corresponding
to valley and spin (see the Supplemental Material [37] for
details). For simplicity, we focus on models with only a single
orbital per unit cell in this section and study the projected
Coulomb Hamiltonian at 2π flux.

To avoid confusion with the Fock space braket notation in
many-body calculations, we return to a wavefunction notation
for the magnetic translation group eigenstates,

ψk,n(r) = 1√
N (k)

∑
R

e−ik·RT b1·R
a1

T b2·R
a2

a†n

√
n!

ψ0(r), (40)

where ψ0 is the zeroth Landau level aψ0 = bψ0 = 0.
Throughout this section, |0〉 is the Fock vacuum satisfying
c(r) |0〉 = 0 (not the Landau level vacuum) as is clear from
context. The second-quantized creation operators ψ

†
k,n are

defined by

〈r| ψ†
k,n |0〉 = 〈0|crψ

†
k,n|0〉 = ψk,n(r) (41)

and {ψ†
k′,m, ψk,n} = (2π )2δmnδ(k − k′). We study the a gen-

eral density-density interaction (essentially the Coulomb
interaction with arbitrary screening), which can be put into
the form

Hint = 1

2

∫
d2rd2r′ n(r)V (r − r′)n(r′)

= 1

2

∫
d2q

(2π )2
V (q)ρ−qρq, ρq =

∫
d2r e−iq·rn(r)

(42)
where V (q) is the Fourier transform of the position-space
potential. Throughout, we use q = k + 2πG to denote a con-
tinuum momentum. We assume that V (q) > 0 but is otherwise
fully general. Our goal is to express the Fourier modes ρq

in terms of the ψ
†
k,m operators. This is accomplished by cal-

culating the matrix elements 〈0|ψk,mρqψ
†
k′,n|0〉 because ρq

is a one-body operator. The calculation is performed in the
Supplemental Material [37], and yields

ρq =
∑
mn

∫
d2k

(2π )2
eiξq (k)ψ

†
k−q,mHq

mnψk,n, (43)

with the phase factor ξq(k) defined by

eiξq (k) = e− q̄q
4φ ϑ

( (k1−q/2,k2+iq/2)
2π

∣∣�)
√

ϑ
( (k1,k2 )

2π

∣∣�)
ϑ

( (k1−q1,k2−q2 )
2π

∣∣�) , (44)

with q = (a1 + ia2) · q. The unitary matrix Hq defined in
Eq. (27). We prove analytically that eiξq (k) is a pure phase at

FIG. 3. Phase ξq(k) in Eq. (44) for q = π

2 b1 + π

2 b2, plotted as a
density. Note the branch cut linking (1/2, 1/2) to (3/4, 3/4).

the end of the Supplemental Material [37]. At k = πb1 + πb2

and k = πb1 + πb2 + q, the denominator of Eq. (44) has ze-
ros, which are exactly canceled by the zeros of the numerator
(they are removable singularities), so ξq(k) is always real. We
plot ξq(k) in Fig. 3, which shows that a branch cut connects
the removable singularities at (π, π ) and (π + q1, π + q2).

So far, we have developed an expression for the density
operators [Eq. (43)] and thus for the many-body Coulomb
Hamiltonian in terms of the single-particle magnetic transla-
tion group eigenstates. This will make it possible to perform a
projection onto a set of low-energy bands. To do so, define the
energy eigenstate operator γ

†
k,N that creates state at momen-

tum k in band N ,

γ
†
k,N =

∑
m

U N
m (k)ψ†

k,m, (45)

with U N (k) the eigenvector of the Hamiltonian correspond-
ing to band N . [In models with more orbitals indexed by
α, Eq. (45) would also contain a sum over α.] In second
quantized notation, we arrive at the general expression

ρq =
∫

d2k

(2π )2

∑
MN

γ
†
k−q,MMMN (k, q)γk,N , (46)

where the form factor matrix M(k, q) obtained from Eq. (46)
is defined as

MMN (k, q) = eiξq (k)[U †(k − q)HqU (k)]MN . (47)

Note that M(k, q) is not a gauge-invariant quantity because
the eigenvectors in the matrices U (k) and U (k − q) are
only defined up to overall phases (or in general unitary
transformations if there are degeneracies in the bands). The
Supplemental Material [37] contains a complete discussion,
which we summarize by noting the “gauge freedom” taking
M(k, q) → W †(k − q)M(k, q)V (k) where W (k − q),V (k)
are arbitrary unitary matrices. There are gauge-invariant quan-
tities determined from M(k, q) such as its singular values,
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which are the eigenvalues of M†(k, q)M(k, q). We will use
the singular values to study the flat metric condition [57] in
Sec. IX A.

Having discussed the form factors, we emphasize that
Eq. (46) is an exact expression for the density operator. To
define a projected density operator, we restrict the indices
M, N to a subset of low-energy bands so that ρq annihilates all
other bands. Our result in Eq. (46) is structurally similar to the
form factor expression obtained in Ref. [57] in zero flux. We
discuss the behavior of the form factor in the Supplemental
Material [37].

VIII. TWISTED BILAYER GRAPHENE:
SINGLE-PARTICLE PHYSICS

Twisted bilayer graphene (TBG) is a metamaterial formed
from twisting two graphene sheets by a relative angle θ

[14,58,59]. The resulting moiré pattern is responsible for the
very large unit cell that allows experimental access to φ = 2π .
Let us set our conventions for the geometry of the moiré twist
unit cell. First, the graphene unit cell has a lattice vector of
length ag = .246nm and an area �g = a2

g

√
3

2 . The monolayer
graphene K point is Kg = 2π

ag
(0, 2/3). The moiré vectors q j

are defined by the difference in momentum space of the ro-
tated layers’ K points,

2πq1 = (Rθ/2 − R−θ/2)Kg, q j = C3q j−1,

2π |q j | ≡ kθ = 2|Kg| sin
θ

2
= 8π sin θ

2

3ag
,

(48)

where Rθ is a 2D rotation matrix. The moiré reciprocal lattice
vectors are defined

b j = q j − q3, b1 × b2 =
(
2 sin θ

2

)2

�g
. (49)

The moiré lattice is defined by ai · b j = δi j , which yields

a1 = ag

2 sin θ
2

{
−

√
3

2
,−1

2
} a2 = ag

2 sin θ
2

{
√

3

2
,−1

2

}
.

(50)
Finally, the moiré unit cell has area

� = a1 × a2 = �g(
2 sin θ

2

)2 . (51)

The moiré Brillouin zone is depicted in Fig. 4. At the magic
angle where θ = 1.05◦, the moiré unit cell is ∼3000 times
larger than the graphene unit cell. The magnetic translation
group commutes when φ = eB�

h̄ = 2π , which occurs at B ∈
(25, 32)T for θ ∈ (1.03◦, 1.15◦). These fields are experimen-
tally accessible, making it possible to explore the Hofstadter
regime of TBG. Reference [32] focuses on TBG at the magic
angle, as well as the evolution of the spectrum in flux.

The following sections contain a thorough treatment of
TBG at 2π flux. We discuss the Bistritzer-MacDonald (BM)
Hamiltonian in Sec. VIII A and show the phase diagram of
TBG, identifying a crystalline regime (including the phys-
ical TBG parameters) where the flat bands have vanishing
Chern number and a Landau level regime (including the first
chiral limit) where the flat bands each have Chern number

FIG. 4. Construction and conventions of the moiré BZ, blue
hexagon, from the graphene layers with relative twist θ .

−1, denoted by A and B respectively in the phase diagram
Fig. 5. In Sec. VIII A, we discuss the symmetries, topology,
and Wannier functions, which are different than at zero flux.
Importantly, we find that the C2zT symmetry, which is essen-
tial in protecting the nontrivial topology at φ = 0, is broken.
At φ = 2π , we find that the TBG flat band structure can be
obtained from atomic limits but still has Wannier functions
pinned to the corners of the moiré unit cells. In Sec. VIII C,
we focus on the chiral limit of TBG where the chiral anomaly,
a well-studied feature of relativistic gauge theory [60–68],
protects a pair of perfectly flat bands in TBG at all angles at
2π flux.

A. Band structure

We begin with the Bistritzer-MacDonald model of twisted
bilayer graphene in the untwisted graphene K valley (and

0 55 110
w1 (meV)

0

55

110

w
0

(m
eV

)

A

B

C

D
(meV)

0

2

4

6

8

10

FIG. 5. Phase diagram of TBG in 2π flux at magic angle. We plot
the gap between the flat and passive bands as a function of parameters
w0, w1. Phase A, containing the physical TBG parameters is in the
crystalline regime where the flat bands have zero Chern number,
while phase B is connected to the Landau level limit where each
flat band has Chern number −1. The first chiral limit where w0 is
in phase B at w1 = 110 meV. C and D are phases connected to the
second chiral limit w1 = 0 where the bands have strong dispersion
(see Fig. 6).
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arbitrary spin) at zero flux,

HBM =
(−ih̄vF σ · ∇ T †(r)

T (r) −ih̄vF σ · ∇
)

, (52)

with σ labeling the sublattice degree of freedom and the
2 × 2 matrix notation labeling the layer index. Note that HBM

neglects the twist angle dependence in the kinetic term and
thus has an exact particle-hole symmetry [59]. For simplicity,
we work in this approximation, but we note that incorporating
the twist angle dependence poses no essential difficulty for
our formalism. The moiré potential is T (r) = ∑3

j=1 e2π iq j ·rTj

where

Tj+1 = w0σ0 + w1

(
σ1 cos

2π

3
j + σ2 sin

2π

3
j

)
. (53)

To add flux into HBM , we employ the canonical substitution
−ih̄∇ → π . As written, HBM is not translation invariant: the
qi vectors, which appear in the moiré potential are not recip-
rocal lattice vectors. However, HBM can be made translation
invariant by a unitary transformation

V1 =
(

eiπq1·r 0
0 e−iπq1·r

)
, (54)

which acts only on the layer index [69]. Acting on the states,
V1 shifts the momentum in the different layers by 2πq1, re-
flecting separation of the Dirac points in Fig. 4. We then define
the Hamiltonian in flux by

Hφ
BM (r) = V1

(
vF σ · π T †(r)

T (r) vF σ · π

)
V †

1

=
(

vF σ · π − πvF q1 · σ T̃ †(r)
T̃ (r) vF σ · π + πvF q1 · σ

)

(55)

with T̃ (r) = T1 + T2e2π ib1·r + T3e2π ib2·r. In this form, the
matrix elements of T̃ (r) in the magnetic translation oper-
ator basis can be directly obtained with Eq. (139) in the
Supplemental Material [37] in a sublattice/Landau level ten-
sor product basis. An explicit expression is given in Eq. (228)
of the Supplemental Material [37]. The kinetic term can be
expressed simply with Landau level operators. Expanding the
Pauli matrices, we find

vF σ · π = vF

√
2eB

(
0 a†

a 0

)
= vF

√
2φ/�

(
0 a†

a 0

)

= vF kθ

(
3
√

3

2π

)1/2(
0 a†

a 0

) (56)

using φ = 2π and the moiré wavevector kθ in Eq. (48).
The numerical factor coming from the unit-cell geometry is
(3

√
3/2π )1/2 � .91. Lastly, the momentum shift πvF q1 · σ

in Eq. (55) acts as the identity on the Landau level in-
dex, and πvF q1 · σ = vF kθ

2 σ2 using 2πq1 = kθ ŷ. The Dirac
Hamiltonian Eq. (56) in flux is well-studied. At 2π flux and
θ = 1.05◦, the low energy spectrum of Eq. (56) consists of a
zero mode and states at ±E1 = ±.91vF kθ = ±170 meV. This
is on the same scale as the potential strength w1 = 110 meV.

Numerical analysis of the band structure is straightforward
and yields two flat bands (per valley and spin, or 8 total)

gapped from the dispersive bands by approximately 40 meV.
See Fig. 6(a) for the band structure, density-of-states, and
the Wilson loop of the flat bands for TBG, Figures 6(b)–6(e)
for other choices of parameters w0,w1. For a close-up of the
flat-band dispersion at the magic angle see Fig. 7.

B. Symmetries and topology

In zero flux, the topology of the TBG flat bands is protected
by C2zT symmetry [59,71,72]. However, C2zT is broken in
nonzero flux because T reverses the magnetic field and C2z

preserves it [40]. On the lattice in the Peierls approximation,
C2zT is restored as a (projective) symmetry at certain values
of the flux [40], but we do not consider this approximation
here. In this section, we show that the band representation of
TBG at φ = 2π can be obtained from inducing atomic orbitals
at the corners of the moiré unit cell, so the fragile topology
at φ = 0 is broken by magnetic field. However, we find that
band representation is decomposable [38,70,73,74], so the flat
bands are topologically nontrivial when gapped from each
other via a particle-hole breaking term.

First we review the topology in zero flux, which is dis-
cussed comprehensively in Refs. [59,71]. The space group of
TBG is p6′2′2, which is generated by C3,C2zT , and C2x [75].
The symmetries are: threefold rotations around the AA moiré
site C3, spacetime inversion C2zT , and twofold rotation around
the x axis C2x. Note that in 2D, C2x is indistinguishable from
My, a mirror taking y → −y. The band representation of the
flat bands is

Bφ=0 = �1 + �2 + K2K3 + M1 + M2 (57)

and the irreps are defined at the high symmetry momenta
� = (0, 0), K = 2πq1, M = πb1 by

6′m′m 1 C3 My

�1 1 1 1
�2 1 1 −1

,
6′ 1 C3

K2K3 2 −1 ,

×
2′m′m 1 C2x

M1 1 1
M2 1 −1

. (58)

The presence of the anti-unitary C2zT (PC2zT ) symmetry
in the space group is required to prove that the band represen-
tation Bφ=0 is fragile (stable) topological [59,71].

At 2π flux, the C2zT and C2x symmetries are broken be-
cause they reverse the magnetic field [40]. The resulting band
topology is mentioned in Ref. [32], which we review here for
completeness. Without C2zT , the topology of the flat bands
is not protected. The most direct way to see this is from the
Wilson loop [see Eq. (33)] integrated along b2 in Fig. 8(a),
which shows no relative winding. The same Wilson loop at
zero flux has C2zT -protected relative winding [59]. We also
plot the C3-symmetric Wilson loops discussed in Refs. [59,70]
and find no winding, as shown in Figs. 8(a) and 8(b). The
lack of winding in any Wilson loop suggests that localized,
symmetry-respecting Wannier states may be formed from the
two TBG flat bands at 2π flux (per valley per spin) [73,76].
Below, we discuss the flat bands in detail from the perspective
of topological quantum chemistry.

At 2π flux, the 2D space group is reduced to p31m′
(the kz = 0 plane of the 3D space group 157.55 in the BNS
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(a)

(b)

(c)

(d)

(e)

FIG. 6. Band structures (left), density of states (middle),
and Wilson loops (right) of TBG at 2π flux. The parameters
(
√

3w0/(vF kθ ),
√

3w1/(vF kθ )) given by (a): (0.8,1), (b): (0.05, 0.8),
(c): (0.7, 0.15), (d): (0.97, 0.32), (e): (0.0,1.0). (a)–(d) are chosen to
be connected to phases A − D (see Fig. 5), and (e), the chiral limit, is
connected to B but has a very small gap (<2 meV). The very small
gap makes the flat band Wilson loop ill conditioned, so we compute
the Wilson loop of the middle 4 bands.
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FIG. 7. Close up of the flat bands of TBG in flux at magic angle.
Note the protected Dirac points at K, K ′ due to the different C3

eigenvalues of the flat bands [see Eq. (59)] and MT, P symmetries,
as well as the maximal gap at � where the C3 eigenvalues are the
same.

setting) generated by C3 and MT ≡ C2xC2zT . The full alge-
bra, including the anticommuting unitary P symmetry, is

MT C3 = C†
3 MT , C3

3 = 1,

[P,C3] = 0, P2 = −1,

{P, MT } = 0 (MT )2 = +1,

and their action on the Hamiltonian is

C3Hφ=2π (k)C†
3 = Hφ=2π (C3k),

MT Hφ=2π (kx, ky)(MT )−1 = Hφ=2π (kx,−ky ),

PHφ=2π (k)P† = −Hφ=2π (−k).

(59)

The operator P = PMT squares to +1 and satisfies PC3 =
C2

3P . P sends (kx, ky) → (−kx, ky) and hence is local at the K
and K ′ points. Because P anticommutes with the Hamiltonian
at �, K , and K ′, it switches the two flat bands if they are at
nonzero energies ±E . If P |�+E 〉 = |�−E 〉 and |�+E 〉 carries
C3 eigenvalue ω, then |�−E 〉 also carries eigenvalue ω. For
the � point this is indeed what happens–we find the � point is
gapped in Fig. 7—but the K, K ′ points cannot gap, as a Dirac
cone carries different C3 eigenvalues in the two flat bands.

Reference [40] demonstrated that no symmetries or topol-
ogy protect a gap closing between the flat bands and passive
bands at nonzero flux, matched by experimental evidence in
Refs. [33,77]. As such, the irreps in nonzero flux are obtained
from Bφ=0 by reduction to the p31m′ subgroup of p6′2′2. We
use the Bilbao Crystallographic Server [78,79] to determine
the irreps and elementary band representations of p31m′. They
may be found online [80]. The irreps of p31m′ are very sim-
ple: the high symmetry momenta are �, K , and K ′ where all
irreps are those of the point group 3, so irreps at φ = 0 reduce
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FIG. 8. C3-symmetric Wilson loops, discussed in Refs. [59,70].
In (a), the path 1 begins at K , goes to K ′, then back to K . The
midpoint of the path is continuously changed until � at 50; further
paths then follow a more complicated trajectory linking K back to K
and then back again. In (b), Wilson loops are taken in successively
larger hexagons surrounding the � point. Neither loop has nontrivial
winding because there are no symmetries that protect crossings at
±π , so the Wilson loops can be deformed to flat lines as depicted in
(c), which shows a caricature of the deformation process.

to their C3 eigenvalues at φ �= 0. We find

Bφ=2π = Bφ=0 ↓ p31m′ = 2�1 + K2 + K3 + K ′
2 + K ′

3 (60)

where the irreps in p31m′ that appear in Eq. (60) are defined

3m′ 1 C3

�1 1 1 ,

3 1 C3

K2 1 e
2π i

3

K3 1 e− 2π i
3

,

3 1 C3

K ′
2 1 e− 2π i

3

K ′
3 1 e

2π i
3

.

(61)

As discussed, the particle-hole symmetry P ensures that the
irreps at the K and K ′ points are degenerate, so K2 + K3 and
K ′

2 + K ′
3 should be thought of as co-irreps. We can induce

Bφ=2π from the elementary band representations of p31m′,

Bφ=2π = A2b ↑ p31m′ (62)

FIG. 9. Moiré lattice in real space, with colored regions denoting
the AA and AB, BA stacking regions. The band representation Bφ=2π

can be induced from s orbitals at the 2b position, which is composed
of the AB and BA moiré sites.

where 2b is the Wyckoff position consisting of the MT -related
corners of the moiré unit cell (the AB and BA positions shown
in Fig. 9) and the two-dimensional A irrep is two s orbitals,
i.e., the representation of C3 is 12×2. From Eq. (62), we see
that the band representation of TBG at 2π flux can be obtained
from elementary band representations. This fact, coupled with
the calculation of trivial Wilson loops, demonstrates the el-
ementary band representation is not topological. Note that
the unitary particle-hole symmetry P acts as inversion in real
space, and is implemented on the A2b irrep by exchanging
the s orbitals at AB and BA sites. Because there is no ob-
struction to locally realizing all symmetries of TBG at 2π

flux, lattice model approaches [81,82] can faithfully capture
the the topology. However, although Bφ=2π is an elementary
band representation, the Bilbao crystallographic server reveals
that it is decomposable into two topological bands with Chern
numbers ±1 if the particle-hole symmetry P is broken and the
flat bands gap. This case is discussed in Ref. [32].

C. Chiral anomaly in TBG

Reference [83] first identified a special region in the TBG
parameter space called the chiral limit where w0 = 0 (w1 is
unrestricted). In the chiral limit, an anticommuting symmetry
C = τ0 ⊗ σ3 ⊗ 1 (τ0 is the 2 × 2 identity on the layer indices
and 1 is the identity on the Landau level indices) appears,
which obeys

{C, Hφ
BM} = 0 (63)

for all flux φ. We see this from Eq. (228) of the Supplemental
Material [37] because only σ1 and σ2 matrices appear when
w0 = 0 (see the Supplemental Material [37]). In zero flux,
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Ref. [83] identifies a discrete series of w1 values where the
two bands become exactly flat and have opposite chirality.

We now show that in chiral TBG at 2π flux, there are
two exactly flat bands for all values of w1, as we observe in
Fig. 6(e). We will prove this is protected by the two flat bands
having the same chirality. This is known as the chiral anomaly,
which is a noncrystalline representation of chiral symmetry
and cannot be realized in zero flux. First, recall that any state
|E〉 at energy E �= 0 yields a distinct state |−E〉 = C |E〉 of
energy −E , and the chiral eigenvalues on the basis |E〉 , |−E〉
are ±1 because they are exchanged by C. We can determine
the chiral eigenvalues of the flat bands in TBG analytically in
the small w1 limit where the kinetic term dominates and

Hφ
BM (r) →

(
vF σ · π 0

0 vF σ · π

)
, as w1 → 0 . (64)

The eigenstates are in the form (|En〉 ,± |En〉)T where the
± states are orthogonal (so there are two states of energy
En to account for the two layers) and the Dirac Hamiltonian
eigenstates are defined

|E0〉 =
(|0〉

0

)
, |En〉 = 1√

2

( ||n|〉
sgn(n) ||n| − 1〉

)
, n �= 0

(65)
with energies σ · π |En〉 = sgn(n)

√
2|n|φ/� |En〉 and

sgn(0) = 0. The chirality operator on the Dirac states
obeys

σ3 |E0〉 = + |E0〉 , σ3 |En〉 = |E−n〉 . (66)

In the w1 → 0 limit, the zero energy flat band eigenstates of
HBM in the chiral limit are

1√
N (k)

∑
R

e−ik·RT b1·R
a1

T b2·R
a2

( |E0〉
± |E0〉

)
(67)

at every k ∈ BZ . The bands in Eq. (67) carry chiral eigen-
values +1,+1. Note that the chiral eigenvalues protect the
perfectly flat bands at all k: If the energy of either of the
flat bands states was not exactly zero, then C |E〉 would be
a distinct state and the pair would have chiral eigenvalues
±1. Hence the +1,+1 eigenvalues pin the states to zero
energy. We now show this is true for w1 �= 0. The proof is by
contradiction. First, we increase w1 away from zero so the flat
band eigenstates are superpositions of many Landau levels.
However, the chiral eigenvalues cannot change from +1,+1.
All gap closings occur as states |±E〉 touch the zero-energy
flat bands, but a pair of states |±E〉 necessarily has chiral
eigenvalues ±1 so the sum of the chiralities of the occupied
bands is always 2. Thus two states are always pinned to zero
energy at every k and all w1, yielding exactly flat bands at all
angles. We emphasize that this situation is very different than
at zero flux where the chiral eigenvalues of the flat bands are
±1, which allows them to gap at generic values of w1.

The +1,+1 chiral eigenvalues are called the chiral
anomaly because the trace of C over all bands at fixed k

formally satisfies

TrC =
∞∑

N=−∞
U †

N (k)σ3UN (k)

=
∑

N=±1

U †
N (k)σ3UN (k) = 2,

(68)

which is anomalous because Trσ3 = 0. As in Eq. (45), UN (k)
is the eigenvector of the N th band at momentum k. In the
second line of Eq. (68), we used the ±1 chiral eigenvalues
of states at E �= 0 to cancel them from the sum, leaving only
the passive bands. The fact that Tr C = 2 can be understood
from the Atiyah-Singer index theorem [84,85], which states
that each Dirac Hamiltonian contributes φ/(2π ) to the trace
of the chirality operator, so Tr C = 2 at φ = 2π because there
are two layers [65]. Strictly speaking, we cannot apply the
index theorem because we have constructed the spectrum on
an infinite plane, which is not compact. However, we can
effectively compactify the spectrum by taking k to be discrete
with L2 values in the BZ corresponding to an La1 × La2 torus
in real space. Then there are a total of 2L2 zero modes of +1
chirality from Eq. (68), so Tr C = 2 at each k.

We can also consider the second chiral limit of TBG identi-
fied in Ref. [57] where w0 �= 0 and w1 = 0. This limit has the
chiral symmetry C′ = τ3σ3 where τ3 is the Pauli matrix acting
on the layer index. Numerically, we do not find zero-energy
bands in the second chiral limit. This is because the Dirac zero
modes in the top and bottom layers have opposite chiralities
due to τ3, so there is no chiral anomaly to protect the exact
flatness.

IX. TWISTED BILAYER GRAPHENE: MANY-BODY
PHYSICS

The rich single-particle physics of TBG at 2π flux, dis-
cussed at length in Sec. VIII, is characterized by the presence
of low-energy flat bands. At the magic angle θ = 1.05, the
theoretically predicted small bandwidth ∼2 meV means that
the Coulomb interaction, which is ∼24 meV, is the dominant
term in the TBG Hamiltonian [86]. The large gap to the
passive bands of ∼40 meV makes a strong coupling approx-
imation viable where the Coulomb Hamiltonian is projected
into the flat bands and the flat band kinetic energy is neglected.
This strategy has been used to great effect in predicting the
ground-state properties of TBG near zero flux [55,56,86–89].

Because the kinetic band energy is <2 meV and the
Zeeman spin splitting is also ∼2 meV at 30T, it is consis-
tent to neglect both terms in the Hamiltonian at 2π flux. In
this case, a U (4) symmetry emerges in the strong coupling
approximation just like at φ = 0. Briefly, the spin and valley
degeneracies act locally on the momentum k and lead to
a U (2) × U (2) symmetry group, which is expanded in the
strong coupling approximation to U (4) by the operator C2zP,
which also acts locally on k (see the Supplemental Material
[37]). Note that C2zP commutes with the Coulomb term in
Eq. (42) but anticommutes with the single-particle Hamilto-
nian H0, which is why only the enhanced symmetry appears
only in the strong coupling approximation where H0 is set to
zero in the flat bands. This is briefly reviewed in the Supple-
mental Material [37] and explained in depth in Ref. [86].
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We now apply the results of Sec. VII to TBG, setting the
screened Coulomb interaction to

V (q) = πξ 2Uξ

tanh ξ |q|/2

ξ |q|/2
(69)

where the parameters of the screened Coulomb interaction are
ξ = 10 nm, Uξ = e2/(εξ ) = 24 meV where ε is the dielectric
constant [86].

Many-body insulator eigenstates

Because the flat bands, approximate spin rotation, and val-
ley symmetry survive the addition of 2π flux, one may add
Coulomb interactions in the same manner as TBG in zero
flux: by projecting density-density terms into the 8 flat bands.
These 8 bands have the creation operators γ

†
k,M,η,s where M =

±1 is the band, η is the valley, and s is the spin. We note that
γ

†
k+2πG,M,η,s = γ

†
k,M,η,s because the eigenstates are periodic in

k (see Sec. III B). Just as in zero flux, the density-density form
of the Coulomb interaction in Eq. (42) (that has neither spin
nor valley dependence) takes the positive-semidefinite form

Hint = 1

2�tot

∑
q∈BZ

∑
G

O−q,−GOq,G, (70)

where �tot is the total area of the sample and the operators
Oq,G = O†

−q,−G are

Oq,G =
√

V (q + 2πG)
∑
k∈BZ

∑
η,s

∑
MN

M̄η
MN (k, q + 2πG)

×
(

γ
†
k−q,M,η,sγk,N,η,s − 1

2
δMNδq,0

)
. (71)

An expression for the form factor M̄η
MN (k, q) is given in

Eq. (282) of the Supplemental Material [37]. The term
1
2δMNδq,0 is added to make Hint symmetric about charge neu-
trality as in Ref. [86]. To project in the flat bands, we merely
restrict M, N to the flat bands, which we label ±1. If all
flat band states of a given valley η and spin s are filled,
Oq,G annihilates the state for all q �= 0 mod 2πG. This al-
lows for the construction of exact eigenstates at filling ν =
−4,−2, 0, 2, 4,

|�ν〉 =
∏

k

(ν+4)/2∏
j

γ
†
k,+,s j ,η j

γ
†
k,−,s j ,η j

|0〉 , (72)

where γ
†
k,±,s j ,η j

operators create flat band eigenstates with spin
s j and valley η j , which are arbitrary. Different choices of j
are related by U (4) [55]. The states |�ν〉 all have zero Chern
number because the two flat bands have no total winding (see
Sec. VIII A). The operators Oq act simply on these states as
calculated in the Supplemental Material [37],

Oq,G |�ν〉 = δq,0λG |�ν〉 (73)

where q here is restricted to the BZ and

λG = ν
√

V (2πG)
∑
k∈BZ

1

2
TrM̄(k, 2πG) . (74)

We prove in the Supplemental Material [37] that M̄η(k, 2πG)
and M̄−η(k, 2πG) are related by a unitary transform, so we

FIG. 10. The validity of the flat metric condition can be
evaluated by examining the eigenvalues of P(k, 2πG) =
M†(k, 2πG)M(k, 2πG) as a function of k. At G = 0 (red),
M(k, 0) = U †(k)U (k) is the identity matrix so the flat metric
condition is exactly satisfied. Because the form factor M(k, 2πG)
decays exponentially in G, the flat metric condition is very nearly
true for |G| � 3 (blue) because the eigenvalues are quite small.
Thus the validity of the flat metric condition is determined to very
good approximation by only the first momentum shell composed of
G = ±b1, ±b2, ±(b1 − b2) (green). We see that, while M(k, 2πG)
is not proportional to the identity, the differences between the
eigenvalues of P(k, 2πG) are � .33, which is only a small violation
of the flat metric condition. We used the parameters θ = 1.05 and
w0 = .8w1, but we checked that the flat metric condition is reliable
over a range of parameters.

drop the η label on quantities, which are independent of valley,
such as TrM̄η(k, 2πG). Appealing to Eq. (70), we show in the
Supplemental Material [37] that the energy of the eigenstates
is

Hint |�ν〉 =
(

1

2�tot

∑
G

|λG|2
)

|�ν〉 , (75)

which vanishes at the charge neutrality point ν = 0 because
λG ∝ ν. Because Hint is positive semidefinite, |�0〉 must be a
ground state because it has zero energy at ν = 0. Additionally,
the ν = ±4 eigenstates are trivially ground states because they
are fully filled/fully empty. Whether the |�ν〉 are true ground
states for ν = ±2 is still in question. One way to assess the
ground states at ν = 2 is with the flat metric condition [57],
which is the approximation

M̄η(k, 2πG) = mG12×2, (76)

in other words that M̄(k, 2πG) is multiple of the identity
matrix, which does not depend on k at each G. In Ref. [55]
it was shown that if the flat metric condition is satisfied, then
|�ν〉 are necessarily ground states. The Supplemental Material
[37] contains a detailed review of this claim. In Fig. 10, we
numerically calculate the singular values of M(k, 2πG) as
in Ref. [55] and argue that Eq. (76) holds to a high de-
gree of accuracy for all 2π |G| �= √

3kθ , as is also the case
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at φ = 0. For six G momenta ±b1,±b2,±(b1 − b2) where
2π |G| = √

3kθ , the flat metric condition is still an acceptable
approximation to an accuracy in energy of �−1V (2π

√
3kθ ) ∼

10 meV times a numerical O(1) constant depending on the
violation of Eq. (76). From Eq. (10), the difference of the
eigenvalues of M†(k, 2πG)M(k, 2πG) is � .33, whereas if
the flat metric condition held, the difference would be zero.
Hence we estimate that the flat metric condition holds within
�−1V (2π

√
3kθ ) × √

.33 ∼ 5 meV. Unless states other than
|�ν〉 are very competitive in energy, we can assume that
|�ν〉 is a ground state at ν = ±2. The excitation spectrum
above these ground states at 2π flux is studied in Ref. [32].
Reference [90] uses a complimentary technique to study the
strong coupling excitations in small magnetic fields.

X. DISCUSSION

The techniques developed in this paper allow for an analy-
sis of general periodic Hamiltonians in 2π flux—most notably
the continuum models of moiré metamaterials—generalizing
Bloch’s theorem in a way that allows theoretical access to
non-Peierls physics. We derived formulas for matrix elements,
Wilson loops and Berry curvature, and projected density-
density interactions. These tools expand the reach of modern
topological band theory to the strong flux limit, opening
Hofstadter topology to analytical and numerical study in the
continuum.

Using these techniques, we build a physical picture of
twisted bilayer graphene in 2π flux—a tantalizing experimen-
tal setup as the large moiré unit cell allows for laboratory
access to the Hofstadter limit for intermediate and large flux
[33,91]. We find that in magic angle twisted bilayer graphene,
the flat bands are reenter at 2π flux after splitting and broad-
ening into Hofstadter bands at intermediate flux. The chiral
limit of TBG, although physically inaccessible, showcases the

chiral anomaly and exemplifies the noncrystalline properties
of Hofstadter phases.

A natural development of this paper is the extension of
our gauge-invariant method to study the topology of band
structures at general rational flux, which we pursue in future
work. Such a development would be a powerful tool to study
non-Peierls physics in topological magnetic systems, particu-
larly with the ability to perform gauge-invariant Wilson loop
calculations within our formalism. Investigations of strongly
correlated phases like superconductivity and the fractional
quantum Hall effect are also made possible due to our expres-
sions for the form factors.

Reference [92] independently studied the chiral limit in
magnetic field. They find exact eigenstates for the zero-energy
flat bands protected by chiral symmetry at all flux, but their
techniques do not generalize to nonchiral Hamiltonians. We
identify the same phase transition in Fig. 6(e) as described in
their paper.
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