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Magnons in antiferromagnetic bcc Cr and Cr2O3 from time-dependent density functional theory
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We apply time-dependent density functional theory to calculate the transverse magnetic susceptibility of bcc
Cr and Cr2O3, which constitute prototypical examples of antiferromagnets with itinerant and localized magnetic
moments, respectively. The exchange-correlation kernel is rescaled in order to enforce the Goldstone condition
and the magnon dispersion relations are extracted based on a symmetry analysis relying on the generalized
Onsager relation. Doing so, our calculations yield the characteristic linear magnon dispersion of antiferromagnets
in the long-wavelength limit. In the case of Cr2O3, we find that the adiabatic local density approximation yields a
good qualitative agreement with the measured dispersion, but overestimates the magnon velocity and bandwidth
by a factor of 2. Including a Hubbard correction improves the magnon velocity, but at the expense of the overall
qualitative agreement with the experimental magnon dispersion. For bcc Cr we find a sharp acoustic magnon
mode at low energies with a velocity in agreement with previously reported values. At higher energies, the
acoustic magnon mode becomes subject to strong Landau damping and rapidly vanishes once it enters the Stoner
continuum. In addition to the acoustic magnon mode, we also observe an additional collective mode along the
� → R direction with an energy of ∼1 eV, which is located inside the Stoner continuum, but appears to elude
the effect of Landau damping.
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I. INTRODUCTION

The far majority of theoretical works on magnetic excita-
tions in solids are based on Heisenberg models, which may
be derived as a low-energy approximation of the full many-
body Hamiltonian [1]. In particular, for materials exhibiting
simple magnetic order, the fundamental magnetic excitations,
the magnons, can be obtained straightforwardly from lin-
ear spin-wave theory. At small wave vectors this results in
the characteristic quadratic and linear dispersion relations of
the acoustic magnon modes in ferromagnets and antiferro-
magnets, respectively. Moreover, the parameters entering the
Heisenberg model can often be fitted to a measured disper-
sion, resulting in excellent quantitative agreement between
experiments and theory, while providing crucial insight into
the microscopic magnetic interactions [2]. Although such an
approach largely corroborates the use of Heisenberg models
for a theoretical description of magnons in insulating mag-
netic materials, it is a fundamental challenge to understand
and compute the basic magnetic interactions (the Heisenberg
parameters) from first principles. To this end, one can ap-
ply methods such as energy mapping analysis [3–7] and the
magnetic force theorem [8–11] to obtain the parameters from
ground-state density functional theory (DFT). The mapping
from the DFT electronic structure problem to a given model
Hamiltonian is in principle unique, but in practice it is often
not clear, whether deviations from experiments originate from
the choice of model or inaccuracies in the applied functional.
For example, four-spin interactions [12,13] are typically
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neglected in the mapping, but may be crucial for an accurate
description and can lead to wrong predictions for the strength
of two-spin interactions [14]. In addition, the calculation of
magnetic interactions based on DFT is nearly always based on
a mapping to a classical Heisenberg model, which may give
rise to significant inaccuracies in the predicted Heisenberg pa-
rameters [6]. In fact, the full quantum mechanical ground state
of an antiferromagnet is a complicated correlated state, which
is not known exactly. Instead, magnons are typically calcu-
lated with respect to the so-called noninteracting magnon
state [1], which does not have a simple classical interpretation.
An even more fundamental problem arises for the case of
itinerant magnets, where the Heisenberg model description
itself becomes dubious. In particular, Heisenberg models do
not capture effects stemming from the low-frequency Stoner
excitations of metals, which give rise to, e.g., Landau damping
(finite lifetimes) of magnons. In general, it is not obvious
that one can construct a reliable model of localized spins for
such materials. A first-principles treatment that is independent
of underlying models thus seems pertinent for the study of
magnons in itinerant magnets.

In general, the spectrum of transverse magnetic excitations
is encoded in the dissipative part of the transverse magnetic
susceptibility χ+−. For insulating magnetic materials, as well
as in the Heisenberg model, χ+− is characterized by a dis-
crete set of poles mapping out the magnon dispersion of
the material. In an itinerant magnet, however, the magnons
will be accompanied by a continuum of Stoner-pair excita-
tions and can acquire a finite width due to Landau damping.
In the framework of first-principles calculations, there are
essentially two distinct approaches for computing the sus-
ceptibility [15]. The first is many-body perturbation theory
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(MBPT), in which the perturbative expansion of the suscepti-
bility is approximated by an infinite series of ladder diagrams.
Summing up the series amounts to solving the Bethe-Salpeter
equation. MBPT has been shown to yield reasonable results
for the basic ferromagnetic metals Fe, Ni, and Co [16,17], and
can be shown to theoretically uphold the Goldstone theorem
when based on Green’s functions calculated self-consistently
from the Coulomb hole plus screened exchange (COHSEX)
approximation to the self-energy [18]. However, this does not
protect the Goldstone condition from a numerical standpoint,
why it is often more practical to apply a correctional scheme
to the local spin density approximation (LSDA) Green’s func-
tions instead [18,19]. The second approach (and the approach
of this work) is time-dependent DFT (TDDFT), which relies
on a time-dependent exchange-correlation potential that needs
approximation. The simplest approximation is comprised by
the adiabatic local density approximation (ALDA), which has
previously been shown to yield a good account of the magnon
dispersion as well as the Landau damping of simple ferromag-
netic metals [20–23].

There have been rather few attempts to calculate the
transverse magnetic susceptibility in insulating as well
as itinerant antiferromagnetic (AFM) materials from first
principles [24–27]. This is likely due to the fact that antifer-
romagnets introduce additional complications for the spectral
analysis and fulfillment of the Goldstone criterion in com-
parison to ferromagnetic (FM) materials. In a nonrelativistic
picture of ferromagnets, there is a majority spin direction in
the ground state (assumed to be the z direction), around which
the magnetization will precess in presence of a magnon. The
magnon carries a single unit of spin angular momentum −h̄,
lowering the total spin projection along the magnetization
axis and one can associate the single acoustic magnon branch
with a unique chirality. In antiferromagnets, however, up- and
down-spin channels are equally occupied in the ground state
and two acoustic magnon branches exist, raising and lowering
the spin by ±h̄, respectively. In a (semi)classical picture of an
antiferromagnet with two equivalent magnetic sites of oppo-
site spin, the spin-wave polar angles on the two sublattices will
be different, θA �= θB, which is why the magnons can carry
a finite spin angular momentum and why the precessional
motion of the spins can be ascribed a handedness (chirality).
The two normal modes (magnon branches) have opposite chi-
rality and, in this picture, it is furthermore the wave-number
dependence of the fraction θA/θB that gives rise to the classic
linear dispersion of the AFM magnons [28,29]. In the absence
of an anisotropy field, the two magnon modes are degenerate.
However, relativistic effects such as hard-axis anisotropy [30]
and Dzyaloshinskii-Moriya interaction [31,32] can lift the
magnon spin degeneracy, leading to a chiral asymmetry,
which can also be induced through injection of pure spin
currents [33].

In previous first-principles calculations of the trans-
verse magnetic susceptibility in AFM materials, the long-
wavelength limit has either been left untreated [26,27] or a
simple basis representation with only a single basis func-
tion per magnetic atom was used, such that the Goldstone
criterion could be identically satisfied when treating the
effective interaction at the random phase approximation
(RPA) level [24,25]. In this work, we apply the ALDA to

calculate the transverse magnetic susceptibility of bcc Cr and
Cr2O3 in a plane-wave basis. These materials are chosen
as two prototypical antiferromagnets representing itinerant
antiferromagnetism and local moment antiferromagnetism,
respectively. Based on a generalized Onsager relation for
the full transverse magnetic susceptibility χ+−(r, r′, ω), we
provide symmetry relations between the magnon modes of
opposite spin in centrosymmetric antiferromagnets and show
how to extract the long-wavelength magnon dispersion in the
nonrelativistic limit. Numerically, it is not trivial to satisfy
the Goldstone criterion exactly, but it can be enforced by a
slight rescaling (∼1%) of the ALDA kernel. Within this ap-
proach, we recover the linear dispersion relation expected for
antiferromagnets and the magnon velocity can be directly ex-
tracted and compared to experimental values. For Cr2O3, we
investigate the effect of Hubbard corrections in the LSDA+U
scheme and find that magnon velocities can be improved
compared to bare LSDA, but at the cost of deteriorating some
qualitative features of the dispersion relation. For bcc Cr, we
find that the acoustic magnon mode is completely washed out
once it enters the Stoner continuum. Furthermore, we identify
an additional collective mode at high energies that seems to
be partly protected from Landau damping.

The paper is organized as follows. In Sec. II we present
the basic theory that allows us to calculate the transverse
magnetic susceptibility in the framework of TDDFT. In ad-
dition, we show how the chiral symmetry of centrosymmetric
antiferromagnets in the nonrelativistic limit manifests itself as
Onsager relations for the susceptibility. In Sec. III we outline
the computational details, including the extraction of the AFM
magnon dispersion in the presence of artificial broadening,
and in Sec. IV we present our results for Cr2O3 and bcc Cr.
Section V provides a summary of results and an outlook.

II. THEORY

A. Transverse magnetic susceptibility

The spectrum of transverse magnetic excitations is closely
related to the linear transverse magnetic susceptibility, which
is given by the Kubo formula

χ+−(r, r′, t − t ′) = − i

h̄
θ (t − t ′)〈 [n̂+

0 (r, t ), n̂−
0 (r′, t ′)] 〉0,

(1)
where the time dependency of the spin-raising and spin-
lowering density operators, n̂+(r) = ψ̂

†
↑(r)ψ̂↓(r) and n̂−(r) =

ψ̂
†
↓(r)ψ̂↑(r), is given in the interaction picture. For mag-

netic crystals, the Fourier transform of the real-space sus-
ceptibility (1) yields the transverse magnetic plane-wave
susceptibility

χ+−
GG′ (q, ω) =

∫∫
dr dr′

�
e−i(G+q)·rχ+−(r, r′, ω)ei(G′+q)·r′

,

(2)
which determines the plane-wave response in the transverse
magnetization ∝ei([G+q]·r−ωt ) to an external perturbation in the
transverse magnetic field ∝ei([G′+q]·r−ωt ), to linear order. Here,
� is the crystal volume, and each plane-wave component is
separated in a reciprocal lattice vector G or G′ and a wave
vector q within the first Brillouin zone (BZ). Furthermore, it
should be noted that the linear response is diagonal both in the
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frequency ω as well as the wave vector q. We refer to Ref. [23]
for more details.

From the plane-wave susceptibility, one may calculate the
spectrum of induced excitations [23]:

S+−
GG′ (q, ω) = − 1

2π i
[χ+−

GG′ (q, ω) − χ−+
−G′−G(−q,−ω)]. (3)

This spectrum is composed of spin-lowering excitations at
positive frequencies and spin-raising excitations at negative
frequencies. As a result, it can be decomposed into two sepa-
rate spectral functions with excitations of either a raised or a
lowered spin angular momentum,

S+−
GG′ (q, ω) = A+−

GG′ (q, ω) − A−+
−G′−G(−q,−ω), (4)

where (assuming zero temperature)

Ajk
GG′ (q, ω) = 1

�

∑
α �=α0

n j
α0α

(G + q)nk
αα0

(−G′ − q)

× δ(h̄ω − (Eα − E0)). (5)

The so-called spin-lowering and spin-raising spectral func-
tions are made up of δ-function peaks at excitation energies
h̄ω = (Eα − E0) � 0, where Eα is the energy of the eigenstate
|α〉 with lowered or raised spin angular momentum with re-
spect to the ground state |α0〉 with energy E0. Each excitation
is weighted by reciprocal space pair densities n j

αα′ (G + q),
which are Fourier transforms of the real-space pair densities
n j

αα′ (r) = 〈α|n̂ j (r)|α′〉. In the nonrelativistic limit, where the
total spin projection along the z axis can be taken as a good
quantum number, A+− is the spectral function for quasipar-
ticle excitations where Sz has been lowered by a single unit,
whereas A−+ is the spectral function for quasiparticle excita-
tions where Sz has been raised by a single unit.

Finally, it is noted that the full spectrum of magnon
excitations can be characterized in terms of the diago-
nal S+−

G (q, ω) ≡ S+−
GG (q, ω) for Cr2O3 as well as bcc Cr,

where the corresponding spectral functions A+−
G (q, ω) and

A−+
G (q, ω) are real functions of frequency due to the fact that

[n̂+(r)]† = n̂−(r).

B. Onsager relations for centrosymmetric antiferromagnets

Both bcc Cr and Cr2O3 are centrosymmetric antiferro-
magnets, meaning that the Hamiltonians are invariant under
inversion, [Ĥ0, P̂] = 0. In the antiferromagnetic ground states,
time-reversal symmetry is spontaneously broken, and for
Cr2O3, the inversion symmetry is spontaneously broken as
well. For both systems, however, application of time reversal
and inversion maps the ground state onto itself, P̂T̂ |α0〉 →
|α0〉 [34]. This implies that the spectrum of induced transverse
magnetic excitations follows the symmetry relation

S+−
GG′ (q, ω) = S−+

G′G(q, ω), (6)

which is an instance of the generalized Onsager relation
(see the Appendix). Furthermore, as the ground state of both
systems is collinear, the spectrum also follows the Onsager
relation

S+−
GG′ (q, ω) = S+−

−G′−G(−q, ω) (7)

in the nonrelativistic limit (see the Appendix, Sec. A 4), mean-
ing that the magnon dispersion is reciprocal in ±(G + q).
Combining both of these Onsager relations, it is concluded
that the interchange of + and − indices in the magnon spec-
trum corresponds to the inversion of wave vectors G + q:

S+−
GG′ (q, ω) = S−+

−G−G′ (−q, ω). (8)

In turn, this implies that the spin-raising and spin-lowering
magnon modes in S+−

G (q, ω) are degenerate, A+−
G (q, ω) =

A−+
−G(−q, ω).

C. Transverse magnetic susceptibility from LR-TDDFT

The transverse magnetic susceptibility can be computed
from first principles within the framework of linear response
time-dependent density functional theory (LR-TDDFT), using
only quantities which can be extracted from a routine DFT
calculation [35,36]. For a collinear DFT ground state, the non-
interacting susceptibility of the Kohn-Sham system is given
by

χ+−
KS (r, r′, ω) = lim

η→0+

1

N2
k

∑
nk

∑
mk′

( fnk↑ − fmk′↓)

× ψ∗
nk↑(r)ψmk′↓(r) ψ∗

mk′↓(r′)ψnk↑(r′)

h̄ω − (εmk′↓ − εnk↑) + ih̄η
, (9)

where εnks and fnks are the single-particle energies and
ground-state occupations of the Kohn-Sham Bloch waves
ψnks(r), while Nk denotes the number of k points. As seen in
Eq. (9), the transverse magnetic Kohn-Sham spectrum is made
up of single-particle Stoner excitations, where an electron is
removed from an occupied Kohn-Sham orbital and inserted
in an unoccupied orbital of opposite spin. The Stoner-pair
excitations form a continuum, which is referred to as the
Stoner continuum, and gives rise to Landau damping of a
given collective magnon mode, whenever the mode overlaps
with the Stoner continuum. In the ALDA, the full many-body
susceptibility is obtained from the Kohn-Sham counterpart
through a single Dyson equation

χ+−(r, r′, ω) = χ+−
KS (r, r′, ω) +

∫
dr1

× χ+−
KS (r, r1, ω) f −+

LDA(r1)χ+−(r1, r′, ω),
(10)

where f −+
LDA(r) = 2W z

xc,LDA(r)/nz(r) is the transverse LDA
kernel, depending only on the local exchange-correlation
magnetic field and spin polarization of the ground state. For
additional details, the reader is referred to Ref. [23].

III. METHODOLOGY

A. Gap error in antiferromagnets

In the absence of spin-orbit coupling, one expects to find
two gapless Goldstone modes of opposite spin for an antifer-
romagnet at the � point, ω� = 0. For LR-TDDFT calculations
in practice, however, it has been widely established that nu-
merical approximations such as basis truncation result in a
finite gap error [20,21,23,37,38]. For a plane-wave basis in
particular, it seems very difficult to converge the �-point
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magnon frequency [23] and in practice a gap error correction
scheme is needed in order to provide a converged magnon
dispersion.

For ferromagnets, simple correction schemes are sufficient.
Due to the limited weight of spin-raising excitations, one can
simply apply a rigid shift to the transverse magnetic excitation
spectrum so as to fulfill ω� = 0 [23]. For the centrosym-
metric antiferromagnets considered here, however, the spin
degeneracy of the Goldstone modes implies that S+−

G (q, ω)
should vanish completely at the � point for reciprocal lattice
vectors G corresponding to the acoustic Goldstone modes [see
Eqs. (4) and (8)]. This cannot be satisfied through a frequency
shift of the excitation spectrum since the spin-lowering and
spin-raising spectral functions A+−

G (q, ω) and A−+
−G(−q,−ω)

will not cancel out each other when the magnon frequency is
finite, ω� > 0. Instead, we rescale the ALDA kernel f −+

LDA →
λ f −+

LDA, such as to fulfill the Goldstone criterion S+−
G=0(q =

0, ω) = 0. With otherwise converged numerical parameters,
this amounts to a small rescaling of about 1% when applied on
top of a LSDA ground-state calculation, with λ = 1.0096 for
Cr2O3 and λ = 1.0124 for Cr. For this reason, we consider the
rescaling a numerical detail rather than a change of exchange-
correlation kernel.

B. Broadened magnon spectral functions in centrosymmetric
antiferromagnets

Due to the PT symmetry, the AFM spectral functions con-
sidered here are different in a few crucial aspects from the
familiar FM spectral functions, especially when subject to
Lorentzian broadening. This is an essential matter to consider
since η is routinely left as a finite broadening parameter in
Eq. (9) when using point integration for the evaluation of
k-space integrals. Assuming that the spin-lowering spectrum
for a given q and G = G′ is dominated by a single magnon
excitation of frequency ωq, Lorentzian line shape and half-
width at half-maximum (HWHM) η > 0, we may write

A+−
G (q, ω) = M

h̄

η/π

(ω − ωq)2 + η2
, (11)

where M/h̄ denotes the spectral intensity. For a material
with multiple magnon modes, Eq. (11) should also include
a weighted sum over mode indices, with mode weights
depending on the reciprocal lattice vector G. For the acoustic
mode in a ferromagnet, one can typically neglect minority-to-
majority excitations at short wave vectors q and, as a result,
the spectrum of induced excitations will simply be given as
S+−

G (q, ω) = A+−
G (q, ω), from which the magnon dispersion

can be read out directly. For a PT-symmetric antiferromagnet,
however, where A−+

−G(−q, ω) = A+−
G (q, ω), the two magnon

modes of opposite spin angular momentum will mutually
suppress each other in the spectrum of induced excitations:

S+−
G (q, ω) = M

h̄

[
η/π

(ω − ωq)2 + η2
− η/π

(ω + ωq)2 + η2

]
.

(12)
For magnon excitations where the frequency is comparable to
or smaller than the spectral width, this means that the magnon
spectral function is obscured by its degenerate partner of op-
posite spin and the spectral function maximum in S+−

G (q, ω)

will no longer correspond directly to the magnon frequency, as
illustrated in Fig. 1(a). Instead, the maximum will be located
at

ωm = 1√
3

(
ω2

q + 2
√

ω4
q + η2ω2

q + η4 − η2
)1/2

. (13)

In the limit ωq � η, it is a good approximation to identify the
magnon frequency as the spectral function maximum ωm �
ωq, but for ωq � η, such an identification fails catastroph-
ically as ωm is determined mostly from the spectral width
ωm � η/

√
3 and not the frequency. Consequently, a more

careful analysis is needed in order to identify the energy of
low-frequency AFM magnons when broadened.

More generally, an AFM spectrum of induced excitations
will always have a vanishing zeroth moment, due to the sum
rule [23]

h̄
∫ ∞

−∞
S+−

G (q, ω) dω = nz

�cell
, (14)

where nz/�cell gives the magnetization per unit cell. Because
the total magnetization vanishes in antiferromagnets, the spin-
raising and spin-lowering excitations will always have equal
weight in S+−

G (q, ω), independently of line shape, inversion
symmetry, etc. In addition, this also implies that the AFM
magnon spectral weight M will generally vary both as a func-
tion of G and q.

C. Extracting the AFM magnon dispersion from a broadened
spectrum

In the simplest case, the low-frequency magnons are un-
damped, the line shape is formally a Dirac δ function, and
when applying a finite broadening η to Eq. (9), the line
shape is perfectly Lorentzian with HWHM η, as assumed in
Eq. (11). Thus, magnon frequencies below the Stoner con-
tinuum may be calculated directly from the spectral function
maximum of Eq. (12):

ωq = (
2
√

ω4
m + η2ω2

m − ω2
m − η2

)1/2
. (15)

The AFM magnon frequency that results from this equation is
illustrated as a function of the spectral function maximum in
Fig. 1(b). First of all, we see that ωq � ωm is a good approxi-
mation already at ωm = 2η, where ωq = 0.993 ωm. For values
of ωm < 2η, however, it becomes increasingly important to
account for the finite broadening to accurately extract the
magnon dispersion. For ωm ∈ [η, 2η], the spectral function
maximum slightly exceeds the magnon frequency, with ωq =
0.910 ωm at ωm = η, and for ωm < η the spectral function
maximum is no longer a good indicator of the magnon dis-
persion [see, e.g., the red, green, and teal curves in Fig. 1(a)].
In fact, the linear magnon dispersion of antiferromagnets will
appear quadratic at short wave vectors q and with a finite gap
of η/

√
3, if only the spectral function maximum is considered

[see Eq. (13) and Fig. 1(b)]. As a more practical matter, it
becomes a substantial numerical challenge to determine ωm

precisely enough to infer ωq through Eq. (15) for values of
ωm < η. In the limit ωm → η/

√
3, the gradient ∂ωq/∂ωm

diverges, meaning that the inferred magnon frequency around
ωq = 0 is sensitive to infinitesimal changes in ωm. This im-
plies that an increasingly dense frequency grid is needed in
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FIG. 1. Characteristics of a PT-symmetric AFM spectrum of transverse magnetic excitations with Lorentzian broadening. (a) AFM spectral
function in Eq. (12) plotted as a function of frequency for different magnon energies h̄ωq. The vertical lines indicate the energy of the
spin-lowering (at positive frequencies) and spin-rasing (negative frequencies) magnon excitations. The spectra are normalized by the magnon
peak intensity A0 = M/(π h̄η) [see Eq. (11)]. (b) Magnon frequency as a function of the spectral function maximum ωm, as given in Eq. (15).
The magnon frequency is also plotted versus itself in dashed gray for visual comparison.

order to determine ωq from ωm as ωm → η/
√

3. If ωm is
determined from a parabolic fit to the spectral peak sampled
on a linear frequency grid, Eq. (15) ceases to provide accurate
magnon frequencies with a frequency sampling of δω = η/8
already for ωm � η. Instead, it turns out to be much more
efficient to fit the entire spectral function in Eq. (12) directly
to the calculated spectrum and extract the magnon frequency
from the fit. In this case, a δω = η/8 frequency sampling
provides sufficient accuracy for magnon frequencies as small
as ωq = η/40.

For Landau damped magnons, it is a more compli-
cated issue to extract the magnon dispersion because the
exact magnon line shape is not known beforehand and
cannot be directly extracted from S+−

G (q, ω) due to the
extra broadening resulting from keeping η as a finite pa-
rameter. To make progress, we take another look at the
double-Lorentzian spectral function (12), with the aim of es-
tablishing some heuristics that may generalize to other line
shapes as well. First, we note that the curvature always van-
ishes at zero frequency, ∂2S+−

G (q, ω)/∂ω2 = 0|ω=0. Because
∂3S+−

G (q, ω)/∂ω3 changes sign from negative to positive at
ωq = η, one can then use the low-frequency curvature as a
simple visual heuristic to determine the relative sizes of the
magnon frequency and spectral width. If the spectral function
has positive curvature at low frequencies, ωq � ωm should
at least provide a decent approximation. Of course, the er-
ror will depend somewhat on the exact line shape, but it
should be comparable to that of a Lorentzian one, which has
a maximum error of 7.5% for ωq > η. If the AFM spectral
function has negative curvature at low frequencies, one is
instead forced to guess a functional form for the line shape and
fit it to the spectrum. To exemplify the use of this heuristic,
one would conclude that ωq � ωm is a decent approximation
for the teal and yellow line shapes in Fig. 1(a), but not for
the red and green. To get a better grasp of the error made
in approximating ωq � ωm, one can go a step further. For
the perfectly Lorentzian magnon line shape, a magnon fre-
quency of ωq > 2η is enough to guarantee that the error is
smaller than 1%. For the full spectral function S+−

G (q, ω), this
criterion is met when ωm > 2.25 HWHM1, where HWHM1

denotes the HWHM below the peak at positive frequency.
Thus, one can be reasonably confident that ωq � ωm is a good
approximation, for line shapes where the spectral function
maximum exceeds 2.25 times the lower HWHM.

D. Computational details

In this study, we compute the spectrum of transverse
magnetic excitations S+−

G (q, ω) using the GPAW open-source
code [39,40] as described in [23]. We use the experimen-
tal room-temperature crystal structures (Cr2O3: a = 4.957 Å,
c = 13.592 Å, Cr-z = 0.3473 Å, O-x = 0.3057 Å [41], Cr:
a = 2.884 Å [42]) and compute ground-state properties using
the LSDA exchange-correlation functional, with and without
Hubbard corrections (in the Dudarev LSDA+U scheme [43]).
We neglect core-level excitations and include only Cr 4s, 3d
and O 2s, 2p orbitals as valence states in the Kohn-Sham sus-
ceptibility (9). To converge the summation over Kohn-Sham
states, we include also 12 additional empty shell bands per
atom, and in order to invert the Dyson equation in the plane-
wave basis, a plane-wave cutoff of 1000 eV is used. Based
on a previous convergence study for itinerant ferromagnets
Fe, Ni, and Co, the applied computational parameters should
provide a benchmark-level accuracy of results [23].

When inverting the Dyson equation (10), the scaled ALDA
exchange-correlation kernel is used both for LSDA and
LSDA+U ground states. However, when a Hubbard correc-
tion has been applied in the ground state, the kernel scaling
is no longer a numerical detail, as it would also be needed
in the limit of a complete basis representation. Thus, the re-
sulting kernel is formally a new kernel, which we will denote
λALDA + U . In Cr2O3 with a Hubbard correction of Ueff =
1 eV, for instance, the scaling parameter needed to fulfill
the Goldstone criterion is λ = 1.40. Usage of such a scaled
kernel is justified for ferromagnetic ground states, based on
the homogeneous electron gas limit, and λALDA + U has
previously proved effective in describing essential correlation
effects in the itinerant ferromagnet MnBi [44]. Whether or not
the λALDA + U approach is a viable scheme for antiferro-
magnets remains to be seen.
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For magnetic response calculations in the GPAW code, we
are currently restricted to computing the transverse magnetic
plane wave susceptibility χ+−

GG′ (q, ω) at wave vectors q that
are commensurate with the k-point grid of the ground-state
calculation. The k-point summation in Eq. (9) is approxi-
mated by point integration of the Kohn-Sham states on the
ground-state k-point grid and thus a finite artificial broadening
parameter η is needed in order to broaden the single-particle
Stoner excitations into a continuum. For itinerant ferro-
magnets as well as antiferromagnets, this implies that the
convergence of the k-point grid density and artificial broad-
ening η is intertwined for the magnon dispersion inside the
Stoner continuum [23]. Providing such a convergence analysis
on the basis of magnon frequencies is a very computation-
ally expensive task, why a method for inferring convergence
on the basis on the single-particle Stoner spectrum alone
is highly desirable. We have previously developed such a
method for itinerant ferromagnets [23], but as it relies on
the low-frequency Stoner continuum, it is not transferable
to antiferromagnets where the low-frequency Stoner contin-
uum is obscured when using a finite value for η. Instead, we
choose for bcc Cr a k-point grid density and artificial broaden-
ing to match converged values for the itinerant ferromagnets
Fe, Ni, and Co. In particular, we apply a (60, 60, 60) �-
centered Monkhorst-Pack (MP) grid, resulting in a 27.5-Å
one-dimensional (1D) k-point density along the reciprocal
lattice vectors. We use an artificial broadening of η = 50 meV
and sample the susceptibility on a linear frequency grid with
a δω = 6 meV spacing.

For insulating Cr2O3, the magnon modes never enter the
Stoner continuum and the spectral broadening can be chosen
freely, as long as it supports reliable extraction of the magnon
dispersion on a reasonably spaced frequency grid. For Cr2O3

we use a linear frequency spacing of δω = 4 meV and an
artificial broadening of η = 32 meV. The insulating nature of
Cr2O3 also significantly relaxes the requirements on k-point
sampling. For calculations without empty shell bands and a
plane-wave cutoff of 500 meV, a (12, 12, 12) (1D k-point
density of 8.8 Å) and a (24, 24, 24) �-centered MP grid (1D
k-point density of 17.5 Å) result in identical magnon frequen-
cies down to the fifth significant digit. As a result, one could
probably use an even more sparse k-point sampling, but to
compute more than just a few points of the Cr2O3 magnon
dispersion, we apply the (12, 12, 12) �-centered MP grid.
Furthermore, in order to extract accurate magnon velocities
we use the (24, 24, 24) �-centered MP grid to compute one
additional magnon frequency for each direction q̂ close to
the � point.

IV. RESULTS

A. Cr2O3

1. Basic properties

Chromium sesquioxide (Cr2O3) is an antiferromagnetic
insulator with a trigonal corundum crystal structure (space
group R3̄c), occurring naturally in the form of the eskolaite
mineral. The Cr3+ atoms are situated at octahedral sites of
an O2− hcp array, resulting in a rhombohedral primitive cell
containing four Cr atoms located along the [111] diagonal

FIG. 2. Crystal structure of Cr2O3. Left: rhombohedral unit cell
with the ground-state magnetic configuration ↑↓↑↓ indicated. Right:
Brillouin zone highlighting the high-symmetry path used for comput-
ing magnon spectra.

(corresponding to the c axis of the hexagonal cell) [41].
The Cr magnetic moments align antiferromagnetically in a
↑↓↑↓ spin configuration [45,46] as shown in Fig. 2, which
is consistent with the prediction from Goodenough that all the
direct Cr-Cr couplings (along octahedral faces and edges) are
antiferromagnetic [47]. Due to its lack of inversion symme-
try in the ground state, Cr2O3 has been thoroughly studied
as a prototypical material exhibiting magnetoelectric cou-
pling [34,48,49] and has recently been demonstrated to host
magnon polarons, that is, hybridized excitations of magnons
and phonons [50,51].

The Cr3+ local magnetic moments are slightly reduced
from the ionic value of 3 μB, with experimental values re-
ported in the range of 2.48–2.76 μB, where the lower and
upper values originate from neutron polarimetry and neutron
powder diffraction experiments, respectively [41,46,52].

In DFT, Cr2O3 is consistently predicted to order antifer-
romagnetically in accordance with experiment. An antiferro-
magnetic ground state is preferred over the ferromagnetic and
paramagnetic states using both the local spin-density approx-
imation (LSDA), the Hubbard corrected LSDA (LSDA+U ),
and generalized gradient approximations (GGA+U ), as well
as the hybrid screened exchange (sX) functional [53–57].
Furthermore, a preference for the ↑↓↑↓ spin configuration
has been confirmed for both the LSDA+U , GGA+U , and sX
functionals [54–56]. The band gap is, however, significantly
underestimated in the LSDA compared to the experimental
value of 3.4 eV [58,59]. While the Kohn-Sham band gap
is not formally required to match the experimental gap, a
deviation by a factor of about 3 implies the presence of
strong static correlation effects, which are typically not well
described by local functionals. This observation is in line with
the experimental characterization of Cr2O3 as an intermedi-
ate between a charge-transfer insulator and a Mott-Hubbard
insulator [59,60]. A similar characterization results from DFT
using either of the LSDA+U , GGA+U , sX and B3LYP func-
tionals [54–57,61,62].

In the ↑↓↑↓ spin configuration of Cr2O3, we find a local
magnetic moment of 2.56 μB for the Cr atoms using the LSDA
functional (here defined as the integrated moment inside the
Cr PAW sphere of radius 2.3 a0). When including a Hubbard
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FIG. 3. LSDA+U ground-state properties of Cr2O3 as a function
of the Hubbard correction Ueff . Left axis (blue) Local magnetic
moment of the Cr atoms. Right axis (red): Kohn-Sham band gap.
The horizontal line indicates the experimental gap [58,59].

correction, the local magnetic moments increase with Ueff ,
although not exceeding the ionic value of 3 μB for Ueff < 5 eV.
The effect of the Hubbard correction is in good agreement
with previous LSDA+U literature [55,63] and is illustrated
on the left axis of Fig. 3. Given the ambiguous definition of a
local magnetic moment, we find the LSDA(+U ) Cr moments
to be in reasonable agreement with the experimental range of
observed values [41,46,52], at least for values of Ueff � 4 eV.

In contrast to the local magnetic moments, the band gap is
highly sensitive to the inclusion of a Hubbard correction. This
is illustrated on the right axis of Fig. 3 as well as by previous
calculations [54,55]. We find the LSDA Kohn-Sham band gap
to be 1.2 eV (with a direct gap of 1.3 eV), that is, about
a third of the experimental gap. When including a Hubbard
correction, the gap widens and it is possible to reproduce the

experimental gap with a suitable choice of Ueff . However, it
should be stressed that the agreement between the experimen-
tal gap and the calculated Kohn-Sham gap is not a figure of
merit in itself and cannot be used as a criterion for finding
the optimal value for Ueff . Rather, a large disagreement simply
indicates the presence of strong correlation, which implies that
Hubbard corrections are likely needed in order to describe var-
ious material properties accurately. Alternatively, the U and J
Hubbard parameters may also be determined using, e.g., the
constrained occupations method or unrestricted Hartree-Fock
theory. Within these approaches, Ueff = U − J has previously
been demonstrated to fall in the range of 2.5–3.5 eV [55,63].

2. Magnetic excitations

The magnon excitations of Cr2O3 have been investigated
experimentally by several authors. Samuelsen [64,65] pro-
vided early short wave vector inelastic neutron scattering
(INS) data and estimated the magnon velocity along the
[110]∗ and [211]∗ directions, where square brackets with an
asterisk indicate directions in terms of the reciprocal lat-
tice vectors of the rhombohedral lattice. In a similar study,
Alikhanov et al. [66] investigated the magnon dispersion in a
wide selection of directions in the (11̄0) plane, still at short
wave vectors, and fitted their data to a Heisenberg model in-
cluding only the exchange couplings between neighboring Cr
occupied octahedra, i.e., exchange parameters up to J4. They
found the magnon dispersion to be anisotropic, with magnon
velocities being larger in plane (in the [21̄1̄] direction) than out
of plane (the [111] direction). Finally, Samuelsen et al. [67] re-
ported magnon frequencies throughout the entire (11̄0) plane
of the magnetic BZ, that is, including also the excitations at
long wave vectors. Upon including a fifth exchange parameter
(J5), they were able to provide a satisfactory fit of the Heisen-
berg model to the experimental magnon dispersion.

Based on the LSDA ground state, we have employed the
ALDA to compute the low-frequency spectrum of transverse
magnetic excitations for a wide selection of wave vectors in

FIG. 4. Magnon dispersion of Cr2O3 as a function of q inside the first BZ of the rhombohedral lattice. The ALDA acoustic and optical
magnon modes are extracted at the (0, 0, 0) and (1̄, 1̄, 1̄) reciprocal lattice points, respectively, and compared to experimental INS data and a
J5 Heisenberg model fitted to experiment [67].
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FIG. 5. Cr2O3 magnon velocities calculated within the ALDA
and the λALDA + U method as a function of Hubbard correction
Ueff . For reference the 1σ experimental range is shown, extracted as
the slope of a linear fit to the INS data [67] of wave numbers in the
range aq ∈ [0.4, 1.2], where a is the rhombohedral lattice constant.

and out of the (11̄0) plane. The spectrum at a given wave
vector is dominated by a single magnon peak and its de-
generate partner of opposite spin. By fitting the spectrum
to the Lorentzian AFM spectral function (12), we obtain a
practically ideal fit and extract the Cr2O3 magnon dispersion,
which is presented in Fig. 4. Qualitatively, the ALDA is seen
to reproduce the experimental magnon dispersion. However,
both the bandwidth and the magnon velocity are overesti-
mated by roughly a factor of 2. Also for wave vectors where
there are no experimental data, there is a good qualitative
agreement between the ALDA magnon dispersion and that of
the Heisenberg model fitted to experiment. As an example, the
optical magnon mode seems to be more dispersive along the
� → L path compared to the � → F path in both the ALDA
and the Heisenberg model.

Given that Cr2O3 is a strongly correlated material, it is
not surprising that the ALDA fails to yield a good quan-

titative agreement with experiment. In fact, the LSDA is
well known for overestimating the magnon dispersivity in
the commonly studied (and strongly correlated) AFM tran-
sition metal oxides MnO and NiO [24,68]. In Fig. 5, we
present the Cr2O3 magnon velocities computed as a function
of Ueff , including the Hubbard correction by means of the
λALDA + U method. Indeed, the magnon velocity seems
to steadily decrease with Ueff . However, the best correspon-
dence with experiment seems to occur already around Ueff ∼
1 eV and at Ueff = 2.0 eV, the magnon dispersion has turned
completely flat along all directions. In Fig. 6, we show the
full magnon dispersion obtained with Ueff = 1.0 and 2.0 eV,
respectively. Whereas the magnon velocity seems to agree
well with experiment for Ueff = 1.0 eV, the magnon disper-
sion as a whole does not. The magnon bandwidth is still
overestimated, and some of the features that were qualitatively
reproduced in the ALDA, such as the flat optical band between
the � and F high-symmetry points, are no longer reproduced.
Thus, the λALDA + U method proves insufficient for includ-
ing Hubbard corrections in a meaningful way that consistently
improves the Cr2O3 magnon dispersion. This is in contrast to
frozen magnon calculations of the magnon dispersion in MnO
and NiO [68,69] as well as total energy mapping calculations
of the exchange parameters in Cr2O3 [55,70], in both cases of
which a Hubbard correction can be employed to reach a fair
agreement with experiment. Nevertheless, it is still a striking
feature that the λALDA + U method yields a completely flat
magnon dispersion for short wave vectors at Ueff = 2.0 eV.
In contrast to the � point itself, the transverse magnetic ex-
citation spectrum does not vanish at short, but finite, wave
vectors. Instead, the spectrum is peaked more or less exactly at
the resolution limit η/

√
3, meaning that the inferred magnon

frequency is orders of magnitude smaller than η, but still
nonzero. The physical significance of this, if any, is not clear
at present.

In Table I, we present the actual values for the computed
LR-TDDFT magnon velocities along with fitted INS refer-
ence values and analytical velocities calculated within the

FIG. 6. λALDA +U magnon dispersion of Cr2O3 as a function q inside the first BZ of the rhombohedral lattice. The acoustic and optical
magnon modes are extracted at the (0, 0, 0) and (1̄, 1̄, 1̄) reciprocal lattice points, respectively, and compared to a J5 Heisenberg model fitted
to experimental INS data [67].
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TABLE I. Cr2O3 magnon velocities in units of meV Å. The
λALDA + U values were calculated with Ueff = 1 eV. The values
extracted from the experimental INS data are shown as reference
along with values computed analytically from the J5 Heisenberg
model fitted to experiment [67].

q̂ BZ line v (ALDA) v (λALDA + U ) v (Expt.) v (HB)

[111]∗ � → Z 170 72 70.6 ± 3.2 71.0
[110]∗ � → F 170 84 77.8 ± 1.5 80.7
[100]∗ � → L 170 88 83.1
[1̄01]∗ � → X 169 89 84.2

J5 Heisenberg model [67]. The experimental dispersion was
fitted only to data in the range aq ∈ [0.4, 1.2], that is, the
range of wave numbers where the magnon dispersion is ap-
proximately linear. There is a lower bound to this range due to
relativistic effects (not included in our calculations) resulting
in an anisotropy gap of ω� = 0.68 meV [67,71]. Clearly, the
ALDA yields a completely isotropic magnon dispersion at
short wave vectors, which is in sharp contrast to the out-
of-plane vs in-plane anisotropy observed experimentally. In
addition, the computed ALDA magnon velocities are overesti-
mated by more than a factor of 2. Interestingly, the isotropy is
broken by the Hubbard correction and with Ueff = 1.0 eV, the
experimental magnon velocities are accurately reproduced,
matching also the Heisenberg model values for directions out
of the (11̄0) plane.

B. Bulk Cr

1. Basic properties

Chromium is a metallic antiferromagnetic material with
a bcc crystal structure. It is widely accepted to have an in-
commensurate longitudinal spin-density wave (SDW) as its
ground state [72] with a SDW vector of qSDW = 0.95 × 2π/a,
directed towards one of the cubic axes [73,74]. With increas-
ing temperature, pristine Cr first undergoes a spin-flip phase
transition to a transverse SDW at TSF � 123 K before becom-
ing paramagnetic at TN � 311 K [72]. Furthermore, in a wide
range of dilute Cr alloys, the SDW becomes commensurate
with the cubic lattice [75] and the local magnetic moments
of the Cr corner and center atoms (which are antialigned)
become equal in size (see, e.g., illustration in Ref. [76]). As
an example, the Cr1−xMnx system transitions into the com-
mensurate SDW for x � 0.4 at.% at room temperature [75].
Due to its simplicity, commensurate AFM Cr provides the
most basic realization of itinerant antiferromagnetism in a
real material and has been used for initial discoveries with
emerging first-principles methodologies since the advent of
the LSDA [76–78]. In addition, the similarity between the
commensurate-incommensurate phase transition in Cr and the
AFM-superconducting phase transition in doped cuprates has
spurred hope that the study of AFM Cr may contribute to a
better understanding of the mechanism responsible for uncon-
ventional superconductivity [75].

Within the LSDA, we obtain a local magnetic moment of
0.82 μB for the commensurate SDW in Cr. In literature, the

FIG. 7. LSDA band structure of bcc Cr in the commensurate
SDW phase, plotted relative to the Fermi level. The paramagnetic
(PM) bands evaluated in the cubic unit cell are shown for reference.
All AFM bands are twofold degenerate, but the paramagnetic four-
fold degeneracy at the Brillouin zone boundary (originating from
downfolding) is lifted in the antiferromagnetic state.

reported LSDA values at the experimental lattice constant
range from 0.33 μB to 0.71 μB depending on numerical
scheme and implementation [76–78]. Given the ill-defined na-
ture of the local magnetic moment, we find our result to be in
fair agreement with the PAW value of 0.67 μB reported in [78]
as well as the experimental average moment at T = 4.2 K of
the commensurate SDW phase in the 2.1 at.% Mn and 7.0 at.%
Mn alloys of 0.67 μB and 0.81 μB, respectively [79]. In Fig. 7,
we show the band structure of bcc Cr in the commensurate
SDW and compare it to the paramagnetic (spin-paired) band
structure. The antiferromagnetic bands are seen to be highly
similar to the paramagnetic ones, which is also reflected in
a rather small total-energy difference of 4 meV per atom.
Nevertheless, the degeneracy of the paramagnetic bands is
partially lifted in the AFM phase and gives rise to a reduction
in the area of the Fermi surface (most clearly seen around the
X point and along the M-�-R path). This is in line with the
picture of Fermi surface nesting as the driving mechanism for
antiferromagnetism in bcc Cr.

2. Magnetic excitations

Previously, first-principles studies of the magnetic ex-
citations in Cr have been restricted to the paramagnetic
phase [22,80], focusing on the Fermi surface nesting and
its relation to the incommensurate SDW ground state. Ex-
perimentally, the SDW vector is equal to the nesting vector
as measured by angle-resolved photoemission spectroscopy
and positron annihilation [81,82]. In comparison, the nesting
vector of the Kohn-Sham band structure has been deter-
mined to a value of qF = 0.92 × 2π/a using the LSDA [22].
Whereas this value is extracted as the maximum of the slowly
varying nesting function, the theoretical SDW vector is de-
termined from the well-defined peak in the paramagnetic
excitation spectrum at zero frequency. Using the LSDA and
PBE exchange-correlation functionals, the SDW vector has
been theoretically determined to values of qSDW = 0.86 ×
2π/a and qSDW = 0.92 × 2π/a, respectively [22,80]. In this
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FIG. 8. Magnon spectrum of commensurate AFM Cr calculated within the ALDA (evaluated at G = 0). The light blue line indicates the
magnon frequencies determined from the spectral maximum via Eq. (15).

study, we supplement the previous studies of the PM phase by
exploring instead the transverse magnetic excitations of the
commensurate SDW.

In Fig. 8, we show the ALDA magnon spectrum calculated
on the basis of the LSDA ground state. At short wave vec-
tors, the many-body spectrum is characterized by an acoustic
magnon mode, which follows a linear dispersion. For wave
vectors q � 0.65 Å−1 along the � → X and � → M direc-
tions, the magnon mode becomes indistinguishable from the
background of Stoner-pair excitations, which start to dom-
inate the spectrum. For the � → R direction, this happens
already for q � 0.45 Å−1. In contrast to the case of itinerant
ferromagnets, the Landau damping does not imply a decrease
in scattering intensity, allowing AFM Cr to exhibit intense
Stoner-pair scattering over a frequency range of several eV.
For comparison, we show the Kohn-Sham spectrum of trans-
verse magnetic excitations in Fig. 9.

In the many-body spectrum (Fig. 8), the single-particle
Stoner excitations of the LSDA Kohn-Sham spectrum (Fig. 9)
have been renormalized by the electron-electron interaction
as dictated by the Dyson equation (10). The renormalization
favors the low-frequency Stoner excitations that lie in the
continuation of the collective magnon mode, why these exci-
tations are said to be collectively enhanced. In addition to the
acoustic magnon mode, we also observe a parabolic feature in
the many-body spectrum on the � → R path. The parabolic
feature seems to be a collective mode, not an enhanced Stoner
excitation, as it appears only in the many-body spectrum and
not in the Kohn-Sham spectrum. In contrast to the acoustic
magnon mode, the parabolic mode is clearly distinguishable
from the Stoner excitations, even though it resides inside
an intense part of the Stoner continuum. This suggests that
the parabolic mode is less influenced by Landau damping in
comparison to the acoustic mode. It is worth noticing that
a similar feature, which corresponds neither to a traditional
magnon mode nor a Stoner-pair excitation, has been reported
theoretically in the itinerant AFM iron pnictide CaFe2As2 at

specific wave vectors [25]. A detailed investigation of these
modes of excitation is left for future work.

In regions where the acoustic magnon mode is well de-
fined, we show the magnon frequencies calculated from the
spectral function maximum using Eq. (15) and the artificial
broadening parameter η = 50 meV. In doing so, we assume
a Lorentzian magnon line shape with HWHM η. For magnon
frequencies below ∼200 meV, this is a valid approximation
as the many-body spectral function S+−(q, ω) is more less
free of Landau damping (the magnons reside below the Stoner
continuum). Above 200 meV, ωm exceeds 2.25 times the lower
HWHM of S+−(q, ω) and thus application of Eq. (15) with
η = 50 meV still remains a good approximation, as it simply
yields the magnon frequency to coincide with the spectral
function maximum (see discussion in Sec. III C). To provide
a continuous magnon dispersion, we thus use Eq. (15) for
all well-defined magnon excitations. It should be noted that
the used frequency sampling is sufficient to identify ωm for
all the calculated wave vectors q only because we do not
sample magnons with frequencies smaller than the artificial
broadening η.

The resulting magnon dispersion is isotropic and linear up
to magnon frequencies of 300–400 meV. For the identified
magnon frequencies below 400 meV, we fit a gapless linear
dispersion ωq = vq, producing an ALDA magnon velocity of
h̄v = (1702 ± 16) meV Å (1σ uncertainty of the fit). This re-
sult agrees quite well with previous literature, where a magnon
velocity of 1.8 eV Å has been reported for a mean-field treat-
ment of the multiband Hubbard Hamiltonian that results from
computing model parameters based on a paramagnetic GGA
band structure [83]. When comparing to the experimental val-
ues for the Cr1−xMnx alloys as inferred from inelastic neutron
scattering, the ALDA magnon velocity seems to be of the cor-
rect order of magnitude, but also to constitute an overestimate.
The 2 at.% and 5 at.% Mn alloys yield magnon velocities
of h̄v = (856 ± 100) meV Å and h̄v = (1020 ± 100) meV Å,
respectively, in both cases measured at the reduced
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FIG. 9. Kohn-Sham Stoner spectrum of commensurate AFM Cr calculated within the ALDA (evaluated at G = 0). For comparison, the
ALDA magnon dispersion is shown in light blue.

temperature T ∼ 0.5 TN [72,84,85]. The alloy and finite-
temperature effects of the available data entail that one cannot
make a direct comparison of magnon velocities, and a quanti-
tative performance assessment of the ALDA values will have
to be settled in future studies.

V. SUMMARY AND OUTLOOK

To summarize, we have demonstrated that ALDA LR-
TDDFT comprises a suitable framework for performing
first-principles calculations of AFM magnon dispersion re-
lations. To our knowledge the method has previously been
applied only to the antiferromagnet FeRh [26] and the com-
pensated ferrimagnet CrMnSb [27] in an AFM setting, but
without resolving the long-wavelength magnon dispersion. As
shown in this work, the use of the Onsager relations and a
slight rescaling of the ALDA kernel (to satisfy the Goldstone
condition) allows one to seamlessly obtain the characteristic
linear magnon dispersion for antiferromagnets and extract
magnon velocities. We have exemplified this by two proto-
typical antiferromagnets: Cr2O3 and bcc Cr, which constitute
generic examples of localized moment and itinerant antiferro-
magnetism, respectively. In the case of Cr2O3, the predicted
magnon velocity and bandwidth is a factor of 2 larger than
in experiments. Part of this discrepancy can be remedied
by adding a Hubbard correction to account for the strong
static correlation. Using a value of Ueff = 1.0 eV, we obtain
magnon velocities in very good agreement with experiments.
This, however, comes at the expense of introducing spurious
dispersion in the optical magnon branch and it appears that
approximations beyond the λALDA + U are required to ob-
tain magnon spectra that are accurate overall. For bcc Cr in
the commensurate SDW phase, we obtain an acoustic magnon
mode with a velocity slightly above experiment values, al-
though a direct comparison cannot be made at the current
stage.

The fact that ALDA appears capable of describing
magnetic fluctuations in (possibly strongly correlated) antifer-
romagnets significantly enlarges the classes of materials and
properties that can be accessed by first-principles methods.
For example, both quantum spin liquids and unconventional
superconductors typically exist in close proximity or in co-
existence with antiferromagnetic phases. It is far from clear,
if LR-TDDFT can be used to gain insight into such exotic
phases, but it is possible that the spin fluctuations in proximate
antiferromagnetic phases may be unraveled by first-principles
methods. This could provide an easy way to investigate the
influence of external parameters such as pressure and doping.
In particular, superconductivity in cuprates typically arises
at particular doping concentrations and a simple model of
doping can be implemented in LR-TDDFT by a mere shift of
the Fermi level without any additional effort. In contrast, the
systematic study of doping effects is a highly tedious process
in experiments. We thus hope that future LR-TDDFT studies
can help to unveil the role of antiferromagnetic fluctuations in
exotic quantum phases of matter.
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APPENDIX: SYMMETRY RELATIONS
OF THE GENERALIZED SUSCEPTIBILITY

In linear response theory, the aim is to describe how a sys-
tem in thermal equilibrium responds to external perturbations,
to linear order. The system is characterized by the Hamilto-
nian Ĥ0 and the perturbation enters the problem through the
system coordinate Â = Â†, Ĥext (t ) = Â f (t ), where f (t ) is a
coordinate external to the system. The response in system
coordinate B̂ = B̂† is then characterized by the retarded sus-
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ceptibility χBA(t − t ′),

〈δB̂(t )〉 = 〈B̂(t )〉 − 〈B̂〉0 =
∫ ∞

−∞
dt ′ χBA(t − t ′) f (t ′), (A1)

where 〈·〉0 denotes the expectation value in absence of the
external perturbation. The retarded susceptibility is given by
the Kubo formula [86]

χBA(t − t ′) = − i

h̄
θ (t − t ′)〈 [B̂0(t − t ′), Â] 〉0, (A2)

where θ (t − t ′) is the step function and the time dependence is
described in the interaction picture B̂0(t ) = eiĤ0t/h̄B̂ e−iĤ0t/h̄.
Fourier-Laplace transforming the Kubo formula (A2) de-
fines the generalized susceptibility χBA(ω), where Â and B̂
are allowed to be non-Hermitian. For a definition of the
Fourier-Laplace transform and notation in general, the reader
is referred to [23]. The aim of this Appendix is to show
how symmetry relations can be derived for the generalized
susceptibility based on the symmetries of Ĥ0, including also
instances where a given symmetry is spontaneously broken in
thermal equilibrium.

1. Noncausal response functions and complex conjugation

Before investigating the consequences of symmetries, it is
worth noting that the retarded susceptibility is directly related
to the noncausal response function [87]

KBA(t ) = − i

h̄
〈 [B̂0(t ), Â] 〉0, (A3)

with χBA(t − t ′) = θ (t − t ′)KBA(t − t ′). This is significant be-
cause the noncausal response function can be written in terms
of correlation functions CBA(t ) = 〈B̂0(t )Â〉0 − 〈B̂〉0〈Â〉0, with
KBA(t ) = −i/h̄[CBA(t ) − CAB(−t )]. This equivalence between
system correlations and the susceptibility leads to the fa-
mous fluctuation-dissipation theorem [88–90] and entails
the following symmetry relation for the noncausal response
function:

KBA(−t ) = −KAB(t ). (A4)

Furthermore, complex conjugating the noncausal response
function (A3) leads to [87]

K∗
BA(t ) = KB†A† (t ), (A5)

meaning that the generalized susceptibility follows the sym-
metry relation

χ∗
BA(ω) = χB†A† (−ω). (A6)

2. Time-reversal symmetry and Onsager’s relation

In the absence of external magnetic fields one may charac-
terize the electronic structure of a given material in terms of a
Hamiltonian, which is invariant under time-reversal symmetry
[Ĥ0, T̂ ] = 0. However, such a Hamiltonian may still permit
ground states |α0〉, with spontaneously broken time-reversal
symmetry, meaning that T̂ |α0〉 represents another ground
state of the system. One such example is ferromagnets, where
T̂ reverses the sign of the magnetization m(r) → −m(r).
Even though several degenerate ground states exist, the sys-
tem might be in thermal equilibrium around a single one of

them at low temperatures T � 0, meaning that the probability
of observing any other ground state vanishes on all relevant
timescales. As a result, the generalized susceptibility at zero
temperature is given with reference to a specific ground state
in cases of degeneracy:

KBA(α0, t ) = − i

h̄
〈α0| [B̂0(t ), Â] |α0〉, (A7)

with χBA(α0, t − t ′) = θ (t − t ′)KBA(α0, t − t ′).
Before proceeding, it should be noted that T̂ is an antiuni-

tary operator. In the notation used here, it acts only to the right
and for a given ket state T̂ |u〉 = |T̂ u〉, the corresponding bra is
written 〈T̂ u|. Antiunitary operators are antilinear, T̂ (c1|u〉 +
c2|v〉) = c∗

1|T̂ u〉 + c∗
2|T̂ v〉, and preserves the norm of the

states on which they act, such that 〈T̂ u|T̂ v〉 = 〈u|v〉∗ [91].
For an arbitrary operator Â, the time-reversed operator ÂT

is defined ÂT ≡ T̂ ÂT̂ −1. Furthermore, using that [Ĥ0, T̂ ] = 0,

T̂ B̂0(t )T̂ −1 = T̂ eiĤ0t/h̄B̂T̂ −1T̂ e−iĤ0t/h̄T̂ −1

= e−iĤ0t/h̄T̂ B̂T̂ −1eiĤ0t/h̄ = B̂T
0 (−t ). (A8)

Using the symmetry relation (A5), one may then write

KB†A† (α0, t ) = i

h̄
〈T̂ α0| T̂ [B̂0(t ), Â] |α0〉

= i

h̄
〈T̂ α0|[T̂ B̂0(t )T̂ −1T̂ ÂT̂ −1

− T̂ ÂT̂ −1T̂ B̂0(t )T̂ −1]T̂ |α0〉

= i

h̄
〈T̂ α0|

[
B̂T

0 (−t ), ÂT
] |T̂ α0〉

= −KBT AT (T̂ α0,−t ) = KAT BT (T̂ α0, t ), (A9)

where the symmetry relation (A4) was used in the last step.
Fourier-Laplace transforming Eq. (A9) yields the following
relation for the generalized susceptibility:

χB†A† (α0, ω) = χAT BT (T̂ α0, ω). (A10)

This relation generalizes Onsager’s relation for correlation
functions in statistical mechanics [92–94], why it is often re-
ferred to simply as the Onsager relation. It defines a reciprocal
relation between the generalized susceptibility in a given set
of coordinates and their time-reversed equivalents.

To concretize the kinds of symmetries implied by the
Onsager relation, the four-component susceptibility tensor is
considered. The tensor defines the linear response of an elec-
tronic system to an external electromagnetic field (neglecting
orbital current contributions) and is given in terms of the
four-component density variables

n̂μ(r) =
∑
s,s′

σ
μ

ss′ ψ̂
†
s (r)ψ̂s′ (r), (A11)

where μ ∈ {0, x, y, z} and σ
μ

ss′ yields the Pauli matrices aug-
mented by the 2 × 2 identity matrix for μ = 0 (refer, e.g.,
to [23] for more details). The four-component density is Her-
mitian and transforms as an even/odd variable under time
reversal, T̂ n̂μ(r)T̂ −1 = ε

μ
T n̂μ(r), where ε

μ
T = 1 for μ = 0 and

ε
μ
T = −1 for μ ∈ {x, y, z}. With this, the Onsager relation can

be written in the more familiar form [86,95,96]

χμν (α0, r, r′, ω) = εν
T ε

μ
T χνμ(T̂ α0, r′, r, ω). (A12)
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For a nonmagnetic system with a ground state that is invariant
under time reversal, the Onsager relation (A12) implies that,
e.g., the dielectric susceptibility is symmetric in real space,
χ00(r, r′, ω) = χ00(r′, r, ω), meaning that an external scalar
potential in r′ induces the same electron density fluctuations
at position r, as a potential at r induces in r′. This is a
nontrivial statement, which gets even less trivial in cases
where time-reversal symmetry is spontaneously broken in the
ground state. Take for example a ferromagnet of magnetiza-
tion m(r). In this case, the Onsager relation (A12) implies
that a magnetic field along the y direction at r′ induces similar
fluctuations in the magnetization in the x direction at r, as
a magnetic field along the x direction at r induces in the y
magnetization at r′ for the ground state with opposite magne-
tization −m(r): χ xy(α0, r, r′, ω) = χ yx(T̂ α0, r′, r, ω).

3. Generalized Onsager relation

Although the Onsager relation (A10) relies on one of the
most fundamental symmetries in physics, that is, time-reversal
symmetry, the derivation is quite general and can be extended
to any symmetry of the system.

Theorem. For any unitary or antiunitary operator Û with
inverse Û −1 that commutes with the system Hamiltonian,
[Ĥ0, Û ] = 0, the generalized susceptibility is subject to one
of the following Onsager relations:

χBA(α0, ω) = χBU AU (Ûα0, ω), if Û is unitary, (A13a)

χB†A† (α0, ω) = χAU BU (Ûα0, ω), if Û is antiunitary,

(A13b)

where ÂU ≡ Û ÂÛ −1.
Proof. The proof for antiunitary operators was already

given in the preceding section, exemplified using the time-
reversal operator T̂ . For a unitary operator Û , that commutes
with the system Hamiltonian,

Û B̂0(t )Û −1 = Û eiĤ0t/h̄B̂Û −1Û e−iĤ0t/h̄Û −1

= eiĤ0t/h̄Û B̂Û −1e−iĤ0t/h̄ = B̂U
0 (t ), (A14)

and so

KBA(α0, t ) = − i

h̄
〈Ûα0| Û [B̂0(t ), Â] |α0〉

= − i

h̄
〈Ûα0|[Û B̂0(t )Û −1Û ÂÛ −1

− Û ÂÛ −1Û B̂0(t )Û −1]Û |α0〉

= − i

h̄
〈Ûα0|

[
B̂U

0 (t ), ÂU
] |Ûα0〉

= KBU AU (Ûα0, t ). (A15)

Fourier-Laplace transforming the relation (A15) then yields
the generalized Onsager relation (A13a). �

4. Onsager relations for nonrelativistic systems

For systems with spontaneously broken time-reversal sym-
metry, it is in general hard to make good use of the Onsager
relation (A10), as it relates the susceptibility of two different
ground states. For nonrelativistic system in absence of exter-

nal magnetic fields, however, the situation simplifies. Take as
an example the electronic Hamiltonian

Ĥ0 = T̂kin + V̂ + Ûee, (A16)

where T̂kin is the kinetic energy operator, V̂ is the interac-
tion with the electrostatic potential (set up by the atomic
nuclei), and Ûee is the electron-electron Coulomb interaction.
In the nonrelativistic limit, this Hamiltonian commutes with
the complex-conjugation operator, [Ĥ0, K̂] = 0, meaning that
the generalized susceptibility is subject to the Onsager relation

χB†A† (α0, ω) = χAK BK (K̂α0, ω). (A17)

Assuming that the only ground-state degeneracy arises from
the rotational symmetry of the spinor degrees of freedom,
complex conjugation of a collinear magnetic ground state
must map the state onto itself, K̂|α0〉 → |α0〉, such that the
nonrelativistic Onsager relation (A17) describes symmetries
of a single generalized susceptibility.

For the four-component susceptibility tensor, one may use
that the electronic creation and annihilation operators are
invariant under complex conjugation, K̂ψ̂†

s (r)ψ̂s′ (r)K̂−1 =
ψ̂†

s (r)ψ̂s′ (r) [97], such that for collinear materials,

χμν (r, r′, ω) = εν
Kε

μ
K χνμ(r′, r, ω), (A18)

where ε
μ
K = −1 for μ = y and ε

μ
K = 1 for μ ∈ {0, x, z}.

Furthermore, for the transverse magnetic susceptibility, the
Onsager relation (A17) yields

χ+−(r, r′, ω) = χ+−(r′, r, ω) (A19)

for collinear ground states |α0〉. This implies that magnon
quasiparticles are reciprocal in the nonrelativistic limit

χ+−
GG′ (q, ω) = χ+−

−G′−G(−q, ω), (A20)

that is, the spectrum of transverse magnetic excitations is
identical for Q = ±(G + q) in reciprocal space. Thus, for
ferromagnets and antiferromagnets, a nonreciprocal magnon
dispersion is strictly a relativistic effect. Indeed, it has been
demonstrated that spin-orbit effects can lead to nonreciprocal
magnon dispersions via the the Dzyaloshinskii-Moriya inter-
action [98–101] and chiral asymmetry induced by relativistic
effects in antiferromagnets can lead to emergent properties
such as the spin Nernst effect [31,32] as well as spin currents
mediated by thermal magnon diffusion [30].

5. Onsager relations for PT-symmetric systems

For centrosymmetric antiferromagnets in absence of ex-
ternal magnetic fields, the system Hamiltonian is invariant
both under time reversal [Ĥ0, T̂ ] = 0 and spatial inversion
[Ĥ0, P̂] = 0. In the antiferromagnetic ground state, both sym-
metries can be spontaneously broken at the same time,
meaning that both P̂ and T̂ map the ground state |α0〉 into a
different ground state. However, application of both operators
may still map the ground state onto itself, P̂T̂ |α0〉 → |α0〉. As
an example, one can think of the Néel state on a 1D chain of
magnetic sites with an inversion center between two magnetic
sites: Successive applications of inversion and time reversal
maps the antiferromagnetic ground state into a similar state
with all local magnetic moments reversed, meaning that P̂T̂
maps the ground state onto itself. As P̂ is a unitary operator,
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P̂T̂ is antiunitary, and for ground states invariant under appli-
cations of P̂T̂ , the generalized susceptibility is thus subject to
the Onsager relation

χB†A† (ω) = χAPT BPT (ω). (A21)

For the four-component susceptibility tensor, the four-
component density transforms as

P̂T̂ n̂μ(r)T̂ −1P̂−1 = ε
μ
T n̂μ(−r), (A22)

and with this, one obtains the following Onsager relation for
ground states invariant under applications of P̂T̂ :

χμν (r, r′, ω) = εν
T ε

μ
T χνμ(−r′,−r, ω). (A23)

Similarly, the transverse magnetic susceptibility is subject to
the following Onsager relation:

χ+−(r, r′, ω) = χ−+(−r′,−r, ω), (A24)

meaning that the spectrum of spin-raising and spin-lowering
excitations are related by a simple exchange of local field
components in reciprocal space:

χ+−
GG′ (q, ω) = χ−+

G′G(q, ω). (A25)

Of course, not all antiferromagnetic materials are PT symmet-
ric and it has previously been shown that, e.g., the magnon
lifetime can be chirality dependent in a compensated ferri-
magnet that lacks PT symmetry [27].
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B 88, 134427 (2013).

[70] Y. Kota, H. Imamura, and M. Sasaki, J. Appl. Phys. 115,
17D719 (2014).

[71] S. Foner, Phys. Rev. 130, 183 (1963).
[72] E. Fawcett, Rev. Mod. Phys. 60, 209 (1988).

[73] S. A. Werner, A. Arrott, and H. Kendrick, Phys. Rev. 155, 528
(1967).

[74] D. Gibbs, K. M. Mohanty, and J. Bohr, Phys. Rev. B 37, 562
(1988).

[75] E. Fawcett, H. L. Alberts, V. Y. Galkin, D. R. Noakes, and J. V.
Yakhmi, Rev. Mod. Phys. 66, 25 (1994).

[76] J. Kübler, J. Magn. Magn. Mater. 20, 277 (1980).
[77] H. L. Skriver, J. Phys. F: Met. Phys. 11, 97 (1981).
[78] R. Hafner, D. Spišák, R. Lorenz, and J. Hafner, Phys. Rev. B

65, 184432 (2002).
[79] W. C. Koehler, R. M. Moon, A. L. Trego, and A. R.

Mackintosh, Phys. Rev. 151, 405 (1966).
[80] S. Y. Savrasov, Phys. Rev. Lett. 81, 2570 (1998).
[81] E. Rotenberg, B. K. Freelon, H. Koh, A. Bostwick, K.

Rossnagel, A. Schmid, and S. D. Kevan, New J. Phys. 7, 114
(2005).

[82] J. Laverock, T. D. Haynes, M. A. Alam, and S. B. Dugdale,
Phys. Rev. B 82, 125127 (2010).

[83] K. Sugimoto, Z. Li, E. Kaneshita, K. Tsutsui, and T. Tohyama,
Phys. Rev. B 87, 134418 (2013).

[84] J. Als-Nielsen, J. D. Axe, and G. Shirane, J. Appl. Phys. 42,
1666 (1971).

[85] S. K. Sinha, G. R. Kline, C. Stassis, N. Chesser, and N.
Wakabayashi, Phys. Rev. B 15, 1415 (1977).

[86] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[87] J. Jensen and A. R. Mackintosh, Rare Earth Magnetism: Struc-

tures and Excitations, The International Series of Monographs
on Physics (Clarendon, Oxford, 1991).

[88] H. Nyquist, Phys. Rev. 32, 110 (1928).
[89] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
[90] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[91] L. E. Ballentine, Quantum Mechanics: A Modern Development

(World Scientific, Singapore, 2015).
[92] L. Onsager, Phys. Rev. 37, 405 (1931).
[93] L. Onsager, Phys. Rev. 38, 2265 (1931).
[94] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).
[95] L. D. Landau and E. M. Lifshitz, Statistical Physics, Course of

Theoretical Physics (Pergamon, Oxford, 1969).
[96] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).
[97] A. Bernevig, Topological Insulators and Topological Super-

conductors (Princeton University Press, Princeton, NJ, 2013).
[98] L. Udvardi and L. Szunyogh, Phys. Rev. Lett. 102, 207204

(2009).
[99] K. Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr,

W. X. Tang, and J. Kirschner, Phys. Rev. Lett. 104, 137203
(2010).

[100] A. T. Costa, R. B. Muniz, S. Lounis, A. B. Klautau, and D. L.
Mills, Phys. Rev. B 82, 014428 (2010).

[101] M. Costa, N. M. R. Peres, J. Fernández-Rossier, and A. T.
Costa, Phys. Rev. B 102, 014450 (2020).

085131-15

https://doi.org/10.1063/1.1699098
https://doi.org/10.1063/1.1714118
https://doi.org/10.1103/PhysRev.117.1442
https://doi.org/10.1103/PhysRevLett.101.117201
https://doi.org/10.1103/PhysRevB.86.094430
https://doi.org/10.1038/s41586-020-1950-4
https://doi.org/10.1103/PhysRevLett.125.217201
https://doi.org/10.1088/0953-8984/14/8/323
https://doi.org/10.1103/PhysRevB.62.11997
https://doi.org/10.1103/PhysRevB.70.125426
https://doi.org/10.1103/PhysRevB.79.104404
https://doi.org/10.1088/0953-8984/24/32/325504
https://doi.org/10.1016/j.chemphys.2011.11.038
https://doi.org/10.1016/S0368-2048(96)80024-7
https://doi.org/10.1016/S0368-2048(96)80037-5
https://doi.org/10.1021/jp5039943
https://doi.org/10.1103/PhysRevB.76.195107
https://doi.org/10.1063/1.2943142
https://doi.org/10.1016/0375-9601(68)90055-8
https://doi.org/10.1016/0031-8914(69)90059-7
https://doi.org/10.1002/pssb.19690320105
https://doi.org/10.1016/0031-8914(70)90158-8
https://doi.org/10.1103/PhysRevB.58.15496
https://doi.org/10.1103/PhysRevB.88.134427
https://doi.org/10.1063/1.4865780
https://doi.org/10.1103/PhysRev.130.183
https://doi.org/10.1103/RevModPhys.60.209
https://doi.org/10.1103/PhysRev.155.528
https://doi.org/10.1103/PhysRevB.37.562
https://doi.org/10.1103/RevModPhys.66.25
https://doi.org/10.1016/0304-8853(80)90446-1
https://doi.org/10.1088/0305-4608/11/1/013
https://doi.org/10.1103/PhysRevB.65.184432
https://doi.org/10.1103/PhysRev.151.405
https://doi.org/10.1103/PhysRevLett.81.2570
https://doi.org/10.1088/1367-2630/7/1/114
https://doi.org/10.1103/PhysRevB.82.125127
https://doi.org/10.1103/PhysRevB.87.134418
https://doi.org/10.1063/1.1660389
https://doi.org/10.1103/PhysRevB.15.1415
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1103/PhysRevB.82.014428
https://doi.org/10.1103/PhysRevB.102.014450

