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Topological states in chiral electronic chains
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We consider the influence of topological phases, or their vicinity, on the spin density and spin polarization
through a chiral chain. We show the quantization of the Berry phase in a one-dimensional polarization helix
structure, under the presence of an external magnetic field, and show its influence on the spin density. The polar
angle of the momentum space spin density becomes quantized in the regime that the Berry phase is quantized,
as a result of the combined effect of the induced spin-orbit coupling and the external transverse magnetic field,
while the edge states do not show the polar angle quantization, in contrast with the bulk states. Under appropriate
conditions, the model can be generalized to have similarities with a chain with nonhomogeneous Rashba spin-
orbit couplings, with zero- or low-energy edge states. Due to the breaking of time-reversal symmetry, we recover
the effect of chiral-induced spin polarization and spin transport across the chiral chain, when coupling to external
leads. Some consequences of the quantized spin polarization and low-energy states on the spin transport are
discussed.
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I. INTRODUCTION

Chiral structures have attracted considerable interest. Ex-
amples are chiral magnets, chiral metals, or chiral molecules,
for instance in the context of chiral induced selective spin
transport [1]. Molecules such as DNA or similar structures,
either single stranded or doubly stranded, have been studied
[2–14]. Even though some controversy is still unresolved on
a proper description of the large effect found experimentally
for the spin polarization through specific chiral structures [14],
there is a variety of proposals, from an effect due to the spin of
the electrons [2–10], due to an orbital contribution [15], or due
to a mixture of both [12]. The requirement of time-reversal
symmetry breaking is implemented in different ways, either
through an explicit model without this symmetry (as effec-
tively initial models considered) or through the effect of an
external magnetic field, via nonunitary effects [11], coupling
to orbital degrees of freedom [12], or taking into account
effects of interactions [16]. Synthetic structures with intrinsic
or applied chiral electric fields may also be of interest.

The chiral structure may arise due to a twisting polarization
(and associated twisting electric field) along the molecule,
such as in the DNA-type molecule or in bent-core molecules
[17–20] in the context of liquid crystals. The interest is in the
electronic response to the presence of this chiral structure and
it may be relevant when the electronic density and mobility are
significant. While in equilibrium an effect is not expected, the
chiral molecule affects the spin density of a moving electron
when attaching leads at the extremes of the structure.

One considers therefore an electron moving in the presence
of a twisting electric field that couples to the spin and leads to
a nonhomogeneous spin-orbit-like effect. Typically, the mod-
els considered have a gapless structure that may be changed
by adding gaps to the system, either adding a magnetic field

(which naturally breaks time reversal invariance and may lead
to spin transport) or introducing some form of distortion of
the lattice (like in the SSH model [21]), adding local potential
energy terms that separate the energies of the various lattice
sites inside the unit cell of the helix-like structure.

A question that may arise is whether the considered sys-
tems may exhibit a topological nature. The change from a
gapless to a gapped regime will possibly facilitate the emer-
gence and analysis of possible topological nontrivial states.
In a gapless regime, edge states are usually not found, even
though exceptions have been identified in gapless critical sys-
tems [22,23]. In a gapped regime edge states may appear,
and one may wonder if signals of their presence will be felt
on spin transport. One may also ask how the spin density
and spin polarization are affected. The presence of the terms
that lead to a gapped system, such as the addition of an
external magnetic field or the lattice distortion, may change
the symmetry of the problem, and the possible edge states
may be zero-energy modes or finite-energy modes [24,25].
The appearance of topology in the context of chiral molecules
has been proposed before [15], including as a result of a
time-dependent perturbation [26,27].

In this paper we consider electronic states that propagate
along a chiral chain, in a way similar to previous treatments.
An example is a helix composed of molecules or atoms that
display polarization and an associated electric field E. As an
electron propagates along the helix, the electric field twists in
a helical arrangement. This is, in general, a three-dimensional
process. The polarization profile gives rise to an electric field
that also has an helix-like structure, as shown in Fig. 1. The
helix may be divided in unit cells with γ atoms that are
displaced along the axis of the helix, z axis, by an amount
�z = b/γ , where b is the helix pitch. The radius of the helix
is a. In Fig. 1 the helix is represented for the case of γ = 4.
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FIG. 1. Schematic drawing of the three-dimensional helix
structure with atoms or molecules at locations r(m, α) =
(a cos 2π

γ
α, a sin 2π

γ
α, [(m − 1)γ + α]�z), along an helix of

radius a, where α = 1, · · · , γ , b is the helix pitch, γ is the number
of molecules in each pitch, and m is an index of a given set of
molecules in a given pitch. Finally, �z = b/γ is the spacing along
the direction of the helix z between consecutive molecules. On the
right we show a scheme of the polarization vectors taken in the plane
perpendicular to the molecule axis, taking as example γ = 4.

Here, to simplify, we consider one-dimensional rods, that
are immersed in the three-dimensional structure. At each
molecule or atom location in a given unit cell m, there is a
polarization given by

P(α) =
(

P cos
2π

γ
α, P sin

2π

γ
α, 0

)
(1)

where α = 1, · · · , γ labels each atom within the unit cell. The
problem is simplified considering an electron that moves in
the direction of the axis of the helix and, therefore, we restrict
its momentum to the z direction. In this simplification the
momentum of the electron is k = kez. Due to the presence
of the electric field, the electron feels in its reference frame an
effective magnetic field in the x − y plane, that couples to the
electron spin through a Zeeman-like effect. There is therefore
a spin-orbit-like contribution to the Hamiltonian of the elec-
tron of the form HSO = λσ · (k × E), where λ parametrizes
the amplitude of the spin-orbit-like coupling. The chiral na-
ture of the electric field configuration is therefore encoded
in this spin-orbit term. A term like this has been shown to
give rise to spin selective transport across a chiral molecule,
if time-reversal symmetry is broken. In this paper we add an
external magnetic field. We show that electronic bands arise
with a gapped structure and with nontrivial quantized Berry
(Zak) phases [28], under some conditions. We calculate the
spin density and show some quantization of the spin density
direction when the Berry phase is quantized, either taking the
average of the spin density on momentum space eigenstates or
taking the average over real space bulk states. In general, there
are edge states of finite energy that, however, do not show spin
density quantization.

We consider some generalizations of the model that give
origin to additional topological zero-energy edge states, in the
absence of magnetic field. These are however shifted to finite,
small, energies when the magnetic field is applied. It turns
out that the quantization of the Zak phase is lost in some of
the generalized models. The model without magnetic field or
lattice distortion is topological and in class CII , but is gapless.
Adding the lattice distortion the model is still topological
and becomes gapped. Adding the magnetic field the model
symmetry changes to class C, which is not topological in
1d . Combining the effects of the lattice distortion and the
magnetic field, the model has no time-reversal symmetry and
displays finite-energy edge states. The various cases will be
detailed ahead. Coupling the chiral structure to external leads,
a spin polarization is found considering the cases when there
is time-reversal symmetry breaking. Some enhancement of
the spin polarization is found at low energies due to the edge
states and in the regime where the Berry phase is quantized,
associated with the preferred spin density direction.

In Sec. II we consider a tight-binding model with spin-orbit
coupling and external magnetic field and study its energy
spectrum and symmetries, calculate the Berry phase of the en-
ergy bands and determine the conditions for its quantization.
In Sec. III we calculate the momentum space spin density and
associate a quantization property with the quantization of the
Berry phase. In Sec. IV a real-space description is adopted to
determine the edge states and the real-space spin density. In
Sec. V we consider some generalizations of the model that
lead to zero-energy or low-energy edge modes. In Sec. VI we
study the spin transport along the system, coupling the chain
to leads.

II. ENERGY BANDS AND BERRY PHASE IN A
ONE-DIMENSIONAL CHIRAL STRUCTURE

We consider a tight-binding model for the motion of the
electrons. The spin-orbit coupling leads to a term that has to be
symmetrized appropriately [4,6,29]. The Hamiltonian in real
space is chosen to be

H =
∑

j

∑
ms

c†
j,ms

( − μ + μ( j))c j,ms

−
∑

j

∑
ms,m′

s

c†
j,ms

(B · σms,m′
s
)c j,m′

s

−w
∑

j

∑
ms

(
c†

j,ms
c j+1,ms + c†

j+1,ms
c j,ms

)

− λ
∑

j

(
c†

j+1,↑, c†
j+1,↓

)( 0 χ j

−χ∗
j 0

)(
c j,↑
c j,↓

)

− λ
∑

j

(
c†

j,↑, c†
j,↓

)( 0 −χ j

χ∗
j 0

)(
c j+1,↑
c j+1,↓

)
(2)

where c j,ms = cm,α,ms destroys an electron at site j and
with spin projection ms. Here j = (m − 1)γ + α labels each
molecule or atom location, in cell m and location α within
the cell, μ is the chemical potential, w is the hopping am-
plitude to a nearest neighbor location, ms =↑,↓ are the spin
projections, and χ ( j) = iEy( j) − Ex( j) = −Ee−i�( j−1) has
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a constant amplitude and where � = (2π )/γ . (μ,w, B, λE
have energy units.) The amplitude of the electric field is taken
as E =

√
E2

x + E2
y = 1. Also, we have added a local external

magnetic field B that couples to the spin density of the elec-
trons. This term explicitly breaks time-reversal invariance and
allows the opening of gaps between the bands. Also, it allows
the study of the effect of time-reversal symmetry breaking on
a multiband fermionic system [25].

If the chiral chain is finite the electric field amplitude is
not a constant. In order to simplify the problem we con-
sider a long chain and neglect the effect of the ends of the
chain by considering a constant amplitude throughout. We
take w = 1, μ = 0. Also, in a more realistic model there is
coupling between sites j and j + γ , which we neglect here,
as well as the three-dimensional motion of the electrons along
the structure. In addition, we consider a simplified model of
one orbital state in which the hopping term is a constant and
consider that the effect of the twist along the helix only affects
the spin-orbit term [4,7].

The effects of a spin-orbit interaction in multiband systems
have been extensively studied in the context of topological in-
sulators [30–32] focusing mainly on homogeneous spin-orbit
terms. Nonhomogeneous (or modulated) spin-orbit terms have
also been considered such as due to a curved wire [33] or
in the generalized Aubry-André class [34]. Here we focus
on a spin-orbit interaction that encodes the chirality of the
polarization or electric field configuration.

The explicit construction of the states is obtained diagonal-
izing the Hamiltonian in real space for a finite helix using open
boundary conditions, giving both the bulk states and edge
states. Considering an infinite helix we may use a momentum
space description, with a basis of size γ . The Hamiltonian in
momentum space is a (γ × 2) × (γ × 2) matrix that gives rise
to γ × 2 electronic bands. In the case of γ = 2 the electric
field has a staggered structure and so we consider higher
values of γ .

Let us consider explicitly, as an example, the case of γ = 4.
In this case the Hamiltonian matrix in momentum space is
written in a basis of vectors (1 ↑, 1 ↓, 3 ↑, 3 ↓, 2 ↑, 2 ↓, 4 ↑
, 4 ↓)T . Considering that in this case

χ = (−E , iE , E ,−iE ) (3)

and defining Zi jk = σi ⊗ σ j ⊗ σk , we can write the Hamilto-
nian matrix as

H (k) = −wZ100 − w

2
(1 + cos k)Z110

− w

2
(1 − cos k)Z220 − w

2
sin k(Z120 + Z210)

+ λE

(
Z232 − 1

2
Z121 + 1

2
Z211

)

+ λE

2
( sin k(Z111 − Z221) − cos k(Z121 + Z211))

− (BxZ001 + ByZ002 + BzZ003). (4)

A. Symmetries

The Hamiltonian matrix has some symmetries. Consider
for instance the case of γ = 4. In this case the Hamiltonian
has particle-hole (or charge conjugation) symmetry, defined

by an operator C that satisfies CH∗(−k)C† = −H (k), which
yields C = (σ3 ⊗ σ0 ⊗ σ2). Since CT = −C the model is in
class C, which in one dimension is predicted to be non-
topological [35]. If the external magnetic field is absent,
B = 0, then the system also has time reversal symmetry,
T H∗(−k)T † = H (k), with T = (σ0 ⊗ σ0 ⊗ σ2) and chiral
symmetry, OH (k)O† = −H (k), with O = (σ3 ⊗ σ0 ⊗ σ0). In
this case the model is in class CII and in one dimension is
predicted to be a class Z topological system. Note that the
model is gapless in this case.

In addition to the global symmetries considered, the
Hamiltonian in real space also has a spatial symmetry, in
some conditions. Defining a transformation of the fermion
operators as

c j,ms → c j+1,ms e
ims

π
γ , (5)

the spin-orbit term and the hopping term remain invariant.
Including an external magnetic field along the z direction also
leaves the Hamiltonian invariant (under periodic boundary
conditions). However, the Bx and By components do not re-
main invariant. The term due to Bx transforms as

c†
j,↑Bxc j,↓ + c†

j,↓Bxc j,↑ → c†
j,↑Bxc j,↓e−i 2π

γ + c†
j,↓Bxc j,↑ei 2π

γ

(6)

and the term due to By transforms as

c†
j,↑(−iBy)c j,↓ + c†

j,↓(iBy)c j,↑

→ c†
j,↑(−iBy)c j,↓e−i 2π

γ + c†
j,↓(iBy)c j,↑ei 2π

γ . (7)

B. Berry phase

In the case of bands with a finite gap between them, the
Berry phase may be easily determined. In general, a Berry
phase does not have a topological nature. However, the pres-
ence of some symmetries, like inversion, chiral, or charge
conjugation symmetries [28,36], ensures a quantization of the
Berry phase. This is calculated mod(2π ) and a trivial band has
zero Berry phase and a topological band has a Berry phase
of π . The Berry phase of a given band may be calculated
in a standard way [36–39]. One divides the Brillouin zone
considering N discrete points, k ∈ [0, 2π ], with momenta tak-
ing the values k1, · · · , kN . The band’s Berry phase γB may
be obtained defining the link variable U (kl ) = ϕ∗(kl )ϕ(kl+1),
and summing over kl as

γB = −i
∑

l

logU (kl ) (8)

where ϕ(kl ) are the eigenstates of the Hamiltonian in momen-
tum space.

This procedure can be generalized if there are degenerate
points between the bands taking a link variable as U (kl ) =
detU(kl ), involving the determinant of the matrix

Ui j (kl ) = ϕ∗
i (kl )ϕ j (kl+1) (9)

where 1 � i, j � N run over the eigenstates and ϕi(kl ) is the
eigenstate at momentum kl of the ith band.

In Fig. 2 we show the energy bands and nontrivial (quan-
tized) Berry phases, considering a unit cell with four sites,
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FIG. 2. Energy bands for (a) λ = 2 and no external mag-
netic field, (b) no spin-orbit coupling and Bx = 1, By = 0, Bz = 1.5,
(c) λ = 2 and Bx = 1, By = Bz = 0, and (d) with spin-orbit coupling
λ = 2 and Bx = 1, By = 0, Bz = 1.5. In panels (c) and (d) we show
the bands with nontrivial Berry phase, π phase. In panel (d) the bands
are all separated and the Berry phase is for each band individually.
The bands have either a π Berry phase or a Berry phase of zero. In
panel (c), since the bands have degenerate points, the Berry phases
indicated are for groups of two bands. In panels (a) and (b) the Berry
phases are not quantized and have arbitrary real values.

γ = 4. With no spin-orbit coupling (zero electric field) or zero
external magnetic field, the bands are gapless [as shown in
Figs. 2(a) and 2(b)] and the Berry phases are not quantized.
Combining the two effects, in some regimes gaps appear
between the various bands. The charge-conjugation symme-
try implies that there are pairs of states that are related by
εn(k) → −εm(−k), where n, m are two bands. In Fig. 2(c) we
consider the addition of a magnetic field along the x direction.
Some gaps appear and the bands appear in groups of two.
The sum of the Berry phases of the two lowest bands adds
to π as well as the sum of all following pairs of bands. We
show in Fig. 2(d) an example of a situation where the various
bands are separated by finite gaps as a result of adding a
magnetic field Bz different from zero. The results for the Berry
phases show that some bands are trivial and four bands are
nontrivial, with a Berry phase γB = π . Note that the Berry
phases of all the bands below zero energy add to zero, as a
consequence of the charge-conjugation symmetry. Also, even
though the model is in class C, which is not topological in
the usual scheme, the Berry phases of individual bands show
quantization properties.

As mentioned above, the quantization of Berry phase
may result from inversion symmetry, chiral symmetry, or
charge-conjugation symmetry [36]. The helix structure and
the presence of a magnetic field along x and z directions
implies no inversion symmetry. In the presence of a magnetic
field, B 
= 0 there is no chiral symmetry. However, there is
a hidden symmetry if By = 0 (for γ = 4). It is of the type
Oh(k)O−1 = −h(−k), and may be seen as a combination
of inversion symmetry Ih(k)I−1 = h(−k) and chiral symme-
try �h(k)�−1 = −h(k) specifically O = σ2 ⊗ σ1 ⊗ σ2. The
various symmetries chiral symmetry, hidden symmetry, and
charge-conjugation symmetry also only hold if the chemical
potential vanishes and the number of occupied bands equals
the number of unoccupied bands. There is a relation between
the Zak phase, the electric polarization (dipole moment), and
Wilson loops [36,37,40,41]. Using the symmetry properties of
the Wilson loops and its relation to the dipole moment p [36]
as the sum of the eigenvalues of the Wilson loop via the Wan-
nier centers (phases of the eigenvalues of the Wilson loop),
it can be shown that, in the presence of inversion symmetry,
the dipole moment (normalized to 1) of the states summed
over the occupied bands, satisfies pocc = −pocc implying that
it is quantized to 0, 1/2, which leads to a Zak phase of 0, π .
A similar analysis if there is a chiral symmetry leads to the
result that pocc = punnocc, since the chiral symmetry connects
states with positive energy with states with negative energy.
Using the general result that pocc + punnocc = 0 (summing
over all bands topology is trivial) we get the same result that
pocc = −pocc and, therefore, it is quantized. A similar result
may be shown for charge-conjugation symmetry [36]. In the
case of the hidden symmetry we get that pocc = −punnocc since
this symmetry changes the sign of the momentum and relates
the positive energy states with the negative energy states. So,
at first sight, no conclusion about the quantization may be
obtained. At zero chemical potential the charge-conjugation
symmetry is present (even in the presence of a magnetic field)
and there is quantization of the Berry phase, considering the
sum over the occupied bands. Indeed, we find, by explicit
calculation of the Berry phases, that the sum over the lower
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four bands always leads to a zero Berry phase. It is quantized
but topologically trivial. This is consistent with the class C,
which is not topological in 1d . As mentioned above, if By = 0
we find that some of the bands, or groups of bands, show a
quantized π Berry phase. Adding By 
= 0 all the bands show
nonquantized Berry phases, but are such that the sum over
the occupied bands still yields a quantized, vanishing Berry
phase, as imposed by the charge-conjugation symmetry. Even
though the charge-conjugation and the hidden symmetry only
hold if the chemical potential vanishes, it turns out that a
finite chemical potential placed in a gap between the bands
leads to a Berry phase of each band that is the same as for
μ = 0. As a consequence, it is possible to select the chemical
potential such that the sum of the Berry phases over the set
of occupied bands is topologically nontrivial and quantized to
π . This only takes place if By = 0, and therefore we argue
that the quantization of the Berry phase is associated with
the hidden symmetry, since the charge-conjugation symme-
try implies pocc = punnocc and the hidden symmetry implies
pocc = −punnocc.

The nontrivial Berry phase found for γ = 4 can be gener-
alized to any number of points in the unit cell. Recalling that
in the rest frame of an electron the effect of the electric field
can be seen as an effective magnetic field b that couples to
the electron spin via a Zeeman coupling, we can see that the
effective field has components b ∼ (−Ey, Ex, 0). We can see
that at site j of the unit cell, by/bx = −1/ tan[�( j − 1)], with
� = 2π/γ . We have found that the condition for a nontrivial
Berry phase can be obtained selecting

By

Bx
= 1

tan �
. (10)

In a more general case, for which

Ey

Ex
= tan (� + δ1) (11)

with δ1 any phase, we find that the Berry phase is quantized if
we take

By

Bx
= 1

tan (� + δ2)
(12)

with δ2 = −δ1 ± lπ , with l an integer.
We also find regimes of quantized Berry phases for a model

of spinless electrons but with a nontrivial hopping structure,
due to the presence of more than one orbital state, and consid-
ering both nearest neighbor and next-nearest-neighbor terms
(with a complex part) and therefore an external magnetic field
is not required. This is shown in Appendix A.

III. MOMENTUM SPACE SPIN DENSITY AND POLAR
ANGLE QUANTIZATION

The spin density operator components may be defined by

Sβ (k) = 1

γ

γ∑
α=1

∑
ms,m′

s

c†(k, α, ms)σβ

ms,m′
s
c(k, α, m′

s) (13)

where β = x, y, z and σβ are Pauli matrices. We may consider
the average value of these operators in the eigenstates of the
Hamiltonian, for a given band and momentum value. That is,
we consider for a given momentum value and energy band n,

〈Sx(k, n)〉 = 1

γ

γ∑
α=1

(u∗
n(k, α,↑)un(k, α,↓) + u∗

n(k, α,↓)un(k, α,↑))

〈Sy(k, n)〉 = 1

γ

γ∑
α=1

( − iu∗
n(k, α,↑)un(k, α,↓) + iu∗

n(k, α,↓)un(k, α,↑))

〈Sz(k, n)〉 = 1

γ

γ∑
α=1

(|un(k, α,↑)|2 − |un(k, α,↓)|2) (14)

where un(k, α, ms) is the eigenfunction of state n, k, α, ms. We
may also define, for each momentum value and energy band,
the normalized spin vector

Ŝn(k) = (〈Sx(k, n)〉, 〈Sy(k, n)〉, 〈Sz(k, n)〉)√〈Sx(k, n)〉2 + 〈Sy(k, n)〉2 + 〈Sz(k, n)〉2
(15)

with a direction in space parametrized by the spherical coor-
dinate angles (θ (k, n), φ(k, n)). We will show that when the
Berry phase is quantized, the polar angle gets quantized as a
function of momentum.

In Fig. 3 we show the results for the spin density average
as a function of momentum for the various bands for a unit
cell of four sites. We consider the spin densities along the x
and z directions. Also, we compare the results for a system,
which shows a quantized Berry phase and one, which is not

quantized. The results are in general similar, since the trivial
regime is obtained adding a small magnetic field along the y
direction. However, if we consider the polar angle for the same
two cases, we show in Fig. 4 that in the quantized Berry phase
regime, the polar angle also becomes quantized, while in the
trivial case it is in general not quantized. This result holds for
any unit-cell size γ . The angle with respect to the z axis shows
no quantization.

In Figs. 3 and 4(a) we consider the case where Bz 
= 0.
This was chosen earlier since applying a magnetic field in the
parallel and transverse directions, with respect to the chiral
axis, allows a simplified problem where all bands are sep-
arated by gaps. As shown in Fig. 2(c), turning off Bz leads
to the closing of some gaps, even though a quantized Berry
phase is still found for groups of two bands. Turning off Bz

we find that the polar angle is also quantized. In Fig. 4(b) we
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FIG. 3. Spin density averages Sx and Sz, as a function of momentum, for each band for γ = 4, for a trivial case (dashed lines) and a case
with quantized Berry phase (solid lines). The case of quantized Berry phase has parameters λ = 2, Bx = 1.2, By = 0, Bz = 1.5 and the trivial
case has the same parameters except By = 0.5.

compare the cases of Bz = 1.5 and Bz = 0, for γ = 4, which
shows the quantization in both cases. In Fig. 4(c) we show
the quantization of the polar angle for γ = 3 when Bz = 0.
The case of vanishing Bz will be considered later in the spin
transport across the helix.

We summarize the results for the Berry phase γB, and
the polar angle φ(k, n)/π , for each band n, in Table I for
γ = 3, 4, 5, 6 and Bz = 1.5. We see that for the lowest energy
levels the spin density is aligned along B while for the higher
levels the spin density is aligned along the B + π direction.
In the intermediate levels the spin density is aligned in one
or the other direction depending on the momentum value k.
There is a competition between the external magnetic field and
the effective field that is the result of the electric field of the
helix. In the nonquantized cases this leads in general to a polar
angle that varies with the momentum and band, while in the
quantized Berry phase cases the polar angle has plateaus. In
some cases the competition between the two magnetic fields
leads to a situation where for a given band there is only one
plateau. This happens for the lowest and/or the highest energy
bands.

IV. REAL-SPACE DESCRIPTION AND EDGE STATES

The presence in some regimes of a quantized Berry phase
may suggest the presence of edge states at the ends of the
helix. These are revealed diagonalizing the Hamiltonian in
real space and considering open boundary conditions. The
results are shown in Fig. 5. In the top panel we show the
energy levels for similar parameters as those taken in Fig. 2
with λ = 2 and Bx = 1.2, By = 0, Bz = 1.5, together for other
values of the magnetic field. There are states inside the gaps,
but there are no zero-energy states. In nonchiral multiband
systems the Zeeman term has a similar effect [25,42]. Recall
that the sum of the Berry phases of the bands below zero
energy is zero, consistently with no edge states in the gap
surrounding zero energy. The states inside the gaps are well
localized, as shown in Fig. 5(b) by the participation ratio of
each level and by the wave functions shown in Fig. 5(c), that
are well localized at the edges of the chain. The participation
ratio for a given state is defined as

PR = L−1∑
j (|ψ j |2)2 (16)

TABLE I. Quantized Berry phase γB, and polar angle φ(k, n), for the cases of γ = 3, 4, 5, 6, when the conditions of Eq. (10) are met. Here
k is the momentum and n is the band index, n = 1, · · · , 2γ .

γ = 3 γ = 4 γ = 5 γ = 6

n γB φ(k, n)/π n γB φ(k, n)/π n γB φ(k, n)/π n γB φ(k, n)/π

1 π –1/6 1 π 0 1 π 1/10 1 π 1/6
2 0 5/6,–1/6 2 0 0 2 0 1/10 2 0 1/6
3 π –1/6,5/6 3 π 0, 1 3 0 1/10,11/10 3 π 1/6
4 π –1/6,5/6 4 0 1,0 4 π 11/10,1/10 4 0 7/6,1/6
5 0 5/6,–1/6 5 0 0,1 5 0 1/10,11/10 5 0 1/6,7/6
6 π 5/6 6 π 1,0 6 0 1/10,11/10 6 0 1/6,7/6

7 0 1 7 π 11/10,1/10 7 0 7/6,1/6
8 π 1 8 0 1/10,11/10 8 0 7/6,1/6

9 0 11/10 9 0 1/6,7/6
10 π 11/10 10 π 7/6

11 0 7/6
12 π 7/6
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FIG. 4. (a) Comparison of polar angle of spin density average
over an eigenstate of momentum k and band n, between a trivial
case (dashed lines), and a nontrivial (quantized Berry phase) case
(solid lines), as a function of momentum, for the various bands. The
parameters are the same as in Fig. 3. (b) Comparison for γ = 4 of the
polar angles for the various bands for Bz = 1.5 and Bz = 0. (c) Polar
angle for γ = 3 for Bz = 0.

where |ψ j |2 includes the sum over the two spin components
at site j. It is such that is of the order of one if the state is
extended and is of the order of 1/L, where L is the system
size, if the state is localized. We may argue that the edge states
appear in cases where the sum of the Berry phases below a
given gap is nontrivial (this is particularly clear in the case
that Bz = 0), as would be expected, even though the model is
in class C. Even though this picture seems appealing, it turns
out that the edge states remain in some cases, even when the
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FIG. 5. Real space diagonalization with open boundary condi-
tions for a finite system of 100 unit cells. (a) Comparison of energy
values for γ = 4 and different values of the external magnetic
field, where n is the level label. (b) Corresponding results for the
participation ratio of each energy state. (c) Absolute value of the
eigenfunctions of the edge states as a function of space location, j,
for some values of the magnetic field.

Berry phase is not quantized to zero or π . The momentum
space band structure and the energy states for the finite system
agree qualitatively, but the boundary conditions used are not
the same. Also, unless the indirect gaps between the bands are
positive, the possible edge (localized) states merge into the
continuum, are not seen and become extended, as revealed for
instance by the absence of small PRs.

In the top two panels of Fig. 6 we show the dispersion
of the localized edge states as a function of λ and Bx for
γ = 3, 4, in regimes where the Berry phase is quantized. In
Fig. 6(c) we consider a similar plot of the energy levels for
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FIG. 6. Comparison of energy values for γ = 4 and γ = 3 as a
function of (a) λ and (b) Bx , for the quantized Berry phase and c) for
γ = 3 with By = 0 (nonquantized case).

γ = 3, Bz = 0, λ = 2 but taking By = 0, which can be shown
in momentum space to lead to a phase with a nonquantized
Berry phase and a nonquantized spin polar angle. But, as
clearly shown, edge states are found inside the various gaps,
and these states are well localized at the edges of the system.

As in the case where the spin operators were averaged over
the momentum space eigenstates, we also find for the bulk
states of the finite system a quantization of the spin polar angle
(in the topological regimes). This contrasts with the result that
the edge states do not display this quantization. This is shown

-6 -4 -2 0 2 4 6
ε
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0.5

1

1.5

φ/
π,

 P
R

φ/π
PRγ=3, B

z
=0, B

x
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FIG. 7. Participation ratio and spin polar angle for the energy
states of a chain with unit cell with γ = 3, with a finite size of 100
cells and using open boundary conditions, for Bz = 0, Bx = 1.2, λ =
2 in the topological case with By/Bx = 1/ tan �. The polar angle of
the bulk states is quantized along the direction of the magnetic field
in the transverse plane and along the opposite direction. Note that
the polar angle is not quantized when we consider the edge states,
for which the participation ratio has large drops.

in Fig. 7 where the polar angle of each eigenstate is shown,
together with the participation ratios, for γ = 3. While the
bulk states display the expected quantization, the edge states,
identified by the small participation ratios, do not lead to a
quantized polar angle.

V. GENERALIZED MODELS: LATTICE DISTORTION
AND RASHBA SPIN-ORBIT

It is interesting to consider generalizations of the model.
We may consider that along the helix some dimerization,
trimerization, etc, may occur, that leads to a nonhomoge-
neous set of hopping terms between the various neighbors.
For instance, a unit cell with two sites, γ = 2, which may be
dimerized, or a unit cell with γ = 3, which may be trimerized
in some way. The first case is similar to a SSH model (with
spin added). The model by itself has a topological regime,
with zero-energy edge states, quantized winding number and
quantized Berry phase.

For instance, taking γ = 2, if the two hoppings t1, t2 are
not equal, topology emerges if t2 > t1. Including spin in a
SSH model, the bands become degenerate, but considering a
magnetic field along the direction of the chain, Bz 
= 0 lifts
the degeneracy and one finds the expected topological bands
with π Berry phase. Adding the spin-orbit term that results
from the chiral structure, the topology is maintained, and due
to the spin-orbit coupling a transverse spin density along the
y direction is found. This leads naturally to a quantization of
the polar angle along either φ = π/2 or 3π/2.

Taking γ = 3 and selecting the three hoppings such that
t3 > t1, t2, a nontrivial quantized spin polar angle is found.
Unexpectedly, for t3 < t1, t2 a quantized polar angle is also
found, even though the Berry phase vanishes (as expected for
a trivial regime of a trimerized band). If t1 = t2 = t3 there
is no induced spin density in the transverse directions and
therefore there is no quantization of the polar angle, since
it is ill defined. These results are shown in Fig. 8 where
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FIG. 8. (a) Energy bands of a chain with γ = 3 and nonhomo-
geneous hoppings, with t1 = t2 = 1, t3 = 2, for different values of
spin-orbit coupling λ = 0, 0.1, 1. (b) Quantization of the polar angle
as a function of momentum, for topological case, for each band, for
γ = 3 and λ = 1.

we show the topological bands and the quantization of the
polar angle when the spin-orbit term is present. The spin-orbit
coupling induces a transverse spin density and a quantization
of the polar angle, even without the presence of an external
transverse magnetic field (a field along z splits the bands).
If t3 
= t1 = t2, we get in general nontrivial Berry phases, if
a spin-orbit coupling term is present. In Fig. 9 we show the
Berry phase (normalized by 2π ) as a function of t3i and λ,
for zero transverse magnetic field but with Bz finite, showing
the regimes where a nontrivial phase is found. The spin-orbit
coupling term acts as an effective nonlocal magnetic field
(depends on momentum), and tends to align the spin density.
With t3 = t1 = t2 the spin-orbit coupling does not lead to
nontrivial Berry phases, unless we add an external transverse
magnetic field with the appropriate direction. With λ = 0 the
addition of a field Bx 
= 0 [and By satisfying the quantization
condition, Eq. (10)], also leads to a quantized nontrivial Berry
phase if t3 > t1, t2. With t3 
= t1 = t2, and with the spin-orbit
term, we get in general an alignment of the spin density.

We remark, however, that there is no spin polarization in
spin transport if B = 0 since time reversal is preserved, even
though a spin density is created as a consequence of the spin-
orbit coupling. The spin density of an incoming spin up or
spin down electron is rotated, but in such a way that there is
no difference between the two incoming electrons.

A related model with time reversal symmetry has been
considered [34] that includes Rashba λR, and Dresselhaus

FIG. 9. Berry phase of the combined two lowest energy levels,
as a function of t3, λ, for Bx = By = 0, Bz = 1.5, for t1 = t2 = 1. The
Berry phase of the lowest level is nontrivial for t3 > 1 and the Berry
phase of the second level is nontrivial when t3 < 1 and λ is large
enough.

λD, spin-orbit couplings. The Dresselhaus is uniform and the
Rashba has a constant term plus a modulated one, that can be
argued to be in the class of a generalized Aubry-André-Harper
model. There are several phases with winding number (chiral
symmetry) and gapless critical surfaces/lines and zero-energy
states. Inspired by these results we consider adding to the
expression for χ ( j) of our model Eq. (2) a constant −Ey term,
independent of the site j, and a Rashba-like term that results
from a constant Ex. Adding for instance a spatially uniform
Rashba-like term, with an amplitude λR, leads to some conse-
quences that will be explored in the next section. If λ and λR

are not simultaneously small, one finds zero-energy states if
there is no external magnetic field. A term that may originate
from a uniform electric field along −y, may be considered
with an amplitude λ′. In the case of zero external magnetic
field and γ = 4, the spectrum remains gapless around zero
energy if λR = λ′ but there are two gaps between bands two
and three and between bands six and seven. If λR 
= λ′ a gap
opens around zero energy. If λR > λ′ there are edge states in-
side the three gaps with the appearance of zero-energy states.
Applying an external magnetic field the zero-energy states
turn into finite energy but are still well localized on the edges
of a finite system, if the magnetic field is small enough.

Terms of the type of a SSH model lead to zero-energy
states, in addition to the finite-energy edge states found in
the helix problem. The model with Rashba coupling [34]
also leads to zero-energy states (if B = 0). Adding Bx, the
zero-energy states in the gap acquire a small finite energy,
but the states remain in the gap that is centered around zero
energy. These states may contribute to either the low-energy
conductance or spin response when the system is coupled to
external leads. A significant effect is found if there is a small
coupling to the leads and a not too small or too large system
(see for instance, [43,44]). This will be considered next.

VI. SPIN TRANSPORT ALONG A CHIRAL CHAIN

A. Scattering states

Let us now determine the possible influence of the topolog-
ical states on the spin transport along the chain. We consider
two leads that are attached to the chiral chain. We may inject a
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spin up or spin down electron from the left lead into the chiral
chain and collect this scattering state on the right lead [45,46].
This implies, when time reversal symmetry is broken, a spin
polarization on the right lead.

We consider a one-dimensional problem that allows the
propagation along the two spin channels. The chiral region is
of finite size. Due to the spin-orbit coupling and the transverse
external fields we must allow for spin flips. The scattering
states may be reflected or transmitted along the chiral re-
gion, keeping the same spin component or reversing the spin
component. In general we have a 2 × 2 matrix structure,
respecting to the two spin projections. The scattering states
propagate along the chiral region. We choose the left and right
leads as simple conductors, using a tight-binding model, with
bandwidth large enough to go over the energy range of the
chiral region. The hopping from the leads to the chiral region
is parametrized by V , in units of w.

At each lattice site n, we have in general a spinor ψn,
respecting to the two spin projections leading to an equation of
the type

Hnψn + Tn,n+1ψn+1 + Tn,n−1ψn−1 = εψn. (17)

Here, ε is the energy of the electron coming from the left lead.
We may rewrite this equation as

ψn+1 = T −1
n,n+1(ε − Hn)ψn − T −1

n,n+1Tn,n−1ψn−1, (18)

which leads to a transfer matrix Mn, defined as(
ψn+1

ψn

)
= Mn

(
ψn

ψn−1

)

Mn =
(

T −1
n,n+1(ε − Hn) −T −1

n,n+1Tn,n−1

1 0

)
. (19)

In units of the electric field (E = 1) we find that the determi-
nant of Mn is unity.

Let us consider the combined system of the two leads and
the chiral region and take the size of the combined system as
N . We may consider a point on the left lead, at position NL

sufficiently far from the chiral region and a point on the right
lead NR, also sufficiently far from the chiral region. We may
write that (

ψNR+1

ψNR

)
= MT

(
ψNL

ψNL−1

)
(20)

where

MT =
NR∏

n=NL

Mn. (21)

Considering either an electron coming from the left lead with
spin up or spin down, we may obtain the differential conduc-
tance and the spin polarization in a standard way, as briefly
reviewed in Appendix B.

The charge differential conductances, for incident electrons
with spin components ↑,↓ are obtained as

σ↑ = 1 − |r↑|2 − |r̄↑|2 = |t↑|2 + |t̄↑|2,
σ↓ = 1 − |r↓|2 − |r̄↓|2 = |t↓|2 + |t̄↓|2. (22)

The spin polarization is defined as

P = (|t↑|2 + |t̄↑|2) − (|t↓|2 + |t̄↓|2)

(|t↑|2 + |t̄↑|2) + (|t↓|2 + |t̄↓|2)
. (23)

The reflection (transmission) coefficients rσ (tσ ) of an incident
electron with spin σ with no spin flip, and the coefficients with
spin flip r̄σ (t̄σ ) are defined in Appendix B.

B. Results

Applying a magnetic field along the chain direction nat-
urally leads to a spin polarization along that axis. In the
following we consider that Bz = 0 and only consider the
action of a transverse magnetic field. In Fig. 10 we present
results for the spin polarization and the charge differential
conductances, σ↑, σ↓ for a chiral chain with 10 cells with a
unit basis of four atoms, γ = 4. As discussed in Appendix B,
the effect of any edge states is lost if the chain is large enough,
since they decay exponentially towards the interior of the
chain. Also, the size of the hopping from the leads to the chiral
chain has to be chosen appropriately. We compare the situa-
tions when the Berry phase is quantized and when it is trivial.
The trivial cases are obtained either adding a Rashba term or
considering By 
= 0. In (a) and (b) two different values of Bx

are considered. As Bx increases from Bx = 0.5 to Bx = 1, the
spin polarization increases in magnitude and the gap centered
around zero energy also increases. Adding a constant Rashba
term in (c) increases the gap and comparing (b) with (d) we
see that adding a small By = 0.2 does not affect significantly
the spin polarization. Note that the various peaks of the spin
polarization correlate well with the peaks in the conductances.

In Fig. 10(c) a finite Rashba coupling λR = 2 is added.
This leads, in the finite chiral chain uncoupled to the leads,
to the presence of zero-energy edge states if Bx = 0, that have
a finite energy since Bx 
= 0. Since Bx is large in this case,
the state energy is close to the gap and its effect is not seen.
In Fig. 11 we consider a smaller value of Bx = 0.1 and its
presence is clearly seen in the spin polarization at a small en-
ergy inside the gap, of the order of 5 × 10−2. The contribution
of the edge states to the differential conductances is however
small, and we need to lower the coupling to the leads V , to
see their effect, as shown in Appendix B. In addition to the
oscillation in the spin polarization near zero energy, the peaks
of the spin polarization correlate well with the peaks of the
conductances, as in the previous figure. In Fig. 12 it is shown
that the peaks of the differential conductances are located at
the eigenenergies of the finite size chiral chain, uncoupled
to the leads, with open boundary conditions. Recall that the
energy ε considered is not an eigenenergy of the junction and
indeed the states are scattering states. Still the resonance with
the eigenstates of the uncoupled chain is clearly seen.

The results in Fig. 10 show that the spin polarization is not
significantly affected by the Berry phase quantization, even
though its effect is felt in the polar angle of the spin density in
the chiral chain, both in momentum space and in real space.
However, let us analyze the situation in some detail. In Fig. 13
we consider a chain with γ = 3. The quantized Berry phases
are found imposing the condition Eq. (10). A simple trivial
case is obtained taking By = 0. The top panels of Fig. 13
refer to a quantized Berry phase and the lower panels to the
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FIG. 10. Differential conductances for an incident electron with spin ↑ and an incident electron with spin ↓ and spin polarization, for
γ = 4, 10 unit cells, V = 0.5, λ = 2, Bz = 0 for (a) Bx = 0.5, By = 0, λR = 0, (b) Bx = 1, By = 0, λR = 0, (c) Bx = 1, By = 0, λR = 2, and
(d) Bx = 1, By = 0.2, λR = 0.

trivial case. In Figs. 13(a) and 13(c) we show the differential
conductances and the spin polarization and in Figs. 13(b)
and 13(d) we show the angles θ and φ of the spin density
at the right end of the chiral chain. The energies for which
θ < π/2 (θ > π/2) correspond to the regimes where the spin
polarization is positive (negative), as expected. Comparing the
structure of the conductance peaks we see a similar structure
for the quantized and trivial cases (and similar behaviors for
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FIG. 11. Differential conductances and spin polarization for γ =
4, 10 unit cells, λ = 2, λR = 2, Bx = 0.1. In this case the Berry phase
is not quantized but due to the addition of a constant Rashba spin-
orbit coupling, there is a low-energy state that is shifted from zero
energy due to the presence of a finite Bx . The effect of the edge state
in the gap is clearly seen in the spin polarization.

the spin polarization) even though it may be argued that in
the quantized case the behavior is somewhat more regular.
This is emphasized considering the energy dependence of the
angles θ, φ where a sharper behavior is found in the quantized
(topological) case.

A spin polarization that is nearly periodic in the incident
energy, may be obtained symmetrizing the spin-orbit cou-
pling (considering equal Rashba λR, and λ′ constant terms,
which leads to a gapless spectrum around zero energy) and
symmetrizing the transverse external magnetic field (taking
Bx = By 
= 0). In Fig. 14 we consider two examples that show
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FIG. 12. Location of peaks of differential conductance and of
eigenenergies of finite system of 10 unit cells En, uncoupled to the
leads. The parameters used are λ = 2, λR = 0, Bx = 0.5,V = 0.1.
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FIG. 13. [(a), (c)] Differential conductances and spin polarization and [(b), (d)] angles θ and φ of the spin density at the right edge of the
chiral chain for topological [(a), (b)] and nontopological [(c), (d)] cases. The parameters are γ = 3, λ = 2, Bx = 0.5,V = 0.5, and 10 unit
cells for By given by condition (10) or By = 0.

a rather regular sequence of energy peaks in the differential
conductances (and their energy spacings), that lead to a regu-
lar set of oscillations and amplitudes of the energy dependent
spin polarization. We consider γ = 4,V = 0.5 and take Bx =
By = 0.1. Considering a chain with 10 unit cells the example
shown considers λ = 2, λR = λ′ = 3 and considering 20 unit
cells we take λ = 3, λR = λ′ = 4. We see that increasing the
system size the polarization is very nearly periodic.

VII. CONCLUSIONS

The spinful electronic states of the multiband chiral chain,
with a unit cell of size γ , are the result of the electric
field/electric polarization felt by a moving electron that is
seen, in the reference frame of the electron, as a modulated
spin-orbit coupling. The spectrum is in general gapless.

One way to split the levels is to apply an external magnetic
field. Applying a field along z partially lifts the degener-
acy and adding a field in the plane transverse to the chain
axis, lifts the degeneracies of all bands, giving origin to a
gapped system. Turning off Bz, it is also possible to obtain
a gapped system in which the bands are grouped in pairs. One
advantage of applying the magnetic field is that it breaks time-
reversal invariance and allows the possibility of spin transport.
Another possible outcome is the possibility of nontrivial topo-
logical states as a result of gap openings.

Under appropriate circumstances the gapped system has
bands with quantized Berry phases of either individual bands
or, in the case of Bz = 0, of pairs of bands. This suggests a

topological nature of the bands, in these regimes. The topo-
logical character is also revealed by the quantization of the
polar angle of the spin density. If the Berry phase is not quan-
tized the polar angle is also not quantized. This is also found
diagonalizing the problem in real space, with open boundary
conditions, since the polar angle of the spin density averaged
over a (bulk) eigenstate of the finite chain is also quantized.
We have argued that the quantization of the Berry phase in the
case of γ = 4 may be associated with a (hidden) symmetry
that is the product of an inversion symmetry and a chiral sym-
metry, even though these symmetries are absent separately.
Edge states are found, displaying very low participation ratio
and well localized wave functions on the edges of a finite
chain. However, these edge states have finite energies and
not zero energy. Moving away from the quantized conditions
for the Berry phase and the spin polar angle, we also find
edge states. A difference is found that in the quantized Berry
phase regime the edge states appear in pairs that are energy
degenerate, while in the trivial regime the states are no longer
degenerate and either appear as a single state (as for γ = 3)
or as consecutive energy states with a finite energy separation
(as for γ = 4), at least for the finite sizes considered. Another
relevant difference is that if the system size is large enough,
the polar angles of the spin density of the edge states are
different from each other (between the two degenerate states)
and are not quantized.

The gapless chiral model with no external magnetic field
may be gapped adding a homogeneous Rashba-like term,
revealing the existence of topology and localized zero-energy
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FIG. 14. Differential conductances and spin polarization for two
sets of parameters that yield an almost periodic spin polarization as
the energy changes. The sets of values are for γ = 4,V = 0.5, Bx =
By = 0.1 and (a) 10 cells, λ = 2, λR = 3, λ′ = 3 and (b) 20 cells,
λ = 3, λR = 4, λ′ = 4.

edge states. Adding the external magnetic field to the chi-
ral model with no Rashba-like term, the edge states remain
but acquire a finite energy and under appropriate conditions
the Berry phase is quantized. Combining the two effects of
external magnetic field and Rashba-like term, the model is
not topological in the conventional sense, the Berry phase is
not quantized, but the edge states remain, both at small and
finite energies, and time-reversal symmetry is broken. The
breaking of time-reversal symmetry allows a spin polarization
in the transport along the chiral chain, and the vicinity to a
topological phase leads to the existence of the low-energy
states in the gap.

We have also considered models where the lattice may
be distorted that lead to gap openings in appropriate condi-
tions. For instance, a unit cell with two sites γ = 2, which
may be dimerized, or a unit cell with γ = 3, which may be
trimerized in some way. The first case is similar to a SSH
model (including spin). The model by itself has a topologi-
cal regime, with zero-energy edge states, quantized winding
number and quantized Berry phase. In the case of γ = 3 we
showed explicitly that if in addition to the trimerization we
add the spin-orbit coupling, even in the absence of an external
transverse magnetic field (a field along z is useful to split the
bands), a transverse spin density is induced and a quantization
of the spin polar angle is found. We also found a quantized
Berry phase for a model of electrons with no spin, but with a
nontrivial hopping structure, due to the presence of more that

one orbital state and considering both nearest-neighbor and
next-nearest-neighbor terms (with a complex part), as shown
in Appendix A.

In the case the Berry phase is quantized, the energy depen-
dence of the spin polarization has a better defined structure in
comparison to a general case with no Berry phase quantiza-
tion. Adding a Rashba-like homogeneous spin-orbit term, the
contribution of the near zero-energy edge states leads to an
increase of the low-energy spin polarization. Also, we found a
nearly energy periodic structure for the spin polarization con-
sidering symmetric homogeneous couplings and a symmetric
transverse transverse magnetic field.

As a final note the helix may also be seen as a ladder where
one chain has spin up and the other spin down and it may be
related to other models. Alternating spin up and spin down the
helix is related to a Creutz ladder [47,48]: γ = 4 a staggered
Creutz ladder with fluxes 0 and π . For γ = 3 trimerized ladder
with fluxes 0, 2π/3, 2π/3, 0,−2π/3,−2π/3, 0.
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APPENDIX A: ORBITAL COUPLING

Another possibility that has been considered is to ignore
the spin contribution and to look for an orbital origin [15].
In this context, at each molecule in the helix one considers
different states associated with the orbital degrees of freedom.
The chiral nature of the molecule is implemented introducing
a twist (phase) in the hoppings between different orbitals of
neighboring molecules. One may understand such a construc-
tion considering now that the electron actually moves along
the helix and therefore has momentum components along the
xy plane. Under the action of the electric field the effective
magnetic field has now a z component (along the axis of the
helix) that may be seen as a flux that gives origin to an orbital
effect (due to the corresponding vector potential) that may
be incorporated as a Peierls factor in the effective hoppings
between the molecules. To simplify one may just consider that
at each molecule two states of orbital nature contribute.

Here we disregard the spin content of the electrons and
consider that at each location there are two states, labeled by
ml = 1, 2. The Hamiltonian in real space is chosen as

H =
∑

j

∑
ml

( − μ + �(ml ))c
†
j,ml

c j,ml

− t1
∑

j

∑
ml

(
c†

j,ml
c j+1,ml + c†

j+1,ml
c j,ml

)

− t⊥
∑

j

(
c†

j,2c j,1 + c†
j,1c j,2

)

− t2
∑

j

(
c†

j+1,2c j,1 + c†
j,1c j+1,2

)

− t2
∑

j

(
e−i2π/γ c†

j−1,2c j,1 + ei2π/γ c†
j,1c j−1,2

)
. (A1)
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FIG. 15. Energy bands and Berry phases of Hamiltonian
Eq. (A1) for t1 = 1, t2 = 0.5, t⊥ = 1, �(1) = −1, �(2) = 1.

The local hopping between the two orbital states t⊥ lifts
the degeneracy of the orbital bands, if large enough. Also,
we consider �(1) = −1,�(2) = 1 and μ = 0. The action of
the orbital chiral coupling t2 is determinant. If the phase of the
nearest-neighbor hopping t2 vanishes, the bands are gapless.
In order to look for topological bands we focus on bands that
have gaps. Taking t⊥ = 1 we get a set of bands as shown in
Fig. 15. We consider, as an example, γ = 4 and therefore we
have eight bands, since ml = 1, 2. The bands are separated
by finite gaps. Some of the bands have finite Berry phases of
γB = π .

APPENDIX B: SPIN TRANSPORT

1. Transfer matrix and scattering states coefficients

Consider an electron with spin up coming from the left
lead, with a given energy ε. We choose(

u↑(NL )
u↓(NL )

)
=

(
1
0

)
+ r

(
1
0

)
+ r̄

(
0
1

)
(B1)

where r is the reflection coefficient and r̄ the reflection coeffi-
cient with spin flip, and(

u↑(NL − 1)
u↓(NL − 1)

)
=

(
1
0

)
e−iq1 + r

(
1
0

)
eiq1 + r̄

(
0
1

)
eiq1 (B2)

where q1 = cos−1 ( − ε/(2w2)) and w2 is the hopping on the
left (and right) leads.

Considering an electron with spin down coming from the
left lead, with a given energy ε, leads to(

u↑(NL )
u↓(NL )

)
=

(
0
1

)
+ r

(
0
1

)
+ r̄

(
1
0

)
(B3)

and(
u↑(NL − 1)
u↓(NL − 1)

)
=

(
0
1

)
e−iq1 + r

(
0
1

)
eiq1 + r̄

(
1
0

)
eiq1 . (B4)

On the right lead, we have the transmitted wave. In the case
of an electron with spin up coming from the left lead, with a
given energy ε, we have(

u↑(NR)
u↓(NR)

)
= t

(
1
0

)
+ t̄

(
0
1

)
(B5)

where t is the transmission coefficient and t̄ the transmission
coefficient with spin flip, and(

u↑(NR + 1)
u↓(NR + 1)

)
= t

(
1
0

)
eiq1 + t̄

(
0
1

)
eiq1 . (B6)

Considering an electron with spin down coming from the
left lead, with a given energy ε, leads to(

u↑(NR)
u↓(NR)

)
= t

(
0
1

)
+ t̄

(
1
0

)
(B7)

and (
u↑(NR + 1)
u↓(NR + 1)

)
= t

(
0
1

)
eiq1 + t̄

(
1
0

)
eiq1 . (B8)

The normalization (conservation of probability/charge)
implies

1 = |r↑|2 + |r̄↑|2 + |t↑|2 + |t̄↑|2,
1 = |r↓|2 + |r̄↓|2 + |t↓|2 + |t̄↓|2. (B9)

Explicitly, the transfer matrix is given by

Mn =
(

C D
I 0

)
(B10)

with

C =
(−(Bz+ε)w−(Bx+iBy )λψn

w2+λ2
−(Bx−iBy )w−(−Bz+ε)λψn

w2+λ2

(Bz+ε)λψ∗
n −(Bx+iBy )w

w2+λ2
(Bx−iBy )λψ∗

n −(−Bz+ε)w
w2+λ2

)
(B11)

and

D =
(−w2+λ2ψnψ

∗
n−1

w2+λ2
−wλψn−1−wλψn

w2+λ2

wλψ∗
n +wλψ∗

n−1

w2+λ2
−w2+λ2ψ∗

n ψn−1

w2+λ2

)
. (B12)

I is the identity and 0 the null matrix. The coefficients, for a
scattering state in a spin up incident electron, may be obtained
solving the Eqs. [46]

A↑

⎛
⎜⎝

r
t
r̄
t̄

⎞
⎟⎠ = b↑ (B13)

where

b↑ = −

⎛
⎜⎜⎜⎝

MT
11 + MT

13e−iq1

MT
21 + MT

23e−iq1

MT
31 + MT

33e−iq1

MT
41 + MT

43e−iq1

⎞
⎟⎟⎟⎠ (B14)

and

A↑ =

⎛
⎜⎜⎜⎝

MT
11 + MT

13eiq1 −eiq1 MT
12 + MT

14eiq1 0

MT
21 + MT

23eiq1 0 MT
22 + MT

24eiq1 −eiq1

MT
31 + MT

33eiq1 −1 MT
32 + MT

34eiq1 0

MT
41 + MT

43eiq1 0 MT
42 + MT

44eiq1 −1

⎞
⎟⎟⎟⎠

(B15)
and similarly for a spin down incident electron.
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FIG. 16. Comparison of different numbers of cells and coupling to the leads, for γ = 4. In the top row the number of cells is 10 and in
the lower row is 20. We consider λ = 2, λR = 2, Bx = 0.1. We take (a) V = 1, (b) V = 0.1, (c) V = 0.05, (d) V = 0.5, (e) V = 0.1, and (f)
V = 0.05.

2. Influence of chain size and coupling to leads

As mentioned before, the detection of the edge localized
states is enhanced considering relatively small systems, so
that the exponential decay of the wave functions is not sig-
nificative. Also, the smallness of the coupling to the leads is
required otherwise the edge states do not give a significant
contribution to the differential conductance.

Some examples of the balance of these dependencies is
considered in Fig. 16 considering as an example two chains
with 10 and 20 unit cells and different couplings V . As the
results show the spin polarization is more sensitive to the edge
states, since it is given by a ratio of coefficients as shown in
Eq. (23). Intermediate values of the coupling, V = 0.1, 0.5,
for the system sizes considered give reasonable results.
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