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Relativistic self-consistent GW : Exact two-component formalism
with one-electron approximation for solids

Chia-Nan Yeh ,1 Avijit Shee ,2 Qiming Sun ,3 Emanuel Gull ,1 and Dominika Zgid1,2

1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA

3AxiomQuant Investment Management LLC, Shanghai 200120, China

(Received 8 February 2022; revised 19 May 2022; accepted 25 July 2022; published 11 August 2022)

We present a formulation of relativistic self-consistent GW for solids based on the exact two-component
formalism with one-electron approximation (X2C1e) and nonrelativistic Coulomb interactions. Our theory
allows us to study scalar relativistic effects, spin-orbit coupling, and the interplay of relativistic effects with
electron correlation without adjustable parameters. Our all-electron implementation is fully ab initio and does
not require a pseudopotential constructed from atomic calculations. We examine the effect of the X2C1e
approximation by comparison to the established four-component formalism and reach an excellent agreement.
The simplicity of X2C1e enables the construction of higher order theories, such as embedding theories, on top
of perturbative calculations.
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I. INTRODUCTION

Relativistic effects, such as spin-orbit coupling (SOC), are
essential for understanding the physics of quantum materials
including correlated topological insulators [1], topological su-
perconductors [2], quantum spin liquids [3], and topological
semimetals [4].

SOC effects are particularly important in materials with
heavy elements, such as those with partially occupied d-
and f -electron shells. They include several new 5d transition
metal oxides (iridates, osmates) [5,6], multiferroic materi-
als [7], and heterostructures of transition metal systems [8],
where the interplay of relativistic effects and electron cor-
relation may lead to magnetism and electron localization.
Analyzing SOC effects in these systems is crucial for un-
derstanding the nature of electronic states. Harnessing and
controlling SOC effects may lead to novel designs for appli-
cations and devices.

The computational description of relativistic effects
in molecular and periodic systems has a long history.
Relativistic quantum effects are described by the Dirac,
rather than the Schrödinger, equation [9]. A solution of the
Dirac equation employs the so-called four-component formal-
ism, where the problem is expanded into Dirac bispinors,
which describe spin as well as electrons and positrons. In
molecular systems, the Dirac equation for Gaussian-type or-
bitals (GTOs) has been studied extensively in the context
of mean-field and density functional theory (DFT) yielding
numerous mature implementations [10–13]. Extensions of the
four-component theory to configuration interaction (CI) and
coupled-cluster (CC) theory [14,15] are active fields of re-
search.

Two-component relativistic Hamiltonians, where the
positronic degrees of freedom are eliminated, result in a

useful compromise in terms of computational cost between
the scalar nonrelativistic and the four-component relativistic
one-electron Hamiltonians. They typically increase the com-
putational cost by one order of magnitude in comparison to
the scalar relativistic approaches, due to the transition from
real to complex quantities and the inclusion of two-component
matrices.

In molecular chemistry, the two-component formalism re-
sulted in numerous interesting applications, see Refs. [16,17]
for reviews. In general, two-component Hamiltonians can be
divided into two broad classes. Inexact two-component Hamil-
tonians such as Pauli [16,17], Douglas-Kroll-Hess (DKH)
[18], and ZORA [19,20] Hamiltonians are considered inexact
due to the approximate decoupling schemes used to trans-
form the four-component to the two-component theory. In
contrast, exact two-component (X2C) Hamiltonians reproduce
the positive-energy spectrum of the parent four-component
Hamiltonian exactly [16,17,21]. The formulation of the X2C
theories generated a lot of excitement in molecular electronic
structure theory due to its transparent nature, lack of ad hoc
approximations, and computational efficiency.

Numerous applications of the relativistic formalism to
periodic systems have been performed. While the choice
of GTOs as one-particle basis functions is overwhelmingly
common for molecular systems, for periodic systems rela-
tivistic calculations were performed for several choices of
one-particle basis functions including as plane waves [22],
augmented plane waves (APW) [23], linear-APWs (LAPW)
[24,25], linear muffin-tin orbitals (LMTO) [26,27], projector
augmented waves (PAW) [28], analytic Slater-type orbitals
(STOs) [29,30], and Gaussian-type orbitals (GTOs) [31].
For a discussion of these developments see Ref. [31]. Note
that, while many of these applications involved inexact
two-components Hamiltonians, the application of the full
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four-component formalism in the density functional theory
(DFT) framework to periodic systems employing GTOs was
only performed in 2019 by Kadek et al. [31].

While DFT, due to its affordable computational scaling,
can be applied to many of the one-particle orbital bases, the
situation is more complicated for correlated ab initio methods
with a higher computational scaling. For those, one would
ideally want to employ a compact one-particle basis such as
GTOs and retain the possibility of describing both core and
valence electrons by the same type of basis function. More-
over, due to their computational demand, it is advantageous to
avoid the expensive four-component formalism in favor of a
more manageable two-component formulation.

Motivated by these considerations, we describe here the
application of an exact two-component theory in the one-
electron approximation (X2C1e) to fully self-consistent GW
(scGW ) for periodic problems in the one-particle GTO basis.
We call the method X2C1e-scGW . The exact two-component
methods (X2C) generate an electron-only two-component
Hamiltonian that exactly reproduces the one-electron energies
of the original four-component Dirac Hamiltonian while ap-
proximating some of the relativistic two-body integrals, which
are expected to be small for atoms that are not extremely
heavy [16,17,21,32].

Two-component methods are particularly appealing for a
numerical implementation in solids for two reasons. First,
the restriction to two components, rather than four, substan-
tially reduces computation and memory demands. Second,
because of the particularly simple form of the two-body in-
tegrals (which are just the regular nonrelativistic two-body
Coulomb integrals), two-component methods open a direct
route towards parameter-free embedding calculations with
self-energy embedding (SEET) [33–37] or dynamical mean
field theory (DMFT) [38]. For instance, at present combi-
nations of DFT with DMFT (DFT+DMFT) for relativistic
compounds rely on adding a phenomenological L · S spin-
orbit coupling term to the DMFT impurity Hamiltonian, the
parameters of which are unknown and need to be adjusted on
a case-by-case basis [6,39–42]. Exact two-component theories
can be used to remove this phenomenological parametrization
from DFT+DMFT. In addition, the two-component theory
eliminates the need for simultaneous optimization of positive
and negative energy solutions.

For periodic systems, the introduction of relativistic
treatment into the GW approach has a long history. In
Refs. [43,44], within the full-potential linearized augmented-
plane-wave (FLAPW) method, a fully spin-dependent formu-
lation of the quasiparticle GW approximation was presented,
which described many-body renormalization effects arising
from spin-orbit coupling. This approach took into account the
spin off-diagonal elements of the Green’s function and the
self-energy. The core, valence, and conduction states of the
reference one-particle system were treated fully relativisti-
cally as four-component spinor wave functions. In Ref. [45],
spin-orbit interactions were included in GW by using Dirac’s
form of the kinetic energy operator and full self-consistency
was performed. Recently, Ref. [22] reported the inclusion of
SOC in a GW code, WEST, with calculations at the G0W0

level. In this G0W0 calculation, both G and W were computed
at a fully relativistic level without the use of empty states.

In this paper, we discuss the exact two-component theory
in the one-electron approximation (X2C1e) for periodic sys-
tems described by a GTO one-particle basis and demonstrate
results from its implementation into a fully self-consistent
GW (scGW ) method. We call this method X2C1e-scGW .
The methodology is designed to preserve the computational
advantages of the two-component formalism as well as com-
pactness of the GTO basis when treating periodic systems. As
an example of the X2C1e-scGW methodology, we discuss the
series of silver halides (AgCl, AgBr, AgI) in which scalar rel-
ativistic effects and SOC becomes gradually more important
as the halogen is changed from Cl to I. We show that, in these
systems, X2C1e-scGW recovers all of the relativistic effects
identified in the four-component DFT while yielding better
experimental agreement than four-component DFT.

The remainder of this paper proceeds as follows. In Sec. II,
we introduce the relativistic theory. Section III focuses on
computational details while Sec. IV contains results for the
silver halides. Our conclusions are presented in Sec. V.

II. RELATIVISTIC THEORY

This section discusses the X2C1e approximation in solids
and the diagrammatic perturbation theory applied to the
relativistic two-component Hamiltonian. Starting form the
noninteracting Dirac Hamiltonian Ĥ0 [9,16,17,46] presented
in Sec. II A and the kinetic balance Gaussian type orbitals
(KB-GTO) [47–49] presented in Sec. II B, we show in
Sec. II C how expanding Ĥ0 using the KB-GTO basis will
lead to the modified Dirac equation [50,51]. The noninteract-
ing X2C1e Hamiltonian [52,53] can then be constructed via
the normalized elimination of the small component (NESC)
of the modified Dirac Hamiltonian [21,52–56], as shown
in Sec. II D. In Sec. II E, we define the X2C1e-Coulomb
Hamiltonian as a combination of the noninteracting X2C1e
Hamiltonian with the nonrelativistic Coulomb interactions.
The formulation of diagrammatic perturbation theory such as
the scGW approximation using the X2C1e-Coulomb Hamil-
tonian is described in Sec. II F.

A. Noninteracting Dirac Hamiltonian

In the absence of electron-electron interactions and ex-
ternal magnetic fields, and within the Born-Oppenheimer
approximation, the Dirac equation with minimal coupling to
the attractive nuclear Coulomb potential V (r) [9,46] can be
recast as an eigenvalue problem, Ĥ0� = E� [16,17], where
� = (�L, �S )T denotes a four-component spinor written in
terms of two “large” and “small”-component spinors, and Ĥ0

denotes the 4 × 4 Hamiltonian matrix

Ĥ0 =
(

V (r) cσ · p̂

cσ · p̂ V (r) − 2c2

)
. (1)

Here, c is the speed of light, σ are Pauli matrices, and p̂ =
−i∇ is the momentum operator. In order to discuss the exact
two-component formalism, we will first discuss the solution
of this noninteracting Hamiltonian.
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B. Kinetic balance Gaussian type orbital

In practical calculations, Hamiltonians are expanded into
a finite basis set. We will limit our discussion here to Bloch
waves constructed from a periodic arrangement of Gaussian
orbitals, which are one possible choice of basis sets for solids.

In the nonrelativistic case, the nonrelativistic Hamiltonian
is expanded into scalar Gaussian Bloch orbitals gk

i (r) con-
structed from Gaussian atomic basis functions gR

i (r) as

gk
i (r) =

∑
R

gR
i (r)eik·R, (2)

where k is a wave vector in the first Brillouin zone of the
reciprocal space and gR

i (r) is the ith Gaussian atomic orbital
centered in unit cell R [57]. The summation over R extends
over the whole lattice. The overlap matrix

Sk
i j =

∫
�

drgk∗
i (r)gk

j (r)δkk′ (3)

is diagonal in reciprocal space indices due to the translational
invariance of the lattice but generally nondiagonal in the or-
bital space indices (� denotes the unit cell).

In the relativistic case, in order to expand the four-
component relativistic operator of Eq. 1, we define a
four-component Bloch bispinor basis

χk
i (r) =

(
χk,L

i (r)

χk,S
i (r)

)
, (4)

where χk,L
i (r) and χk,S

i (r) denote a large (L) and small (S)
component spinor. In the present work, in analogy to the non-
relativistic case, the large component spinor basis is defined
in terms of a scalar Gaussian Bloch orbital

χk,L
i (r) =

(
χk,L

i,↑ (r)

χk,L
i,↓ (r)

)
, (5)

where χk,L
i↑ (r) and the χk,L

i↓ (r) are the spin-up and the spin-
down components of the large component spinor basis, which
is expressed in terms of the scalar Gaussian Bloch orbitals
gk

i (r). Rather than using this basis also for the small compo-
nent, we define a relativistic small component basis through
the restricted kinetic balance (RKB) condition [47–49] as

χk,S
i (r) = 1

2c
(σ · p̂)χk,L

i (r). (6)

The RKB condition enforces the exact coupling of large and
small components in the nonrelativistic limit [16] and is essen-
tial to achieve variationally stable four-component solutions
in a finite basis set [16,17,47–49,58]. For a physical single-
particle state, the expansion coefficients for large and small
components are allowed to be different. The same holds for
the spin-up and spin-down parts in Eqs. (5) and (6). In the
following, we will refer to the basis of Eq. (4) as “kinetic
balance Gaussian-type orbitals” (KB-GTO).

C. Modified Dirac Hamiltonian

Expanding Ĥ0 into N basis functions of the KB-GTO basis
per unit cell, we arrive at the modified noninteracting Dirac

Hamiltonian [50,51]

Hk
0 =

(
Vk Tk

Tk Wk − Tk

)
. (7)

The overlap matrix of the bispinor basis is defined as

Sk =
(

Sk 02N

02N Tk/2c2

)
. (8)

Vk, Tk, Sk, and Wk are matrices of size 2N × 2N defined as

Vk = I2 ⊗ V k =
(

V k 0N

0N V k

)
, (9)

Tk = I2 ⊗ T k =
(

T k 0N

0N T k

)
, (10)

Sk = I2 ⊗ Sk =
(

Sk 0N

0N Sk

)
. (11)

Here V k is a matrix of size N × N and contains the con-
tributions of the external potential, T k is the kinetic energy
matrix, and Sk is the scalar overlap matrix defined in Eq. (3).
Wk defines the matrix for the potential of the small com-
ponent. Via the Dirac identity (σ · p̂)V̂ (σ · p̂) = (p̂V̂ · p̂)I2 +
iσ · (p̂V̂ × p̂), it can be separated into a spin-free Wk

SR and a
spin-dependent part [51] Wk

SOC,

Wk = Wk
SR + Wk

SOC, (12)

Wk
SR =

(
(WSR)k 0

0 (WSR)k

)
, (13)

Wk
SOC =

∑
μ=x,y,z

(
(WSOC)k,μ 0

0 (WSOC)k,μ

)
σ̃μ, (14)

where σ̃μ = IN ⊗ σμ, σμ are Pauli matrices and

(WSR)k
i j =

∫
�

1

4c2
gk

i (r)∗[p̂V (r) · p̂]gk
j (r)d3r, (15)

(WSOC)k,μ
i j =

∫
�

1

4c2
gk

i (r)∗[i(p̂V (r) × p̂)μ]gk
j (r)d3r. (16)

For the case where, V (r) corresponds to the nuclear poten-
tial Z/r, the spin-dependent part Wk

SOC can be re-expressed as
the SOC of the electron spin with the magnetic field induced
by the nucleus of charge Z at the origin [32]. The spin-free
part Wk

SR is referred to as the scalar relativistic potential and
contributes to the relativistic mass enhancement.

Based on Eqs. (7) and (8), the noninteracting Dirac
equation Ĥ0� = E� can then be recast into a generalized
eigenvalue problem

Hk
0Ck = SkCkεk, (17)

where Ck and εk are the coefficient matrix for the corre-
sponding one-particle states and the diagonal matrix for the
one-particle energies. Due to the presence of large and small-
component spinors as well as the electronic and positronic
degrees of freedom, both Ck and εk are 4N × 4N matrices
for any given k point. The resulting electronic and positronic
one-particle states will be separated by an energy gap of 2c2

[32]. In the following sections, we will use subscripts + and
− to denote electronic and positronic states, respectively. If
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one-particle states are organized in descending order of orbital
energies, i.e.,

εk =
(

εk
+ 02N

02N εk
−

)
, (18)

the coefficient matrix Ck can be expressed as

Ck =
(

Ak
+ Ak

−
Bk

+ Bk
−

)
(19)

where Ak
+ and Bk

+ are 2N × 2N coefficient matrices of the
large and small-component spinors for electronic states. The
large and small-component positronic states are expressed in
terms of Ak

− and Bk
−.

D. Exact two-component theory with one-electron
approximation

The exact two-component (X2C) theory aims to construct
a two-component Hamiltonian that reproduces the electronic
spectrum (εk

+) of the parent four-component Hamiltonian Ĥ0

[16,17,21]. Different choices of Ĥ0 lead to different vari-
ants of X2C [16]. Common choices include the free-particle
Dirac Hamiltonian, the noninteracting Dirac Hamiltonian in
the presence of nuclear Coulomb potential [Eq. (1)], the Dirac
Hartree-Fock (DHF) Hamiltonian, and the Dirac Kohn-Sham
(DKS) Hamiltonian [16]. In this work, we will use the nonin-
teracting Dirac Hamiltonian of Eq. (1) as our Ĥ0 and refer to
this formulation as the X2C with the one-electron approxima-
tion (X2C1e) [52,53].

The effective two-component Hamiltonian is obtained via
the normalized elimination of the small component (NESC)
[55]. Defining the coupling matrix Xk between the large (Ak

+)
and the small component (Bk

+) coefficients for the electronic
solutions as

Bk
+ = XkAk

+ (20)

and inserting Eq. (20) into the electronic part of Eq. (17), we
obtain

VkAk
+ + TkXkAk

+ = SkAk
+εk

+, (21)

TkAk
+ + (Wk − Tk )XkAk

+ = 1

2c2
TkXkAk

+εk
+. (22)

By multiplying Eq. (22) on the left by (Xk )† and adding
it to Eq. (21), we obtain an un-normalized effective two-
component equation for the positive-energy solution (Ak

+ and
εk
+),

L̃k
+Ak

+ = S̃kAk
+εk

+, (23)

where

L̃k
+ = Vk + (Xk )†Tk + TkXk + (Xk )†(Wk − Tk )Xk, (24)

S̃k = Sk + 1

2c2
(Xk )†TkXk. (25)

L̃k
+ is the unnormalized electronic two-component Hamilto-

nian with the effective relativistic metric S̃k. In order to later

combine this expression with the nonrelativistic two-body in-
tegrals, we aim to rescale L̃k

+ with respect to the nonrelativistic
metric Sk (which is just the overlap matrix within the primitive
basis) with the help of the matrix Rk

+ derived by Liu and Peng
[59],

Rk
+ = (Sk )−

1
2 [(Sk )−

1
2 S̃k(Sk )−

1
2 ]−

1
2 (Sk )

1
2 . (26)

Multiplying Eq. (23) on the left by (Rk
+)†, we arrive at a two-

component equation expressed in terms of the nonrelativistic
metric Sk,

(HX2C1e
+ )kCk

2c = SkCk
2cε

k
+, (27)

where

(HX2C1e
+ )k = (Rk

+)†L̃k
+Rk

+, (28)

Sk = (Rk
+)†S̃kRk

+, (29)

Ck
2c = (Rk

+)−1Ak
+. (30)

Due to the presence of the spin-dependent Wk
SOC,

(HX2C1e
+ )k contains nonzero off-diagonal spin components.

While the presence of these terms incorporates the full SOC
effect ab initio at the one-electron level, it also introduces
an extra computational cost compared to spin-free (scalar)
theories such as the ones containing a nonrelativistic Hamil-
tonian. In cases where SOC is negligibly weak, an additional
approximation can be made, which we will refer to as the spin-
free X2C1e (sfX2C1e) [52], which consists of approximating
Wk ≈ Wk

SR such that (HsfX2C1e
+ )k becomes diagonal in spin

space.
Note that the Xk matrix in the X2C1e formalism is

constructed only once by solving the noninteracting Dirac
equation, Eq. (17), since no self-consistent loop is required for
a noninteracting Dirac solution. On the other hand, if the Dirac
Hartree-Fock (DHF) Hamiltonian or the Dirac Kohn-Sham
(DKS) Hamiltonian are taken as the H0, a self-consistent loop
between the Xk matrix and the single-particle solutions is
required.

E. X2C1e-Coulomb Hamiltonian

So far, we have not discussed the two-body electron-
electron interactions. Effectively, the NESC procedure can be
rewritten as a block diagonalization using a unitary transfor-
mation matrix U k [16,21]. Similarly, the same transformation
U k has to be applied to electron-electron interactions as
well [16,17,32]. However, this procedure would involve the
evaluation of two-body electron-electron integrals at the
four-component level and explicit transformation of differ-
ent Hamiltonian blocks, which is expensive. Instead, one
may perform an approximation and use the un-transformed
electron-electron Coulomb integrals [17,32]. The resulting
Hamiltonian consists of (HX2C1e

+ )k [Eq. (28)] along with the
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nonrelativistic two-electron Coulomb integrals U k1k2k3k4
i j k l ,

H =
∑

k

∑
i j

∑
σ,σ ′

(HX2C1e
+ )k

iσ, jσ ′ck,†
iσ ck

jσ ′

+ 1

2Nk

∑
i jkl

∑
kk′q

∑
σσ ′

U k,k−q,k′,k′+q
i j k l ck†

iσ ck′†
kσ ′c

k′+q
lσ ′ ck−q

jσ ,

(31)

where ck†
iσ (ck

iσ ) are the creation (annihilation) operators for
the single-particle spin-orbital state with crystal momentum
k, spin σ , and scalar Gaussian orbital i. The two-electron
Coulomb integrals are defined as

U k1k2k3k4
i j k l

=
∫
R3

dr1

∫
R3

dr2gk1∗
i (r1)gk2

j (r1)
1

|r1 − r2|gk3∗
k (r2)gk4

l (r2).

(32)

Note that translational invariance guarantees k1 + k3 = k2 +
k4. The singularity at q = k1 − k2 = k4 − k3 = 0 is excluded
manually.

The Hamiltonian of Eq. (31) is referred to as the X2C1e-
Coulomb Hamiltonian. In the case where the sfX2C1e
Hamiltonian is taken as the one-electron part in Eq. (31),
we refer to it as the sfX2C1e-Coulomb Hamiltonian. Due
to the decoupling in the spin space, existing nonrelativistic
many-body methods can be directly applied to the sfX2C1e-
Coulomb Hamiltonian without further modification.

Due to the use of un-transformed Coulomb interactions,
the resulting many-body Hamiltonian will suffer from the
so-called “picture-change” error [17,21,32]. In such a case,
the missing contribution is the small-component Coulomb
interaction which is responsible for the spin-same-orbit in-
teractions between electrons [32]. Contributions from the
transformed Coulomb term are important for properties of
electrons close to the nucleus but are typically small for va-
lence electrons [17,21]. Note that all X2C methods, including
X2C1e, combined with untransformed Coulomb interactions
have this issue, and it is not related to the one-electron approx-
imation or the exclusion of SOC.

The approximation of neglecting the relativistic corrections
in the electron-electron interaction can also be understood
in terms of perturbation theory. Beyond the nonrelativistic
Coulomb potential, the first-order relativistic correction to the
two-electron interaction is referred to as the Breit term and is
on the order of α2, where α = e2/(h̄c) ∼ 1/137 is the fine
structure constant [32,60]. Physically, neglecting this first-
order correction corresponds to not including spin-other-orbit
and spin-spin interactions between electrons [32].

F. Diagrammatic perturbation theory for the X2C1e-Coulomb
Hamiltonian

All relativistic contributions in the X2C1e-Coulomb
Hamiltonian are contained in the one-electron term, while the
two-electron integrals stay nonrelativistic. This implies that
when diagrammatic perturbation theories are extended to treat
relativistics and use the X2C1e-Coulomb Hamiltonian, they
simply acquire a changed noninteracting Green’s function.

The only complication consists of the spin-orbit coupling
term, which mixes the two spin species in the one-body term.

Here, we discuss the self-consistent GW (scGW ) theory
[61] in more detail, following the description of Ref. [37]
with the addition of off-diagonal spin components for the
one-electron quantities. The formulation of scGW based
on the X2C1e-Coulomb Hamiltonian can be understood as
a simplified version of the fully spin-dependent GW ap-
proximation [62,63] where the Coulomb interactions remain
spin-independent and the positronic degrees of freedom are
frozen at the noninteracting level. We emphasize that the
generalization to other diagrammatic methods, such as self-
consistent second-order perturbation theory (GF2) [64–66],
and embedding theories, such as SEET [33–35] or DMFT
[38,67], is straightforward when the X2C1e-Coulomb Hamil-
tonian is employed.

The computational cost of relativistic self-consistent GW
with ab initio Coulomb interactions has so far been sub-
stantial. Existing relativistic implementations include four-
component one-shot G0W0 [43], QSGW [44], and scGW [45]
based on the no-pair approximation for the Dirac-Coulomb
Hamiltonian, and a two-component one-shot G0W0 imple-
mentation constructed from a pseudopotential [22]. Fully
self-consistent GW in an ab initio two-component theory has
not yet been explored. The full self-consistency guarantees
that the method is thermodynamically consistent and conserv-
ing. Both properties are essential to prevent ambiguities in
embedding theories such as DMFT or SEET.

We express the general spin-dependent single-particle
Green’s function G for the X2C1e-Coulomb Hamiltonian via
the Dyson equation on the Matsubara frequency axis as

Gk(iωn) =
(

Gk
↑↑(iωn) Gk

↑↓(iωn)

Gk
↓↑(iωn) Gk

↓↓(iωn)

)
(33)

= [(iωn + μ)Sk − (HX2C1e
+ )k − �k(iωn)]−1, (34)

where μ is the chemical potential, ωn = (2n + 1)/β the
fermionic Matsubara frequency, β the inverse temperature,
and �k the self-energy. All quantities in bold fonts, except the
Green’s function Gk, are expressed in the large-component
spinor basis [Eq. (5)] with the overlap matrix Sk [Eq. (11)].
The Green’s function Gk is expressed in term of the biorthgo-
nal basis of Eq. (5) due to the matrix inversion in Eq. (34). In
Eq. (33), each spin block of the Green’s function is an N × N
matrix in which all occupied and virtual states are included.

In scGW , the spin-dependent self-energy (�GW )k[G](iωn)
is a functional of the interacting single-particle Green’s func-
tion G and can be separated into a static and a dynamic part
as

(�GW )k[G](iωn) = (�GW
∞ )k[G] + (�̃GW )k[G](iωn), (35)

where �GW
∞ is the static self-energy, and �̃GW (iωn) cor-

responds to the frequency-dependent contribution to the
self-energy which is obtained via the summation of an infinite
series of RPA-like “bubble” diagrams [61]. The off-diagonal
spin-orbit contributions enter the noninteracting Green’s func-
tion and contribute to the interacting Green’s functions and
self-energies through Eqs. (34) and (35).
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The static part of the GW self-energy (�GW
∞ ) contains the

Hartree- (J) and exchangelike (K) terms,

(�GW
∞ )k

iσ, jσ ′ = Jk
iσ, jσ ′ + Kk

iσ, jσ ′ , (36)

which are

Jk
iσ, jσ ′ = δσσ ′

Nk

∑
k′

∑
σ1

∑
ab

U kkk′k′
i j a b γ k′

bσ1,aσ1
, (37)

Kk
iσ, jσ ′ = −1

Nk

∑
k′

∑
ab

U kk′k′k
i b a j γ

k′
bσ,aσ ′ , (38)

and γ = −G(τ = β−) is a correlated one-body spin-density
matrix where G(τ ) is the Fourier transform of the Matsubara
Green’s function to imaginary time. τ = β− is referred to as
limτ→β− since G(τ ) has a discontinuity at τ = β due to its
antiperiodicity.

The dynamic part of the GW self-energy reads

(�̃GW )k
iσ, jσ ′ (τ ) = − 1

Nk

∑
q

∑
ab

Gk−q
aσ,bσ ′ (τ )W̃ k,k−q,k−q,k

i a b j (−τ ),

(39)

where W̃ is the spin-free effective screened interaction which
contains contributions beyond the static bare interaction U
and neglects the vertex corrections in the polarization func-
tion. In practice, we employ a density fitting decomposition
for the two-body Coulomb integrals [68,69]. The decomposi-
tion reads

U k1k2k3k4
i j k l =

∑
Q

V k1k2
i j (Q)V k3k4

k l (Q), (40)

where Q is an auxiliary scalar Gaussian basis index and
V k1k4

i l (Q) is the three-point integral defined in Eq. (14) from
Ref. [37]. This decomposition allows us to express the effec-
tive screened interaction W̃ as

W̃ k,k−q,k−q,k
i a b j (τ ) =

∑
Q,Q′

V k,k−q
i a (Q)P̃q

QQ′ (τ )V k−q,k
b j (Q′), (41)

P̃q
QQ(τ ) = 1

β

∑
n

P̃q
QQ′ (i�n)e−i�nτ , (42)

where P̃q(i�n) is a renormalized auxiliary function, an NQ

by NQ matrix for each momentum q and bosonic Matsubara
frequency �n = 2nπ/β (n = 0,±1, . . . ), given by

P̃q(i�n) =
∞∑

m=1

[
P̃q

0 (i�n)
]m

= [
IQ − P̃q

0 (i�n)
]−1

P̃q
0 (i�n), (43)

and

P̃q
0,QQ′ (i�n) =

∫ β

0
dτ P̃q

0,QQ′ (τ )ei�nτ , (44)

P̃q
0,QQ′ (τ ) = −1

Nk

∑
k

∑
σσ ′

∑
abcd

V k,k+q
d a (Q)

× Gk
cσ ′,dσ (−τ )Gk+q

aσ bσ ′ (τ )V k+q,k
b c (Q′). (45)

Note that P̃q
0 is a noninteracting auxiliary function which dif-

fers from a conventional noninteracting polarization function

with an additional square root of the Coulomb integrals mul-
tiplied from both sides. The same holds for the renormalized
auxiliary function P̃q. Although P̃q

0 is spin-free, it is affected
by SOC effect via the summation over spin indices σ and σ ′
in Eq. (45).

G. Integrable divergence treatment in two-component scGW

Due to the singularity at the bare Coulomb potential at
q = 0 in Eq. (32), both the HF exchange potential [Eq. (38)]
and the dynamic part of the GW self-energy [Eq. (39)] have
a integrable divergence when any finite k-point mesh is used.
A simple workaround is to manually exclude the G = 0 sin-
gularity at q = 0 in the evaluation of two-electron Coulomb
integrals, Eq. (32). However, this will result in a slow conver-
gence to the thermodynamic limit with respect to the number
of k points (Nk). In practical calculations, an additional finite-
size correction is crucial to facilitate the convergence to the
thermodynamic limit.

Rewriting the effective screened interaction in the plane-
wave basis, we have

W̃ k,k−q,k−q,k
i a b j (τ ) = 1

�

∑
GG′

ρ
k−qk∗

a i (G)

√
4π

|q + G|

× [
ε

q,−1
GG′ (τ ) − δGG′

] √
4π

|q + G|ρ
k−qk

b j (G′),

(46)

where ρ
k−qk

a i (G) is the Fourier transform of the pair density
ρ

k−qk
a i (r) = gk−q∗

a (r)gk
i (r), and ε

q
GG′ (τ ) is the dielectric func-

tion in the plane-wave basis. Inserting Eq. (46) into Eq. (39),
we arrive at

(�̃GW )k
iσ, jσ ′ (τ ) = −1

Nk�

∑
q

∑
ab

∑
GG′

Gk−q
aσ,bσ ′ (τ )ρk−qk∗

a i (G)

×
√

4π

|q + G|
[
ε

q,−1
GG′ (τ ) − δGG′

]

×
√

4π

|q + G′|ρ
k−qk

b j (G′). (47)

Equation (47) has singularities on the right-hand side at q = 0
whenever G = 0 or G′ = 0. However, these divergences are
integrable in the limit of infinite k points,

∑
q → �Nk

2π3

∫
dq.

For any finite k-point mesh, the singularities can be circum-
vented by manually neglecting the singularity of Coulomb
potential ∼1/|q + G|2 at q = G = 0. The resulting leading-
order error is typically referred to as the head correction
that comes from q = G = G′ = 0. Following the procedure
proposed by Ref. [70], the singularity at the q = G = G′ = 0
is eliminated by subtracting and adding an auxiliary function
with the same 1/q2 divergence on the right-hand side of
Eq. (47). The subtracted term eliminates the divergence which
makes the right-hand side of Eq. (47) be evaluated accurately
using a finite number of k-points. The singularity is effectively
transferred to the added term which will be evaluated through
analytical integration [70–72]. We use the same auxiliary
function proposed in Ref. [72]. The head correction of the
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dynamic part of the GW self-energy can be be expressed as

(�GW )k
iσ, jσ ′ (τ ) = −χ

∑
ab

Gk−q
aσ,bσ ′ (τ )ρk−qk∗

a i (G)

× [
ε

q,−1
GG′ (−τ ) − δGG′

]
ρ

k−qk
b j (G′)

∣∣
q=G=G′=0

(48)

= −χ
[
ε0,−1

00 (−τ ) − 1
] ∑

ab

Sk
iaGk

aσ,bσ ′ (τ )Sk
b j,

(49)

where χ is the supercell Madelung constant [72]. In the
present work, ε

q=0,−1
G=0,G′=0(τ ) is obtained by extrapolating using

a least-square fit from finite q points around the � point.
Similarly, the static finite-size correction to the HF exchange
potential reads [72]

(�HF)k
iσ, jσ ′ = −χ

∑
ab

Sk
ibγ

k
bσ,aσ ′Sk

a j, (50)

where γ is a correlated one-body spin-density matrix.

III. COMPUTATIONAL DETAILS

We apply both relativistic and nonrelativistic [37] scGW to
the electronic structure of silver halides AgX (X = Cl, Br, I).
Silver halides are semiconductors with small indirect band
gaps that crystallize in a rock salt structure [30,31,73]. They
exhibit a large scalar relativistic effect and an increasing SOC
contribution as the halogen is changed from Cl to I. Several
calculations are available for comparison [30,31].

The equilibrium lattice constant a0 of the silver halides
are either taken from experiment [74,75] or from PBE cal-
culations [30]. Note that the theoretical rock-salt structure
optimized at the level of PBE [30] is adopted for AgI in order
to have a direct comparison with Refs. [30,31]. All scGW cal-
culations are done at the inverse temperature β = 700 a.u.−1

(∼451 K) with a 6 × 6 × 6 k mesh in the first Brillouin zone.
For relativistic calculations, we use the all-electron triple-ζ

bases optimized with respect to X2C Hamiltonians (x2c-
TZVPall) [76]. The fully uncontracted basis is employed
during the constructions of the Dirac Hamiltonian Hk, the
coupling matrix Xk, and the X2C1e electronic Hamiltonian
HX2C1e

+ . Once the X2C electronic Hamiltonian is computed, it
is then transformed back to the contracted basis and combined
with the two-electron Coulomb interactions. For nonrelativis-
tic calculations, the all-electron pob-TZVP bases of triple-ζ
quality optimized for solid-state calculations [77] are used for
Cl atoms. Since pob-TZVP bases are not available for heavy
elements, we employ the all-electron double-ζ basis sets of
Godbout et al. [78] for Ag, Br, and I. Even-tempered Gaus-
sian bases are chosen to decompose the two-body Coulomb
integrals using the periodic range-separated Gaussian density
fitting recently developed by Ye and Berkelbach [69]. The
number of even-tempered Gaussian basis is found to be con-
verged for orbital energies within 0.001 a.u.

Integrals for the periodic X2C1e Hamiltonians and the
density-fitted two-body Coulomb integrals, as well as the
generalized DFT calculations, are evaluated in a modified
version of PYSCF [12]. The finite-size effects of HF and GW
exchange diagrams are corrected by a supercell Madelung

constant using the procedure described in Refs. [72,79]. A
Gaussian nucleus model proposed by Visscher and Dyall [80]
is employed in relativistic calculations.

To compute the spectral function, the converged single-
particle Green’s function is analytically continued from the
imaginary to the real frequency axis using the Nevanlinna an-
alytical continuation [81] along a high-symmetry k path. This
continuation method guarantees causality of the continued
function [81,82]. A broadening parameter of η = 0.007 a.u.
is used for all calculations. We found that reducing η to η =
0.005 and 0.001 sharpens the quasiparticle structure but does
not result in quantitative differences. For a direct comparison
to zero-temperature DFT results, a constant chemical potential
shift of around 1.0 eV is applied after the analytical continu-
ation to all finite-temperature spectral function calculations in
order to align the highest valence band with the Fermi energy.

All dynamic quantities such as the Green’s functions, self-
energies, and polarization function are expanded into the
compact intermediate representation (IR) [83] with sparse
sampling on both imaginary-time and Matsubara frequency
axes [84]. Sparse sampling greatly reduces the memory and
computation requirements and accelerates the Fourier trans-
forms between the imaginary-time and Matsubara frequency
axis.

IV. RESULTS

We choose to analyze the performance of the scGW based
on the relativistic X2C1e Hamiltonian on a series of silver
halides in a periodic code using Gaussian basis. These systems
are difficult since both correlation and relativistic effects are
assumed to play a significant role in reaching an agreement
with experimental values.

Several correlated GW calculations for silver halides
were reported before using different versions of the GW
self-consistency. Quasiparticle GW results for silver halides
based on the one-shot G0W0 or GW0 have been reported
in Refs. [85–88]. In these works, the relativistic effects are
treated either using the second variational approach [87,89]
or the pseudopotential [85,86]. Both Refs. [86,87] reached
a good agreement with experimental values and the reported
band gaps were only slightly underestimated. This is possibly
due to the error cancellation between the non-self-consistent
approximation and the missing vertex corrections in GW
[90,91]. A more severe underestimation of band gaps is ob-
served in Ref. [85] which could partially be due to choice
of pseudopotential [86,92]. Since multiple theoretical differ-
ences such as the basis, the level of self-consistency, or the
exact version of GW (real axis versus imaginary axis), or
even the level of inclusion of relativistic effects are present
in these previous works, ultimately we refrain ourselves from
comparing to their theoretical results and choose to compare
our results to experimental values directly.

A. X2C1e approximation

We start the discussion of the two-component formalism by
examining the quality of the X2C1e-Coulomb and sfX2C1e-
Coulomb Hamiltonians (as defined in Sec. II E) within DFT.
This allows us to straightforwardly compare band structure
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TABLE I. Lattice constants a0 and energy gaps (eV) of AgI
calculated using the PBE functional with various Hamiltonians.

Nonrelativistic a0 L-L �-� X -X L-X

PBE 6.280 4.16 3.10 3.55 1.64
PBE [31] 6.280 3.99 3.11 3.54 1.59
PBE [30] 6.280 3.91 3.14 3.56 1.60

Scalar relativistic

sfX2C1e-Coulomb 6.169 3.48 2.26 3.05 0.75
sfX2C-Coulomb [30] 6.165 3.42 2.27 3.07 0.74
pseudopotential 6.169 3.47 2.24 3.06 0.74

Fully relativistic

X2C1e-Coulomb 6.169 3.22 1.88 2.75 0.51
DKS-Coulomb [31] 6.169 3.25 1.88 2.74 0.49
X2C-Coulomb [30] 6.169 3.17 1.90 2.76 0.49

effects to other DFT implementations. We chose AgI as our
test system because, within the family of silver halides, both
the scalar relativistic effect and the SOC are expected to be
the largest for AgI.

We solve the Kohn-Sham (KS) equation with the PBE
exchange-correlation functional for AgI based on the X2C1e-
Coulomb and the sfX2C1e-Coulomb Hamiltonian, and com-
pare these results against the DFT results with Dirac
Kohn-Sham Coulomb (DKS-Coulomb), the sfX2C-Coulomb,
and the X2C-Coulomb Hamiltonian listed in Refs. [30,31].
The DKS-Coulomb Hamiltonian is solved as a one-electron
DKS Hamiltonian whose external potential V (r) is chosen
to be the KS potential using the PBE exchange-correlation
functional [31]. The X2C-Coulomb and sfX2C-Coulomb are
the corresponding X2C Hamiltonians with and without the
SOC contribution from the small component potential [30].
Note that all three Hamiltonians approximate the two-electron
Coulomb interaction with the nonrelativistic Coulomb opera-
tor, neglecting relativistic corrections to the electron-electron
interaction.

Table I shows the band gaps of AgI at the selected special
k points calculated using the PBE functional with various

Hamiltonians. Shown are nonrelativistic, scalar relativistic,
and fully relativistic DFT results.

We first discuss the sfX2C1e-Coulomb results, where only
scalar relativistic effects are included. Compared to the non-
relativistic calculation, the scalar relativistic effects induce
a band-gap narrowing on the order of 1 eV. Compared
to the more precise sfX2C-Coulomb Hamiltonian, which
additionally includes small component potentials from the
nonrelativistic Coulomb operator and the PBE exchange-
correlation operator (thereby eliminating the picture-change
error), the agreement within DFT is excellent. This quan-
titative agreement between sfX2C-Coulomb and sfX2C1e-
Coulomb suggests that the effect of picture-change error is
negligible in the valence bands of AgI.

We have also conducted a nonrelativistic calculation for
AgI in the Gaussian gth-tzvp-molopt-sr basis [93] and the
gth-pbe pseudopotential [94]. The corresponding band gaps
(see Table I) and the band structure (see Fig. 2) are found
to be very similar to the ones from the sfX2C1e-Coulomb
Hamiltonian. Since the gth-pbe pseudopotential is optimized
in relativistic atomic calculations, it contains the atomic scalar
relativistic effects from the core electrons. The agreement
between the results from the sfX2C1e-Coulomb Hamiltonian
and the nonrelativistic pseudopotential calculation confirms
that the scalar relativistic effects in this system are mostly
atomic-like. This agreement justifies the wide usage of such
pseudopotentials in real-material simulations.

Next, we discuss results that include the SOC term in the
X2C1e-Coulomb Hamiltonian. As shown in Table I, band
gaps at the selected special k-points are again in excellent
agreements with results from both the DKS-Coulomb [31]
and the X2C-Coulomb Hamiltonian [30]. Besides the addi-
tional band-gap narrowing, the SOC induces non-negligible
spin-orbit splittings around the Fermi energy along the high-
symmetry k path as shown in the right panel of Fig. 1. Such
splittings are found to be both qualitatively and quantitatively
consistent with the ones from the more sophisticated four-
component DKS-Coulomb Hamiltonian [31]. Similar analysis
for AgCl and AgBr can be found in Appendix B.

Figure 1 illustrates the changes of the band-structure of
AgI as relativistic effects are considered. The left panel shows

FIG. 1. The DFT band structure of AgI calculated using the PBE functional with various Hamiltonians. The left panel is obtained from
the nonrelativistic Hamiltonian (a0 = 6.280 Å). The middle and the right panel show the result from the sfX2C1e-Coulomb and the X2C1e-
Coulomb Hamiltonian (a0 = 6.169 Å). The coloring of bands is employed to highlight orbitals close to the Fermi level.
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FIG. 2. The DFT band structure of AgI calculated using the PBE
functional in the Gaussian gth-tzvp-molopt-sr basis [93] and the gth-
pbe pseudopotential [94]. a0 = 6.169 Å. The coloring of bands is
employed to highlight orbitals close to the Fermi level.

results from a nonrelativistic calculation. The middle panel
includes scalar relativistic effects, and the right panel ad-
ditionally includes SOC. As alluded to by Table I, scalar
relativistic effects lead to large changes in the band gap, and
spin-orbit coupling to an additional adjustment of the gap and
to a remarkable splitting of the orbital degeneracies at the
�, X , and L points (see colored bands).

Figure 2, which should be compared to the middle panel
of Fig. 1, further illustrates how results from the nonrelativis-
tic pseudopotential calculation recover the (scalar relativistic)
effects absorbed in the pseudopotential.

B. Relativistic scGW

Having established the quality of the X2C1e approx-
imation, we now show results from fully self-consistent
finite-temperature GW perturbation theory and compare them
with available experimental data [95–99]. We emphasize that
our results are fully self-consistent and conserving solutions
of Hedin’s equations and contain no further approximations
such as quasi-particle or G0W0 approximations. All GW re-
sults reported here include finite-size corrections in both the
HF and GW exchange diagrams as discussed in Sec. II G.
A comparison with and without the finite-size corrections is
discussed in Appendix C. Table II illustrates band gaps at the
selected k points for the three compounds AgCl (top row),
AgBr (middle row), and AgI (bottom row) calculated using
scGW . In Fig. 3, left panels show nonrelativistic k-resolved
spectral function calculations; middle panels show spin-free
calculations; and right panels show the effects of spin-orbit
coupling.

We start our discussion with the nonrelativistic scGW k-
resolved spectral functions as shown in the left column of
Fig. 3. scGW correctly predicts the indirect band gaps be-
tween the � and the L point for AgCl and AgBr, and between
the L and the X points for AgI. This is consistent with DFT

TABLE II. Band gaps of AgCl, AgBr, and AgI at special k points
calculated using scGW for Hamiltonians indicated.

AgCl; a0 = 5.550 L-L �-� X -X L-�

Nonrelativistic 8.42 7.42 10.92 5.45
sfX2C1e-Coulomb 7.42 6.23 8.78 4.10
X2C1e-Coulomb 7.42 6.18 8.50 4.09
Expt 5.2 [95] 3.2 [96], 3.0 [97]

AgBr; a0 = 5.774 L-L �-� X -X L-�

Nonrelativistic 7.48 6.47 8.94 4.98
sfX2C1e-Coulomb 6.49 5.21 7.50 3.51
X2C1e-Coulomb 6.41 5.01 7.33 3.44
Expt 4.3 [98] 2.7 [99], 2.5 [97]

AgI; a0 = 6.169 L-L �-� X -X L-X

Nonrelativistic 6.53 6.07 6.69 4.42
sfX2C1e-Coulomb 5.60 4.48 5.54 3.22
X2C1e-Coulomb 5.27 4.05 5.18 2.90

results [30,31,73]. An orbitally resolved analysis of the GW
spectral functions suggests that the features around −2 eV are
mainly of halogen p character, while features around −4 eV
are dominated by Ag d orbitals. As the weight of the halogen
is increased, the hybridization between the halogen p orbitals
and the Ag d orbitals gradually decreases. As shown in Ta-
ble III, within DFT, the nonrelativistic indirect band gaps of
AgX are almost independent of the halogen. In contrast, GW
results show increasing indirect band gaps from I to Br, and
to Cl. The maximum band-gap widening found in AgCl is
about 3.5 eV compared to the nonrelativistic DFT result. As
compared to experiment, nonrelativistic scGW consistently
overestimates the band gaps by up to 2 eV [95–97,99].

Next, we discuss the inclusion of scalar relativistic effects
through the sfX2C1e-Coulomb Hamiltonian. Similar to what
is observed in PBE calculations for AgI, the scalar relativistic
effect induces strong band-gap narrowing in all silver halides,
rendering the GW predictions closer to the experimental data
compared to their nonrelativistic counterparts, as shown in
Tables II and III. On the other hand, a similar band-gap
narrowing effect pushes the PBE gap values even far away
from the experimental values, see Table III. The band-gap
narrowing is mainly caused by the orbital contraction of the
Ag 5s orbital, which lowers the energy of the lowest con-
duction band. If one measures the scalar relativistic effect in
terms of the band-gap narrowing compared to nonrelativistic
calculations, a similar magnitude of the scalar relativistic ef-
fect is observed in all silver halides even though the atomic
number of halogens increases from Cl to Br, and then to
I. We suspect that a similar band-gap narrowing reflects the
strong scalar relativistic effect in the Ag atoms, especially in
the conduction bands which corresponds to the strong Ag 5s
orbital contractions.

Finally, using Figs. 3, 4, and Table IV, we discuss the
SOC contribution. As expected, spin-orbit effects in AgCl are
weakest. The largest difference of the band gaps occurs at the
X point, where the spin-orbit splitting is caused by the Ag d
orbitals. Cl p orbitals, which dominate the remainder of the
states near the Fermi energy, exhibit much less SOC.
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FIG. 3. The scGW k-resolved spectral functions of AgCl (top row), AgBr (middle row), and AgI (bottom row) calculating from the
nonrelativistic (left), the sfX2C1e-Coulomb (middle), and the X2C1e-Coulomb (right) Hamiltonian (a0 = 5.550, 5.774, and 6.169 Å,
respectively).

TABLE III. Indirect band gaps of AgCl, AgBr, and AgI calculated using PBE and scGW for the nonrelativistic (NR), sfX2C1e-Coulomb,
and X2C1e-Coulomb Hamiltonians. The indirect band gap occurs between the L and � points for AgCl, AgBr, and between the L and X points
for the rock-salt AgI. Experimental lattice constants are used for AgCl (5.550 Å) and AgBr (5.774 Å) while an PBE optimized one is taken for
AgI (6.169 Å).

Systems PBE PBE PBE scGW scGW scGW Expt
NR sfX2C1e-Coulomb X2C1e-Coulomb NR sfX2c1e-Coulomb X2C1e-Coulomb

AgCl 1.71 0.93 0.88 5.45 4.10 4.09 3.2 [96], 3.0 [97]
AgBr 1.62 0.69 0.61 4.98 3.51 3.44 2.7 [99], 2.5 [97]
AgI 1.56 0.75 0.51 4.42 3.22 2.90

085121-10



RELATIVISTIC SELF-CONSISTENT GW : EXACT … PHYSICAL REVIEW B 106, 085121 (2022)

FIG. 4. The orbital-resolved k-dependent spectral functions of
AgI at the �, X , and L point, calculated using scGW based on the
X2C1e-Coulomb Hamiltonian. a0 = 6.169 Å.

In AgBr and AgI, SOC within the X2C1e-Coulomb ap-
proximation further reduces the band gaps and causes a
substantial spin-orbit splitting around the Fermi energy, ren-
dering the scGW AgBr band gaps slightly closer to the
experimental values. Table IV shows the spin-orbit splitting

TABLE IV. Spin-orbit splittings of AgBr and AgI at the �, X ,
and L points.

AgBr AgI
PBE HF scGW PBE HF scGW

� 0.55 0.71 0.60 1.07 1.34 1.15
X 0.11 0.39 - 0.42 0.66 0.56
L 0.13 0.28 0.19 0.45 0.71 0.55

gap calculated from PBE, HF, and scGW at the � point,
which we define as the gap between the p3/2 and the p1/2

bands. Also shown are splittings at the X and the L points,
which are defined as the splitting of the p3/2 bands due to
the cubic crystal field. Due to the thermal broadening in the
finite-temperature scGW and the broadening introduced by
the analytical continuation, we are not able to resolve the
small GW orbital splitting of AgBr at the X point. Consis-
tently, HF predicts the largest spin-orbit splittings while the
ones from PBE are the smallest. The differences between
HF and scGW are exclusively due to the additional electron
correlation illustrated at the level of GW and its interplay with
relativistic effects.

Figure 4 shows the orbital-resolved k-dependent spectral
functions of AgI at the �, the X , and the L points, ob-
tained via scGW . The atomic orbital character is defined
in terms of symmetrized atomic orbitals (SAO) [100] con-
structed from Gaussian Bloch orbitals. Orbitals with the same
atomic symmetry are then added up. The height of such a
partial orbital-summed spectral function will then reflect the
corresponding degeneracy. The characters of the low-lying
bands varies in the Brillouin zone and involves s-, p-, and
d-type orbitals from both Ag and I. Different types of orbital
admixtures are found at different k points. However, for all
the k points analyzed here, features between −4 to −6 eV are
dominated by orbitals with Ag d character.

At the � point, the highest two valence bands are domi-
nated by the I p orbitals. Their six-fold degeneracy is broken
in the presence of SOC, resulting in two twofold degenerate
p3/2 bands and one twofold degenerate p1/2 band. The tallest
orange dotted feature corresponds to the p3/2 bands.

At the X point, besides the spin-orbit splitting, the cubic
crystal field further splits the p3/2 bands into two eigenstates
(mj = ±3/2, ±1/2), resulting in a three-peak structure where
the three peaks have a similar peak height. In contrast to the
� point, the I p orbitals hybridize with the Ag p orbitals with
the same orbital splitting pattern. Additional orbital mixture is
also found between the Ag s and the I d orbitals at the lowest
conduction band.

At the L point, Ag d orbitals start to contribute to the
highest valence bands and the Ag p orbitals hybridize with the
lowest conduction band. Similar observations can be made for
AgCl and AgBr.

The strong k dependence of the orbitals involved in the
low-energy physics implies that special care needs to be taken
when low-energy effective model systems are constructed,
such as those needed in DMFT and other embedding theories.

Overall, we found that relativistic effects result in large
quantitative differences in the electronic band structure as
well as the band gap values. While nonrelativistic all-electron
scGW tends to significantly overestimate band gaps, relativis-
tic all-electron scGW renders the theoretical band gaps closer
to the experimental values. Note that the basis convergence
of silver halides has been recently found to be particularly
slow due to the Ag d orbitals [86,87]. An analysis of the
basis set convergence of our GTOs basis set, as shown in
the Appendix A, suggests a further band-gap narrowing of
about 0.1–0.2 eV for our theoretical indirect band gaps from
a triple-ζ basis set (x2c-TZVPall) to a quadruple-ζ basis set
(x2c-QZVPall).
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V. CONCLUSIONS

In this paper, we present a formulation of relativistic all-
electron scGW for periodic systems where relativistic effects
are treated in the X2C1e approximation. The formulation is
able to capture electron correlations, one-electron relativistic
effects, as well as the interplay of correlations with relativistic
effects. It is fully ab initio, in the sense that no adjustable
parameters are used. For systems with weak SOC, the spin
separation in the X2C theory provides a promising spin-free
approximation whose computational complexity is identical
to nonrelativistic calculations.

We present results from the newly implemented method-
ology for the silver halides AgCl, AgBr, and AgI. These
materials form a sequence of semiconductors with small in-
direct band gaps where relativistic effects are systematically
increasing. To validate the X2C1e-Coulomb approximation,
we test DFT with the X2C1e-Coulomb and sfX2C1e-
Coulomb Hamiltonians against reference four-component
DFT calculations and obtain excellent agreement with this
more sophisticated approximation.

By systematically adding relativistic effects in scGW cal-
culations, we find that electron correlation, relativistics, and
their interplay are essential to describe the near-Fermi-surface
orbitals. For AgCl and AgBr, the relativistic scGW treatment
consistently improves agreement with experimental data (no
such data is available for AgI).

The remaining deviations from the experimental values
are likely due to a combination of correlation effects (i.e.,
beyond-GW diagrammatics), basis-set effects, finite size ef-
fects, picture-change errors, and relativistic approximations
on the two-particle level. We believe that, of those, the cor-
relation effects form the dominant contribution. Embedding
theories such as DMFT [38,67] or SEET [33–35] provide
promising routes to include some of these correlations, at
least where they are local. While the ab initio inclusion of
these terms within four-component theories requires major
changes to impurity solvers and self-consistencies, as well
as additional approximations, we emphasize that one of the
main advances of the X2C1e-Coulomb Hamiltonian is that
two-body terms remain unchanged from the nonrelativis-
tic version. Nonrelativistic diagrammatic implementations of
methods such as GW , DMFT, or SEET can therefore directly
be applied to relativistic problems.
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APPENDIX A: BASIS SET CONVERGENCE

Here, we investigate the basis convergence of the scGW
band gaps. Note that, in the present work, no implicit orbital
truncation is employed which means all the Bloch GTOs

TABLE V. scGW band gaps of AgBr calculated employing the
sfX2C1e-Coulomb Hamiltonian in different basis sets [76,101] at an
4 × 4 × 4 �-centred k mesh and inverse temperature β = 300 Ha−1.
The total numbers of GTOs per cell for each basis set are listed in the
second column.

basis orbitals L-L �-� X -X L-�

x2c-SV(P)all 78 6.86 5.64 8.03 3.94
x2c-SVPall 101 6.66 5.37 7.66 3.69
x2c-TZVPall 111 6.54 5.28 7.54 3.58
x2c-TZVPPall 127 6.55 5.15 7.35 3.54
x2c-QZVPall 185 6.47 5.14 7.29 3.50

(both occupied and virtual orbitals) are included in every
GW evaluated expression. We adopt a family of all-electron
Gaussian basis optimized with respect to X2C Hamiltonian
[76,101]. The basis set is systematically enlarged starting
from the double-ζ (called here x2c-SV(P)all) to triple-ζ (x2c-
TZVPall), and to quadruple-ζ (x2c-QZVPall) level. For the
double-ζ and the triple-ζ basis, more polarized variants are
also used (x2c-SVPall and x2c-TZVPPall, respectively) in
which additional high-lying orbitals are added. A higher tem-
perature is used to circumvent large IR grids on the imaginary
axes for large basis set such as x2c-QZVPall basis. It is found,
as expected for insulators, that temperature dependency of
band gaps from β = 700 to 300 a.u.−1 is consistently well
below 0.01 eV.

As suggested in Ref. [87], for silver halides similar to the
well-known system ZnO, a slow basis set convergence, is
expected due to the silver d orbitals. In Table V, we exam-
ine such basis set effects and observe a systematic basis set
convergence of the scGW band gaps. From x2c-SV(P)all to
x2c-TZVPall basis, a maximum difference of ∼0.5 eV for
X -X band gap is observed. All other band gaps (L-L, �-�,
L-�) result in smaller differences. Further adding more high-
lying localized orbitals, a maximum difference of ∼0.25 eV is
observed for the X -to-X gap when going from x2c-TZVPall to
x2c-QZVPall basis. Even smaller differences are observed for
the other gaps. Note that from x2c-SV(P)all to x2c-TZVPall,
and to x2c-QZVPall basis set, the number of GTO orbitals
in the unit cell increases from 78 to 111, and finally to 185.
Consequently, while we cannot attest that our results are

TABLE VI. Lattice constants a0 and energy gaps (eV) of AgCl.

Nonrelativistic a0 L-L �-� X -X L-X

PBE 5.692 5.00 3.46 5.55 1.72
PBE [31] 5.692 4.93 3.47 5.47 1.68
PBE [30] 5.692 4.72 3.44 5.29 1.67

Scalar relativistic

sfX2C1e-Coulomb 5.612 4.44 3.09 4.27 0.94
sfX2C-Coulomb [30] 5.613 4.31 3.09 4.23 0.92

Fully relativistic

X2C1e-Coulomb 5.612 4.39 2.98 4.03 0.89
DKS-Coulomb [31] 5.612 4.47 2.93 4.20 0.87
X2C-Coulomb [30] 5.612 4.27 2.99 4.03 0.88
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TABLE VII. Lattice constants a0 and energy gaps (eV) of AgBr.

Nonrelativistic a0 L-L �-� X -X L-X

PBE 5.937 4.54 2.92 4.81 1.60
PBE [31] 5.937 4.36 2.96 4.81 1.59
PBE [30] 5.937 4.31 2.97 4.81 1.57

Scalar relativistic

sfX2C1e-Coulomb 5.843 3.93 2.43 3.89 0.70
sfX2C-Coulomb [30] 5.843 3.87 2.43 3.87 0.68

Fully relativistic

X2C1e-Coulomb 5.843 3.85 2.24 3.65 0.62
DKS-Coulomb [31] 5.843 3.82 2.24 3.68 0.61
X2C-Coulomb [30] 5.843 3.77 2.25 3.67 0.60

converged completely with the basis set size, going to the
next level x2c-5ZVPall basis set will most likely result in
differences at the level of ∼0.1 eV and we should not expect
any major quantitative differences between x2c-QZVPall and
x2c-5ZVPall basis sets.

Enlarging the size of GTO basis sets is similar to adding
high energy local orbitals (HLO) within the LAPW frame-
work. A similar basis convergence behavior with respect to
HLOs can be found for LAPW calculations in Ref. [87]. In
the presence of Ag d orbitals, although a less severe basis
set error is found in our GTO basis compared to the standard
LAPW basis set, the x2c-TZVPall basis set used in the present
work still suffers from the basis set error.

APPENDIX B: DFT BAND GAPS

Here we present PBE band gaps calculated using the non-
relativistic and series of relativistic Hamiltonians for a similar
direct comparison as performed in Sec. IV A. For AgCl and
AgBr, the lattice constants optimized at the PBE level [30]
were used. As shown in Tables VI and VII, the PBE band
gaps calculated using the sfX2C1e-Coulomb and the X2C1e-
Coulomb Hamiltonian show similar agreement with the more
sophisticated relativistic Hamiltonians, which is consistent to
what we observe for AgI in Sec. IV A.

APPENDIX C: FINITE-SIZE CORRECTIONS

The finite-size effects in our relativistic scGW are inves-
tigated as shown in Fig. 5. The scGW band gaps of AgBr
with (GW -corr) and without (GW -uncorr) the head correction
to the dynamic part of the GW self-energy [Eq. (49)] as a
function of N−1/3

k . Note that the finite-size corrections to the
HF exchange potential is always included in both GW -corr
and GW -uncorr.

The scGW band gaps without the head correction cal-
culated using both the sfX2C1e-Coulomb and the X2C1e-
Coulomb Hamiltonians show a linear dependence with respect
to N−1/3

k , as expected. We then fit the scGW band gap to

FIG. 5. scGW band gaps of AgBr calculated using the sfX2C1e-
Coulomb (top) and the X2C1e-Coulomb (bottom) Hamiltonian as a
function of N−1/3

k . Both the scGW band gaps with (GW -corr) and
without (GW -uncorr) the head corrections to the dynamic part of the
GW self-energy as shown.

�(Nk ) = �TDL + aN−1/3
k and extrapolate it to the thermody-

namic limit (TDL) value �TDL which is shown as the blue
dotted lines. In spite of the nice linear dependence with re-
spect to N−1/3

k , the slow convergence to TDL values makes
the realistic finite size-uncorrected calculations impractical.
The explicit inclusion of the head correction to the integrable
divergence in the dynamic part of the GW self-energy results
in a significantly faster convergence of GW band gaps with
respect to the number of k points. A similar convergence
pattern is observed for both the sfX2C1e-Coulomb and the
X2C1e-Coulomb Hamiltonians. The band gap is converged
within 0.01 eV from 5 × 5 × 5 to 6 × 6 × 6 k meshes. The
differences between scGW band gaps with the head correc-
tions at a 6 × 6 × 6 k mesh and the extrapolated TDL values
are −0.06 and −0.05 for the sfX2C1e-Coulomb and the
X2C1e-Coulomb Hamiltonian, respectively. The same con-
vergence pattern is observed in AgCl and AgI as well, and
the differences between the corrected values at a 6 × 6 × 6 k
mesh and the extrapolated TDL values are all within 0.1 eV.
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