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Magnetic excitations, nonclassicality, and quantum wake spin dynamics in the Hubbard chain
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Recent work has demonstrated that quantum Fisher information (QFI), a witness of multipartite entanglement,
and magnetic Van Hove correlations G(r, t ), a probe of local real-space real-time spin dynamics, can be
successfully extracted from inelastic neutron scattering on spin systems through accurate measurements of the
dynamical spin structure factor S(k, ω). Here we apply theoretically these ideas to the half-filled Hubbard chain
with nearest-neighbor hopping, away from the strong-coupling limit. This model has nontrivial redistribution of
spectral weight in S(k, ω) going from the noninteracting limit (U = 0) to strong coupling (U → ∞), where it
reduces to the Heisenberg quantum spin chain. We use the density matrix renormalization group to find S(k, ω),
from which QFI is then calculated. We find that QFI grows with U . With realistic energy resolution it becomes
capable of witnessing bipartite entanglement above U = 2.5 (in units of the hopping), where it also changes
slope. This point is also proximate to slope changes of the bandwidth W (U ) and the half-chain von Neumann
entanglement entropy. We compute G(r, t ) by Fourier transforming S(k, ω). The results indicate a crossover
in the short-time short-distance dynamics at low U characterized by ferromagnetic light-cone wavefronts, to
a Heisenberg-type behavior at large U featuring antiferromagnetic light cones and spatially period-doubled
antiferromagnetism. We find this crossover has largely been completed by U = 3. Our results thus provide
evidence that, in several aspects, the strong-coupling limit of the Hubbard chain is reached qualitatively already
at a relatively modest interaction strength. We discuss experimental candidates for observing the G(r, t ) dynamics
found at low U .
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I. INTRODUCTION

In principle, the full information about a quantum many-
body system at a given time t is contained in the set of all
equal-time correlation functions [1]. However, most current
experimental scattering and spectroscopy methods only ac-
cess one- and two-point correlation functions. It is thus of
interest to extract as much information as we can from these
more accessible correlators, especially measures of quantum
correlations or “quantumness” in strongly correlated systems
[2]. Indeed, accessing more information on the quantum states
from measurements would aid in identifying and selecting
materials and models for further study as well as help in the
design of more effective experiments.

For example, inelastic neutron scattering probes magnetic
excitations by measuring spin-spin correlations encoded in
the dynamical spin structure factor S(k, ω) [3,4]. Recently, it
was shown that a witness [5–7] of multipartite entanglement
known as quantum Fisher information (QFI) [8,9] can be
obtained from an integral over S(k, ω) [10]. Similarly to how
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Bell inequalities have been used to demonstrate entanglement
in few-particle systems [11–14] and certain many-particle
systems [15,16], one can obtain inequalities for QFI and
other entanglement witnesses that can only be satisfied in
specific classes of entangled states. Witnesses thus provide
a promising approach to entanglement detection and quan-
tification. Neutron measurements of QFI temperature scaling
[17,18] and QFI entanglement bounds [18–20] have since
been made for low-dimensional quantum spin systems. Other
entanglement witnesses relying on other subsets of the infor-
mation in S(k, ω), such as the static structure factor [21–23]
or equal-time real-space spin-spin correlations [24–26], have
also been discussed and in some cases measured with neutrons
[18–20,27–29]. The use of such witnesses for, e.g., helping
to experimentally identify quantum spin-liquid candidates, is
actively being considered [20].

An alternative perspective on S(k, ω) may be found by
recalling that it is a Fourier transform of an underlying
real-space two-site two-time correlation function G(r, t ). In
neutron scattering G(r, t ) is known as the Van Hove corre-
lation function [3,30,31], whereas in the context of lattice
models it is more commonly called a dynamical correlation
function [for example, in a spin-isotropic one-dimensional
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system we define G(r, t ) ∼ 〈Sz
i (0)Sz

i+r (t )〉]. Investigating this
quantity instead of the momentum- and frequency-resolved
dynamics usually studied in spectroscopy might lead to new
insights, perhaps particularly in correlated systems with local
interactions.

As noted by Van Hove in 1954 [30,31] the imaginary
part Im[G(r, t )] vanishes for a classical system. Nonzero
Im[G(r, t )] thus indicates quantum properties of the local
dynamics. The case Im[G(r, t )] ≡ 0 is relevant to, e.g., clas-
sical fluids, where G(r, t ) may be understood as the average
number density at r and t given that a particle was at the
origin at time t ′ = 0. This picture has been used to interpret
experimental data on liquid lead [32], water [33], and Zr80Pt20

[34,35]. Here we are instead concerned with the quantum
case, where the interpretation of G(r, t ) is complicated by
the noncommutativity of operators at different times. This
may explain, in part, why numerical results for G(r, t ) are
rarely reported in the literature (see Ref. [36] for an exception
to this rule) despite such real-time correlators being used as
intermediate steps in some numerical techniques to calculate
S(k, ω). Recently, such correlations have also been obtained
using quantum computers [37–39].

Importantly, this noncommutativity allows a window into
the dynamics of local quasiparticles and the quantum coher-
ence of the system. This was recently reported in the S = 1

2
Heisenberg antiferromagnetic chain system KCuF3, where
G(r, t ) was obtained from both theory and neutron scatter-
ing [40]. The data showed the propagation of correlations
was limited by a light cone, as expected from Lieb-Robinson
bounds [41–43]. In addition, a signal oscillating in time with
fixed period was found, and Re[G(r, t )] revealed dynamic
spatial period doubling in the antiferromagnetic correlations,
which could heuristically be interpreted in terms of spinon-
spinon scattering processes. This dynamic period-doubled
state above the light cone is markedly different from the static
Néel order below it, featuring vanishing odd-nearest-neighbor
correlations, and was referred to as a “quantum wake” in
analogy with the wake created by a moving ship. Finally,
G(r, t ) was found to tend towards real non-negative values
with temperature, indicating a crossover to classical behavior.

In this work we apply these QFI and G(r, t ) approaches to
one of the simplest models of strongly correlated electrons:
the paradigmatic one-dimensional (1D) Hubbard chain with
repulsive onsite interactions and nearest-neighbor hopping
[44–47]. It interpolates between a noninteracting system with
a plane-wave solution at weak coupling and the Heisenberg
spin chain at strong coupling [48,49]. We use the density ma-
trix renormalization group (DMRG) [50,51] to obtain S(k, ω),
QFI, and G(r, t ) as a function of the Hubbard interaction
strength. We find crossovers in spectra, G(r, t ), QFI, and
entanglement entropy. These all occur at modest Hubbard
interaction strengths U < W (0), where W (0) = 4t̃ is the non-
interacting bandwidth, reflecting a crossover from itinerant
electron physics to increasingly localized magnetic moments
as U is raised.

This paper is organized as follows. In Sec. II we fix our
notation for S(k, ω), and introduce the definitions of QFI and
G(r, t ) used in this work. In Sec. III we review relevant results
for the 1D Hubbard model and discuss the numerical method.
Our results are presented in Sec. IV and discussed in Sec. V

along with potential material realizations and experimental
considerations. We summarize the conclusions in Sec. VI.
Some technical details and analytical results are contained in
Appendices.

II. QUANTUM FISHER INFORMATION
AND VAN HOVE CORRELATIONS

The dynamical spin structure factor (DSF) is defined by

Sab(k, h̄ω) = 1

2πNh̄

∫ ∞

−∞

∑
i, j

〈
Sa

i (t )Sb
j (0)

〉
e−ik·(ri−r j )e+iωt dt

= 1

2πNh̄

∫ ∞

−∞

∑
i, j

〈
Sa

i (0)Sb
j (t )

〉
e−ik·(ri−r j )e−iωt dt,

(1)

where N is the number of sites i, j. a, b ∈ {x, y, z}, h̄ = h/2π

is the reduced Planck constant, and, in the Heisenberg picture,
Sb

j (t ) = eiHt/h̄Sb
j e

−iHt/h̄. Both conventions shown in Eq. (1)
are used in the literature and are equivalent assuming station-
arity holds, i.e., 〈Sa

i (t )Sb
j (0)〉 = 〈Sa

i (0)Sb
j (−t )〉. The DSF sat-

isfies detailed balance S(k,−h̄ω) = exp(−h̄ω/kBT )S(k, h̄ω),
and is constrained by sum rules, such as∑

a

∫ ∞

−∞
d (h̄ω)

∫
BZ

dk Saa(k, h̄ω)
V0

(2π )d
= S(S + 1), (2)

where BZ indicates the integral is taken over the first Bril-
louin zone, a ∈ {x, y, z}, d is number of spatial dimensions,
and V0 is the volume of the unit cell of the direct lat-
tice. [V0/(2π )d = 1 if momenta are measured in lattice units
h, k, l, . . . .] Equation (2) applies to systems with spin-S mo-
ments on each site. This assumption holds for the Hubbard
model at half-filling and strong coupling, but breaks down
at finite electron-electron repulsion, for which sites may be
unoccupied or doubly occupied. The corrected sum rule for
one-band electronic systems is [52]∑

a

∫ ∞

−∞
d (h̄ω)

∫
BZ

dk Saa(k, h̄ω)
V0

(2π )d
= 3

4
(n − 2D), (3)

where

n = 1

N

∑
i,σ

〈niσ 〉, (4)

D = 1

N

∑
i

〈ni↑ni↓〉 (5)

measure the average orbital and double occupancy, respec-
tively. (We have assumed the electron g factor ge ≈ 2, and
used units where μB = 1. To restore these factors explicitly,
see full expressions in Ref. [52].) The DSF is related to the
dynamical susceptibility χ ′′ by the fluctuation-dissipation
theorem χ ′′(k, h̄ω, T ) = tanh(h̄ω/2kBT )S̃(k, h̄ω), where
S̃(k, h̄ω) = S(k, h̄ω) + S(k,−h̄ω).1

1The fluctuation-dissipation relation states S(k, h̄ω) =
(1 − e−h̄ω/kBT )−1χ ′′(k, h̄ω, T ). Detailed balance yields S(k, −h̄ω) =
(eh̄ω/kBT − 1)−1χ ′′(k, h̄ω, T ) and thus S(k, h̄ω) + S(k, −h̄ω) =
coth( h̄ω

2kBT )χ ′′(k, h̄ω, T ).

085110-2



MAGNETIC EXCITATIONS, NONCLASSICALITY, AND … PHYSICAL REVIEW B 106, 085110 (2022)

The QFI density may be written as follows [10,18,19]:

fQ(k, T ) = 4

π

∫ ∞

0
d (h̄ω) tanh

(
h̄ω

2kBT

)
χ ′′(k, h̄ω, T ). (6)

Note that quantitative determination of QFI requires working
with absolute intensities, which is ensured by proper normal-
ization of S(k, h̄ω) according to appropriate sum rules. We
will use the sum rule (3). Following Ref. [18] we introduce
the normalized QFI (nQFI),

nQFI(k, T ) = fQ(k, T )

12S2
, (7)

where the spin length S = 1
2 for electrons. These quantities

become useful because (i) they are experimentally accessible,
and (ii) it is possible to derive bounds for fQ (or nQFI) that can
only be reached by certain classes of multipartite-entangled
states [8,9,53]. The bound applicable to unpolarized inelastic
neutron scattering on magnetic systems indicates that we wit-
ness at least (m + 1)-partite entanglement when nQFI > m,
where m is an integer and divisor of the system size [19]. The
integer m is known as the entanglement depth, and represents
the minimum number of entangled sites. The existence of such
bounds can intuitively be understood by noting that entangled
states can have stronger spin-spin correlations at fixed mo-
mentum k than any separable (i.e., nonentangled) state, which
translates to high spectral weight integrated over in Eq. (6).
Similarly, the more sites are entangled, stronger and stronger
spin-spin correlations become possible.

The derivation of the bound makes no assumption about
the nature of the system for which S(k, h̄ω) is observed or
calculated, it relies only on S(k, h̄ω) being a dynamical corre-
lation associated with local and bounded Hermitian operators
(here, spin operators) [8–10,53]. In the Hubbard chain, the
spin operators are implemented through

Sa
i = h̄

2
c†

iσ σ a
σσ ′ciσ ′ , (8)

where 
σ = (σx, σy, σz ) is the vector of Pauli matrices and c†
i,σ

creates an electron of spin σ ∈ {↑,↓} at site i, resulting in
the same bound as for local moment spin- 1

2 systems. Alter-
natively, this follows because the only allowed spin states
are 0 (for empty or double-occupied sites) and 1

2 (for singly
occupied sites). We note that these assumptions do not hold
for all response functions. For example, the spectral func-
tion A(k, h̄ω) is a dynamical correlation associated with the
non-Hermitian operators c, c†. On the other hand, e.g. the
dynamical charge structure factor N (k, h̄ω) [54], associated
with the density operator n, does meet the assumptions.

Note also that QFI defined this way will probe entangle-
ment carried by spin correlations. Electronic systems also
have entanglement in the charge sector, which we expect to
dominate at low U , due to the Pauli exclusion principle. Other
probes would be needed to access this type of entanglement.
In the Hubbard chain, we focus on the entanglement asso-
ciated with the antiferromagnetic wave vector k = π since
staggered magnetization is a relevant operator in the renor-
malization group sense [10,19].

By definition (1), S(k, h̄ω) is a Fourier transform of a two-
point two-time correlation function. Assuming the system is

translation invariant we have

Gab(r = ri − r j, t ) = 〈
Sa

i (0)Sb
j (t )

〉
, (9)

which we will refer to as a Van Hove correlation in analogy
with terminology used in the context of neutron scattering on
liquids.2 Since S(k, h̄ω) is real valued, G(r, t ) = G�(−r,−t ).
The real (imaginary) part may be written with an anticommu-
tator (commutator)

Re[Gab(r, t )] = 1
2

〈{
Sa

i (0), Sb
j (t )

}〉
, (10)

Im[Gab(r, t )] = 1

2i

〈[
Sa

i (0), Sb
j (t )

]〉
, (11)

implying that the imaginary part (i) vanishes in a classical
system (where operators are replaced by c-numbers), and (ii)
is directly related to the dissipative susceptibility. The values
of Re[Gab(r, t )] and Im[Gab(r, t )] may be related through
detailed balance or fluctuation-dissipation theorems [55,56].
Additional properties of G(r, t ) are stated in Appendix A.

For systems described by local Hamiltonians, the imagi-
nary part is generically expected to satisfy a Lieb-Robinson
bound [41–43], such that it decays exponentially outside a
light cone determined by a system-dependent Lieb-Robinson
velocity. The bound thus prevents superluminal information
propagation [57]. The real part, being an anticommutator,
is better viewed as a statistical property. It is expected to
depend on the initial state and can have richer behavior near
and outside the light cone [42,58]. Since it is a statistical
property, nonzero correlations outside the light cone do not
imply noncausality.

III. MODEL AND METHODS

The Hubbard model is written [44–47]

H = −t̃
L−1∑
j=0

∑
σ

[c†
j,σ c j+1,σ + H.c.] + U

L−1∑
j=0

n j,↑n j,↓, (12)

where t̃ represents the electronic nearest-neighbor hopping
strength,3 U � 0 is the onsite Hubbard repulsion, and H.c.
denotes Hermitian conjugate. Throughout this work we will
assume half-filling, use the dimensionless interaction strength
u = U/t̃ , and often take t̃ as our energy unit. In the following
we will also work in units where h̄ = 1. At u = 0 the model
describes noninteracting electrons, and as u → ∞ the model
reduces to the antiferromagnetic Heisenberg chain with only
spin degrees of freedom [48,49]. The latter model was fa-
mously solved in one dimension by Bethe [59]. Utilizing that
Eq. (12) conserves the number of electrons N and number of
down spins M, Lieb and Wu [60,61] later solved the Hubbard
chain using a nested Bethe ansatz [62].

Although many ground-state properties can be obtained
exactly, the dynamical spin correlations S(k, ω) remain a

2It is also known as a pair-correlation function [4]. We avoid this
name since it may be confused for the (pair)-pair correlation func-
tions used to describe superconductivity.

3The usual notation where t denotes hopping is avoided since t will
be used to denote the time variable.
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challenge. They were obtained from the exact solution to
high accuracy for the Heisenberg chain [63–66], but for the
Hubbard chain at finite u only partial analytical results exist
[67]. Based on a perturbative approach, Bhaseen et al. [68]
found that there is a downward shift of spectral intensity as u is
increased, such that the main concentration of spectral weight
moves from the top of the spectrum towards the bottom. The
same intensity redistribution is seen in DMRG calculations
[69,70], which also reveal that the itineracy effects rapidly
diminish. In fact, the spectrum at u = 3 is already close to
that of the Heisenberg chain. Qualitatively similar results were
recently obtained using a cluster perturbation theory [71].

We use the DMRG [50,51] as implemented in the
DMRG++ software [72], working at zero temperature. We
work with even-length chains and in the zero magnetiza-
tion sector in accord with Lieb’s theorem [73]. We calculate
S(k, ω) in the Krylov correction-vector approach [74–76],
which works directly in frequency space. Formally, this is
achieved by evaluating the average in Eq. (1) in the ground
state, employing the Heisenberg picture, and introducing an
infinitesimal Lorentzian broadening η > 0 to regularize the
time integral,

Sab(k, ω)

= 1

2πN

∫ ∞

−∞

∑
i, j

〈ψ0|Sa
i e−i(H−ω−ε0 )t−η|t |Sb

j |ψ0〉

× e−ik(ri−r j )dt

= i

2πN

∑
i, j

e−ik(ri−r j )
(〈ψ0|Sa

i [H − ω − ε0 + iη]−1Sb
j |ψ0〉

− 〈ψ0|Sa
i [H − ω − ε0 − iη]−1Sb

j |ψ0〉
)
, (13)

where ε0 = 〈ψ0|H |ψ0〉 is the ground-state energy. In the diag-
onal case a = b this expression simplifies to

Saa(k, ω) = − 1

πN

∑
i, j

e−ik(ri−r j )

× Im[〈ψ0|Sa
i [H − ω − ε0 + iη]−1Sa

j |ψ0〉], (14)

where the repeated index a is not summed over. Due to spin
SU(2) symmetry of the Hubbard model it is sufficient to
compute only Szz(k, ω).

In the numerical calculation we use finite-size chains and
employ the center-site approximation, in which the sum over
sites j is restricted to a center site c = L/2. This approxima-
tion reduces the computational cost by an order of L and is
exact in the thermodynamic limit, but can introduce “ringing”
artifacts in finite systems. We thus need to evaluate

Saa
j,c(ω) = − 1

π
Im[〈ψ0|Sa

j [H − ω − ε0 + iη]−1Sa
c |ψ0〉], (15)

for each site j, which is achieved as described in Ref. [76].
Finally, since we sum over only one site index, Eq. (14) is
modified to read as

Saa(k, ω) = 1√
L

L−1∑
j=0

cos [k(ri − rc)]Saa
j,c(ω). (16)

The cosine is appropriate for periodic boundary conditions, or
open chains that are symmetric around the center site. Here
we use the cosine also for chains of even length with open
boundary conditions and a single center site, which introduces
a small error that vanishes in the thermodynamic limit.

In the numerical computations η is finite, and represents
the half-width at half-maximum (HWHM) of the Lorentzian
energy broadening. Its optimal value is limited by finite size
according to η ∝ 1/L [75,76]. In systems with gapless ex-
citations a finite η may introduce spurious inelastic (ω > 0)
intensity due to an elastic peak at ω = 0. To avoid this we
isolate the purely inelastic intensity by subtracting from the
normalized S(k, ω) a Lorentzian of broadening η and height
S(k, 0) at each k point. The subtraction is done after normal-
ization to the sum rule (3). The resulting inelastic scattering is
used to determine the QFI. G(r, t ) is calculated by an inverse
Fourier transform, as in Ref. [40]. Again, because of the
SU(2) symmetry it is sufficient to consider the longitudinal
part Gzz(r, t ) = 〈Sz

i (0)Sz
i+r (t )〉.

Our results for L = 128 sites were obtained keeping up to
m = 1600 DMRG states, achieving truncation errors below
10−8. Explicit reorthogonalization was used for all Lanczos
steps in the ground-state runs. For the dynamics runs, we
used η = 0.05t̃ and scaled the frequency step 
ω such that
the number of sampled frequencies within the bandwidth pre-
dicted by the Bethe ansatz (see Appendix B) was kept constant
and equal to 160, with additional frequencies sampled above
the predicted bandwidth. For other system sizes we scaled
m ∝ L and η ∝ 1/L. For u � 7.5 (u � 7.5) a total of 300
(200) Krylov steps were used. The increased number of steps
at high u was found necessary to avoid artifacts in the contin-
uum scattering.

IV. RESULTS

Below we present results for the dynamical spin struc-
ture factor, as well as the quantum Fisher information and
real-space real-time Van Hove correlations obtained from
said DSF.

A. Dynamical spin structure factor

In Fig. 1 we show the calculated S(k, ω) as a function of u.
The dashed white lines at u = 0 in Fig. 1(a) enclose the non-
interacting bandwidth between upper and lower boundaries

ωu=0
u (k) = 4t̃ |sin(k/2)|, (17)

ωu=0
l (k) = 2t̃ |sin(k)|. (18)

Dashed white lines in Fig. 1(o) represent the upper and lower
boundaries of the two-spinon continuum for the isotropic
Heisenberg antiferromagnetic chain [77–79]

ωHeisenberg
u = πJ sin

(
k

2

)
, (19)

ω
Heisenberg
l = πJ

2
sin(k). (20)

We find the spectra follow the trend observed in Refs. [68–70].
That is, at u = 0 the spectral weight is concentrated at the
top of the spectrum. As u is increased, spectral weight gets
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FIG. 1. S(k, ω) for the Hubbard chain as function of u = U/t̃ and the Heisenberg chain for chains of length L = 128 with broadening
parameter η = 0.05t̃ . As u increases, the bandwidth shrinks and spectral weight moves from the top of the dispersion towards its bottom edge.
The resulting spectrum approaches that of the Heisenberg chain shown in (o).

redistributed towards the bottom of the spectrum, which at
strong coupling corresponds to the des Cloizeux–Pearson dis-
persion [80] for a Heisenberg antiferromagnetic chain with
exchange strength J . Second-order perturbation theory in the
strong-coupling limit predicts J = 4t̃/u. If t̃ is treated as a
constant energy scale, it follows that the bandwidth quickly di-
minishes with u. It is possible to find the bandwidth of S(k, ω)
at all u from the Bethe ansatz (see Appendix B). If we scale all
energy scales (u, η/t̃) such that the the bandwidth W (u) is kept
equal to the noninteracting bandwidth [W (u = 0) = 4|t̃ | = 4]
we obtain the spectra in Fig. 2, from which the redistribution
of spectral weight is easier to see.

Due to a finite-size effect the reliability of calculated spec-
tra decreases at large u, so here we report S(k, ω) for u � 10.
The finite-size effect may be understood as follows. As u
increases, the bandwidth becomes small and eventually com-
parable to the broadening η. As previously mentioned, the
optimal broadening is limited by system size. Thus, for fixed
L, the ratio W (u)/η becomes too small at large u to allow
reliable QFI results [as QFI is an integral over S(k, ω) washing
out of the spectrum becomes an issue]. Our L = 128 results
were obtained with η = 0.05t̃ , for which W (10)/η ≈ 24 and
W (15)/η ≈ 16. There is no obvious value to choose as cutoff
for W (u)/η, but here we require W (u)/η > 20.

B. Quantum Fisher information

Having obtained the dynamical spin structure factors in
the previous subsection, we now discuss the quantum Fisher
information, a witness of multipartite entanglement. Figure 3
shows the normalized quantum Fisher information (calculated

from the spectra shown in Fig. 1, as well as from spectra
for smaller system sizes not shown) and its first derivative
as functions of u. To avoid divergences as T → 0, the QFI
values were calculated using a small fictitious temperature of
kBT = 0.001t̃ , below which the QFI was found to be approx-
imately unchanged.

Figure 3(a) shows results for η = 0.05t̃ . When the broad-
ening η is kept constant, all system sizes considered produce
approximately equal nQFI values. This finding is consistent
with the system size being larger than the witnessed entan-
glement depth. Under these conditions, we find that bipartite
entanglement can be witnessed at u � 2.5.

Under experimental conditions and at finite temperature,
this cutoff likely moves to higher u.4 Indeed, as has previously
been discussed in the spin-system context, resolution limita-
tions present a key challenge to experimental entanglement
detection with QFI [18,19]. We investigate the resolution de-
pendence for the Hubbard chain in Fig. 3(b) by leaving the
broadening η unchanged for L = 128, and scaling it as 1/L
for other system sizes. This results in a reduction of nQFI for
smaller systems, which is negligible at the lowest u values but
becomes noticeable at intermediate u. The lowest u at which

4At u > 5 (i.e., beyond the plotted range) we find an unphysical
flattening and even decay of nQFI, which is due to finite-size effects
as discussed in Sec. IV A. The expected physical behavior is that
nQFI should approach the value obtained for the Heisenberg chain in
the strong-coupling limit, which we find to be nQFI ≈ 2.2, indicating
at least tripartite entanglement in accord with prior results for the
S = 1

2 Heisenberg chain reported in Ref. [18].
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FIG. 2. S(k, ω) for the Hubbard chain as function of u = U/t̃ and the Heisenberg chain for chains of length L = 128 with broadening
parameter η = 0.05t̃ . Note that the panels have been plotted with different u-dependent energy scale factors (see Table I) in order to keep the
apparent bandwidth constant. The redistribution of spectral weight from the top of the scattering continuum to the bottom is apparent already
at relatively low values of u.

TABLE I. Bandwidth, predicted and effective Heisenberg cou-
plings, and scale factor as a function of u = U/t̃ . The column labeled
W (u) shows the bandwidth in the exact solution, while πJ indicates
the bandwidth predicted by the lowest-order strong-coupling expres-
sion. The column labeled J shows the Heisenberg coupling predicted
to lowest order at strong coupling, J = 4t̃2/U . Jeff = W (u)/π is
an effective Heisenberg coupling, chosen to reproduce the exact
bandwidth. The column labeled “Scale factor” provides a number
by which all energy scales can be scaled in order to match the
noninteracting bandwidth.

u W (u) πJ J Jeff Scale factor

0 4 1.2732395 1
0.5 3.9680598 25.132741 8 1.2630727 1.00805
1 3.8615201 12.566371 4 1.22916001 1.03586
1.5 3.6709075 8.3775804 2.67 1.1684862 1.08965
2 3.4280008 6.2831853 2 1.09116655 1.16686
2.25 3.2993560 5.5850536 1.778 1.05021764 1.21236
2.5 3.1706954 5.0265482 1.6 1.0092637 1.26155
3 2.9218858 4.1887902 1.33 0.93006515 1.36898
3.5 2.6920393 3.5903916 1.14 0.85690273 1.48586
4 2.484563 3.1415927 1 0.79086096 1.60994
4.5 2.2993673 2.7925268 0.889 0.73191136 1.73961
5 2.1348205 2.5132741 0.8 0.67953446 1.87369
7.5 1.5468125 1.6755161 0.533 0.49236571 2.58596
10 1.1992643 1.2566371 0.4 0.38173768 3.33538
15 0.8200271 0.8377580 0.267 0.26102272 4.87789
20 0.6207225 0.6283185 0.2 0.19758209 6.44410
30 0.41660302 0.41887902 0.133 0.13260886 9.60147

bipartite entanglement is witnessed is u = 3.0 for L = 64,
u = 2.75 for L = 80, L = 96, and u = 2.5 for L � 112. This
nQFI reduction with η is analogous to the finite-size effect
described in the previous subsection, and its u dependence is
related to the W (u)/η ratio.

These results also suggest that nQFI can be increased
by further improved resolution, which may shift the cutoff
for observing bipartite entanglement to u < 2.5. Limited fre-
quency sampling and numerical errors cause uncertainties in
the calculated QFI values (especially at lower L, higher η)
that make finite-size scaling to the thermodynamic resolution
limit unreliable. For this reason we leave determination of the
theoretical cutoff value an open question.

Figure 3(c) shows the first derivative for the L = 128 nQFI
values. The derivative displays a broad peak around u ≈ 2.5.
The derivatives for smaller system sizes are consistent with
the same broad peak, but are significantly “noisier” with
jumps from one u value to the next, due to the aforementioned
uncertainties.

C. Van Hove correlations

In the previous subsections we have discussed properties in
momentum and frequency space (k, ω). We now turn to real-
space real-time correlations. Figure 4 shows the contrasting
behavior of such Van Hove correlations in the noninteracting
(u = 0) and strong-coupling (u → ∞) limits. The latter was
previously studied in Ref. [40]. In the strong-coupling limit
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FIG. 3. (a) The normalized QFI (nQFI) as function of u = U/t̃ ,
calculated from S(k = π,ω) where elastic contributions have been
removed and with η = 0.05t̃ for several system sizes. For nQFI > 1
(i.e., outside the shaded region), at least bipartite entanglement is
witnessed by QFI. For this energy resolution, we find u = 2.5 to
be the lowest interaction strength at which bipartite entanglement
may be witnessed. (b) The nQFI evaluated for η ∝ 1/L, i.e., with
size-dependent energy resolution. A suppression of nQFI is found for
smaller systems, primarily at higher u values. (c) The first derivative
of the L = 128 nQFI, calculated using both a standard forward finite
difference (circles) and the Fornberg finite-difference method [81]
(diamonds). Together these curves indicate a broad peak around
u = 2.5.

there is a static background of Re[G(r, t )] due to nonzero Néel
correlations in the ground state. This background is absent at
u = 0. In both cases there is a “light cone” controlling the
propagation speed of correlations away from the r = 0, t = 0
origin, and timelike oscillations above it. In the Heisenberg
case, the wavefront at the edge of the light cone is charac-
terized by AFM correlations. Above this cone, the system
develops period-doubled Q = π/2 AFM correlations, while
the nearest-neighbor correlations vanish. This feature was
discussed in detail in Ref. [40], and explained in terms of
interference of spinon quasiparticles. It was called a “quantum
wake,” in analogy with the smooth wake behind a moving
ship. In the u = 0 case we instead see ferromagnetic wave-
fronts, without any sign of period doubling.

The crossover between these two limits is evident in Figs. 5
and 6 showing results for u � 3.0 and u > 3.0, respectively.
The correlations are normalized such that G(0, 0)=〈Sz

i Sz
i 〉� 1

4 ,
where equality is reached at strong coupling [see Fig. 7(a)].
Already by u ∼ 2.5–3.0 many of the features in G(r, t ) seen
at strong coupling have developed, but not saturated. For
example, Fig. 5(m) shows nearly vanishing odd-neighbor cor-

FIG. 4. Real-time real-space correlations in the noninteracting
(left column) and strong-coupling limits (right column). The top
row panels show the real part, and the bottom row panels show
the imaginary part. Ferromagnetic (antiferromagnetic) correlations
〈Sz

r (t )Sz
0〉 are indicated in red (blue).

relations and timelike oscillations above the light cone, a
Néel-like static background, and an initially AFM wavefront
at the light cone. The crossover in G(r, t ) is smooth with
u, and can be tracked through the strength of odd-neighbor
correlations. Although the precise location of the crossover
will depend on the choice of cutoff for these correlations, we
note that at u = 2.0–2.5 [in panels (i) and (k) of Fig. 5] there
remains visible FM odd-neighbor correlations above the light
cone. Thus, the dynamical correlations qualitatively approach
the strong-coupling results for relatively modest values of u
also in the real-time, real-space domain.

V. DISCUSSION

A. Entanglement

Our results show that QFI calculated from the dynamical
spin structure factor can be experimentally used to witness
at least bipartite entanglement for u > 2.5 given sufficient
energy resolution (assuming realistic values of t̃ � 0.1 eV,
η = 0.05t̃ � 5 meV is experimentally feasible). This cutoff
may be shifted to somewhat lower u with improved resolution.
Yet, we stress that the inability to witness entanglement at
interaction strengths below the cutoff does not imply the ab-
sence of entanglement. Indeed, even noninteracting identical
fermions are entangled because of the Pauli exclusion princi-
ple [82]. We have calculated the entanglement entropy, shown
in Fig. 8, to demonstrate this explicitly. The entanglement
entropy directly quantifies bipartite entanglement between
two blocks of the system, and is found to decay with in-
creasing u. The physical reason is simple [83]: increasing u
implies suppression of charge fluctuations. Although the local
Hilbert space has four states, eventually only two of them have
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FIG. 5. Real-time real-space correlations at low to intermediate
u = U/t̃ . Left (right) column shows the real (imaginary part) of
〈Sz

r (t )Sz
0〉.

appreciable weight. Increasing u also results in increasingly
prominent AFM spin correlations, which are then probed by
our QFI formulation.

The reduction in the number of local basis states may be
seen more directly through the lens of single-site entropy E ,
which is defined in terms of the one-site reduced matrix. For

FIG. 6. Real-time real-space correlations at intermediate to high
u = U/t̃ . Left (right) column shows the real (imaginary part) of
〈Sz

r (t )Sz
0〉.

the Hubbard chain it has been calculated analytically, yielding
[84–86]

E = −w0 log2 w0 − w↑ log2 w↑ − w↓ log2 w↓ − D log2 D,

(21)
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FIG. 7. (a) Averaged onsite spin-spin correlation 〈Sz
jS

z
j〉 (filled

symbols, left y axis) and single-site entropy E (black line, open
symbols, right y axis). The single-site entropy indicates a reduction
in the number of local basis states with u, which causes the onsite
spin-spin correlation to grow as the weights of empty and doubly
occupied states decrease. (b) The first derivative of 〈Sz

jS
z
j〉 peaks near

u = 2 for all studied sizes, while the peak of dE/du occurs at a higher
value u = 3.5, in agreement with Eq. (25). (c) The second derivative
of 〈Sz

jS
z
j〉 changes sign near u = 2 and has peaks near u = 1.4 and

3.5 for L = 64, 128 (u = 1.3 and 3.6 for L = 32, which is sampled
more densely). The second derivative of E peaks at u = 1.75 and 5.5,
and changes sign near u = 3.5. All derivatives were calculated using
the Fornberg finite-difference method [81].

where D measures the double occupation and is given by
Eq. (5), and where

wσ = 1

L

∑
i

〈niσ 〉 − D, σ =↑,↓, (22)

w0 = 1 − w↑ − w↓ − D. (23)

At half-filling and zero magnetization, w0 = D, and w↑ = w↓
satisfies 〈Sz

jS
z
j〉 = w↑/2, which leads to

E = 4
〈
Sz

jS
z
j

〉
log2

[
1
2 − 2

〈
Sz

jS
z
j

〉
2
〈
Sz

jS
z
j

〉
]

− log2

[
1

2
− 2

〈
Sz

jS
z
j

〉]
.

(24)

The quantity E is thus plotted together with 〈Sz
jS

z
j〉 in Fig. 7(a).

Similarly to the half-chain entropy in Fig. 8, the maximum of
E is at u = 0, which is followed by gradual decay as u → ∞.
As previously found by Refs. [84,86] the finite-size depen-
dence of E is negligible so only L = 128 results are shown.
The two-site entropy was calculated for low u elsewhere [87],
and also has a maximum at u = 0.

The numerical derivatives of E are plotted in Figs. 7(b) and
7(c) along with derivatives of 〈Sz

jS
z
j〉. The first derivative of

FIG. 8. (a) The half-chain von Neumann entanglement entropy
decreases as u = U/t̃ is increased, tending to the value for the
Heisenberg chain as u → ∞. There is a change in curvature of the
half-chain entropy at low u below u = 2. To see this we calculate
the first and second derivatives in (b) and (c) using the Fornberg
finite-difference method [81]. The first derivative peaks near u = 1.9
for L = 32, and near 1.5 for L = 64 and 128. The second derivative
changes sign near u = 1.8 for L = 32, 1.5 for L = 64, and 1.25 for
L = 128. The second peak in the second derivative occurs at u = 2.6
for L = 32, 2 for L = 64, and 1.75 for L = 128. Although the shown
data are very limited in scope, we find that naive finite-size scaling
in 1/L is consistent with finite values for all three quantities. The
finite-size scaling prediction is that the zero of the second derivative
occurs at u ≈ 0.93 and the second peak occurs at u ≈ 1.53 in the
thermodynamic limit. The peak in the first derivative is predicted to
occur at u = 1.63.

Eq. (24) is given by

dE
du

= 4 log2

[
1

4
〈
Sz

jS
z
j

〉 − 1

]
d
〈
Sz

jS
z
j

〉
du

, (25)

which explains the behavior in Fig. 7(b). dE/du vanishes
at u = 0 where 〈Sz

jS
z
j〉 = 1

8 , and as u → ∞ where d〈Sz
jS

z
j〉/

du = 0. At finite u the logarithm factor is negative and
displaces the dE/du peak to higher u than the peak of
d〈Sz

jS
z
j〉/du.

There is also a reduction in the number of gapless modes,
from two decoupled spinless fermion species at u = 0 to one
spin degree of freedom at strong coupling. This results in a
reduction in central charge from cu=0 = 2 to cHeis = 1. Our
entanglement entropy results are consistent with this expec-
tation. Conformal field theory predicts that the half-chain
entanglement entropy in a system of length L with open
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FIG. 9. Reduction of central charge as function of u. (a) Plot-
ted data series represent 
SvN = SvN(2L) − SvN(L). The horizontal
lines are drawn at ln(2)/3 and ln(2)/6. (b) Finite-size scal-
ing of SvN at weak and strong coupling. The lines are linear
least-squares fits of the L � 64 entropies, with functional forms
0.518 190 + 0.342 946 ln(L) and 0.134 746 + 0.171 053 ln(L), re-
spectively. The fits yield central charges cfit

u=0 ≈ 2.058 and cfit
Heis ≈

1.026 and cfit
Heis/cfit

u=0 ≈ 2.005, consistent with the expected cu=0 = 2
and cHeis = 1.

boundary conditions satisfies [88]

SvN = c

6
ln

( L

π

)
+ C, (26)

where C is a nonuniversal term that depends on correlation
length and boundary corrections. If C is independent of sys-
tem size, the quantity


SvN = SvN(2L) − SvN(L) (27)

reduces to c
6 ln(2). We plot 
SvN in Fig. 9(a), finding that

our SvN approximately satisfy this relation at u = 0 and as
u → ∞, with a gradual transition in-between. Minor devia-
tions in the two limits are attributed to boundary corrections
and truncation errors. Figure 9(b) shows that the entropies
at u = 0 and strong coupling scale logarithmically with L.
Central charges obtained from SvN fits are consistent with the
theoretical values.

We also find that derivatives of the entanglement entropy
[Figs. 8(b) and 8(c)] show a crossover at low u, similarly to
QFI and Van Hove correlations, albeit at weaker interactions.
This likely indicates the rapid suppression of charge fluctua-
tions, whereas the growth of QFI also depends on the buildup
of spin-spin correlations. We note that QFI can be defined
for arbitrary bounded and Hermitian operators: the choice of
spin operators is to allow predictions for neutron scattering. A
different choice of operators may be able to witness a higher
degree of multipartite entanglement. That is indeed seen in a

FIG. 10. (a) Bandwidth W (u) with u = U/t̃ according to the
strong-coupling prediction (u → ∞) and the Bethe ansatz. The
difference becomes asymptotically small as u → ∞. (b) The first
derivative of W (u) peaks near u = 2.25, while (c) the second deriva-
tive changes sign near u = 2.25. This value is marked by the vertical
line in (b) and (c).

recent study [89] introducing a quench protocol for measuring
QFI, which is more suitable to ultracold fermionic gases and
quantum Hall devices than general condensed matter systems.
In general, it would be valuable to have additional experimen-
tally accessible entanglement measures for correlated electron
systems.

B. Crossover

We find that S(k, ω), QFI, G(r, t ), and entanglement en-
tropy all display crossovers at u < W (0). Re[G(r, t )] directly
indicates the buildup of short-range Néel correlations, which
result in S(k, ω) qualitatively approaching the spectrum for
the Heisenberg chain. At the same time, the bandwidth of
S(k, ω) contracts in a manner that shows a further crossover
near u = 2.25 (see Fig. 10 and Appendix B). The combined
bandwidth contraction and buildup of AFM correlations [re-
flected by the S(k = π,ω) peak] results in the QFI crossover
near u = 2.5. These values are consistent with the previously
made observation [69,70] that S(k, ω) has qualitatively ap-
proached its strong-coupling form by u = 3.

Although the locations of the crossover points are found to
vary between these quantities, they all reflect an underlying
trend from itinerant to localized behavior as u is increased.
The decay of entanglement entropy with u provides clear
support for this picture. Our results also lend support to an
experimental rule of thumb that systems may be considered
more electronic for u � 2 and magnetic for u � 2. These re-
sults suggest that the transition from weak- to strong-coupling
regimes occurs at values of u smaller than naively anticipated
considering that the bandwidth of the noninteracting model is
W (0) = 4t̃ .

C. Experimental considerations

In a general sense, our results demonstrate that the QFI
and G(r, t ) analysis of Refs. [18,19,40] may be applied to
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systems with electronic degrees of freedom. A quantitative
determination of QFI may require theoretical modeling in
order to ensure correct normalization, however, G(r, t ) need
not be normalized to yield useful insights about the local
dynamics. Although we have assumed spin SU(2) symmetry
throughout this work, spin anisotropy should be possible to
handle using the approaches laid out in Ref. [19].

Directly observing crossovers in correlations by tuning
u is not possible in materials, but may be feasible using
quantum simulator platforms [90,91]. The situation in real
quasi-one-dimensional materials is typically also complicated
by the presence of additional orbitals, interactions, and hop-
ping paths [92,93], which influence the physics, particularly
at low temperature. Nevertheless, it is well established that
the high-energy inelastic neutron scattering can sometimes
be quantitatively described by simplified models. This oc-
curs, for example, in large-u systems such as KCuF3 [18,66]
and SrCuO2 [94], for which the magnetic excitations are
well captured by the Heisenberg model. In principle, it may
be possible to identify systems exemplifying various values
of u.

Perusal of the literature reveals a lack of clear-cut examples
of material realizations of low-u Hubbard chains suitable to
study with neutrons. The Mott-insulating organic Bechgaard-
Fabre salts [95] are thought to be away from strong coupling,
but also have low neutron cross sections due to the dilute
nature of the spin moments in the materials which are further
obscured by the large amount of scattering from hydrogen. A
recently proposed solid-state candidate is Ti4MnBi2 [96], for
which inelastic data currently do not exist. Given this lack of
clear-cut options, it may be more promising to look for weakly
coupled ladder systems. It is presently unclear to which extent
our findings for the Hubbard chain will translate to such
ladders, but we note that Ref. [70] previously found that
both half-filled Hubbard chains and ladders show crossovers
of S(k, ω) at low u. If our findings can be generalized to
doped systems, more possibilities open up. Some examples
of such ladder compounds include (TaSe4)2I with estimated
u ∼ 1 [92,97] and K0.3MoO3 (molybdenum blue bronze) with
u ∼ 4 [92,98], both of which develop a charge density order
at low temperatures, and Li0.9Mo6O17 (lithium purple bronze)
[99–101], which was estimated to be in the weak-coupling
regime but potentially is better understood in a multiorbital
model [102].

An intriguing finding here is that the van Hove correlations
show the development of local versus itinerant magnetism as
a consequence of correlations. Additionally, the QFI indicates
the need for a quantum description. This suggests that van
Hove correlations and QFI garnered from neutron scattering
experiments, provided that S(k, ω) is measured to sufficient
accuracy to extract these quantities, could provide a useful
viewpoint for interpreting the states in correlated itinerant
materials more generally, including in higher dimensions.
Examples where insight may be gained are unconventional
superconductors where magnetism plays an important com-
peting role. Indeed, suitable data in terms of wave-vector and
energy coverage may already be available and it would be
interesting to compare trends within materials classes with
doping and composition.

Finally, the charge fluctuations themselves can be an-
ticipated to also contain insightful information. While the
non-Hermitian nature of the creation and annihilation op-
erators in A(k, ω) is problematic, dynamical charge density
correlations N (k, ω) could be of interest and experimen-
tally accessible through Bragg scattering [103] in cold-atom
systems or electron energy-loss spectroscopy (EELS) in solid-
state systems [104]. A study to explore this is planned and
the prospects for experimental measurements are to be con-
sidered.

VI. CONCLUSION

We have studied the magnetic excitations of the half-filled
Hubbard chain from low to intermediate u, as measured in
units of the noninteracting bandwidth. We find that the dy-
namical spin structure factor, quantum Fisher information,
and Van Hove correlations all display crossovers at low u that
are attributed to the more fundamental crossover from itiner-
ant electron physics to localized spin physics. This is reflected
directly in the buildup of Néel correlations, as may be seen
in the Van Hove correlations. This suggests that Van Hove
correlation analysis of neutron scattering data is of interest
also in charged systems. In addition, we have shown how to
adapt QFI derived from S(k, ω) to models with electronic de-
grees of freedom, finding that bipartite entanglement may be
witnessed above u ≈ 2.5 with realistic energy resolution. Our
results thus present one path to entanglement quantification
in correlated electron system that is applicable beyond the
quantum spin systems previously studied [18,19].
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APPENDIX A: SOME PROPERTIES OF G(r, t )

In this Appendix we collect additional properties of the Van
Hove correlation functions. In general, G(r, t ) = G�(−r,−t )
since S(k, ω) is real valued. For inversion-symmetric systems
with G(r, t ) = G(−r, t ) it follows that Re[G(r, t )] is even in t
and Im[G(r, t )] is odd in t .
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Note that detailed balance would be broken if G(r, t ) were
real and even in t . Since S(k, ω) ∼ ∫

G(r, t )e−ikre−iωt dr dt ,
this would imply S(k, ω) = S(−k,−ω), which only holds as
T → ∞. Detailed balance may also be used to derive the
relation [55,56]

Im[G(r, t )] = − tan

(
h̄

2kBT

∂

∂t

)
Re[G(r, t )]. (A1)

By writing

G(r, t ) = Re[G(r, t )] + i Im[G(r, t )] = a(r, t ) + ib(r, t ),

(A2)

we may obtain the Fourier transforms of the individual func-
tions a(r, t ), b(r, t ):

a(k, ω) = S(k, ω) + S�(−k,−ω)

2
, (A3)

b(k, ω) = S(k, ω) − S�(−k,−ω)

2i
. (A4)

Using that S(k, ω) is real valued and even in k, and detailed
balance, we obtain the ratio

S(k, ω)

a(k, ω)
= 2

(
1 − e−βω

1 + e−βω

)
(A5)

which approaches 1 as T → ∞, and 2 as T → 0, and

S(k, ω)

b(k, ω)
= 2i

(
1 + e−βω

1 − e−βω

)
(A6)

which diverges as T → ∞ and approaches 2i as T → 0.

APPENDIX B: BANDWIDTH RENORMALIZATION

The bandwidth W (u) shrinks as u is increased. At large u
it tends towards the upper limit of the two-spinon continuum
of the Heisenberg chain πJ sin(k/2) ∼ π4t̃2 sin(k/2)/U . At
low u, however, the bandwidth is smaller than predicted by
this strong-coupling expression, due to softening of spin ex-
citations by moving charges [106]. A corrected spectrum of
S = 1 “spin-wave” excitations can be obtained using Bethe

ansatz methods [106,107]. At half-filling, Ref. [106] derived
the expressions

ε(α, β ) = 4t̃

u

∫ π/2

−π/2
dk cos2(k)

{
sech

[
2π

u
[sin(k) − α]

]

+sech

[
2π

u
[sin(k) − β]

]}
, (B1)

P(α, β ) = 2

π

∫ π/2

−π/2
dk

{
tan−1

[
exp

(
−2π

u
[α − sin(k)]

)]

+ tan−1

[
exp

(
−2π

u
(α − sin(k))

)]}
(B2)

for allowed energies and momenta, respectively. The full spec-
trum is obtained by varying the real numbers α, β, which
may be considered “holes” in the so-called � distribution
internal to the Bethe ansatz solution [60]. The k’s repre-
sent pseudomomenta of said “holes.” The energy satisfies
ε(α, β ) = ε(−α,−β ), and reaches its minimum as α → ∞
and β → ∞, for which ε(α, β ) → 0 and P(α, β ) → 0. The
energy maximum is reached at α = β = 0,

εmax = ε(0, 0) = 8t̃

u

∫ π/2

−π/2
dk cos2(k)sech

[
2π

u
sin(k)

]
,

(B3)

which corresponds to P(0, 0) = π , i.e., the AFM wave vector.
Thus, the bandwidth W (u) = εmax, which may be evalu-
ated numerically. At strong coupling (u → ∞), the integral
evaluates to π/2, recovering the strong-coupling bandwidth
result 4π |t̃ |/u = 4π t̃2/U = πJ . The bandwidth along with its
derivatives is plotted in Fig. 10.

Numerical values of the bandwidth predicted by Eq. (B3)
and the second-order strong-coupling expansion are shown
in Table I. Also shown is the strong-coupling value of the
Heisenberg exchange J = 4t̃2/U , and an effective Heisenberg
coupling Jeff , that reproduces the bandwidth found by the
Bethe ansatz. The deviation between the two values J and
Jeff is significant at low u. At large enough u, this Jeff may
be used for fitting experimental dispersions in a Müller ansatz
[79] approach, as suggested in Ref. [68]. However, such an ap-
proach would only be approximate as itineracy effects modify
the high-energy scattering. Below u � 3, where the spectrum
is qualitatively different from the strong-coupling limit, the
Müller ansatz is insufficient. Table I also shows the scale
factor used for all energy scales (u, η/t̃) to achieve constant
bandwidth in Fig. 2.
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