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The enriched finite-element basis—wherein the finite-element basis is enriched with atom-centered numerical
functions—has recently been shown to be a computationally efficient basis for systematically convergent
all-electron density functional theory (DFT) ground-state calculations. In this work, we present the expressions
to compute variationally consistent ionic forces and stress tensor for all-electron DFT calculations in the
enriched finite-element basis. In particular, we extend the formulation of configurational forces [P. Motamarri
and V. Gavini, Phys. Rev. B 97, 165132 (2018)] to the enriched finite-element basis and elucidate the additional
contributions arising from the enrichment functions. We demonstrate the accuracy of the formulation by
comparing the computed forces and stresses for various benchmark systems with those obtained from finite
differencing the ground-state energy. Further, we also benchmark our calculations against the Gaussian basis
for molecular systems and against the linearized augmented plane wave with local orbitals basis for periodic
systems.
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I. INTRODUCTION

Density functional theory [1] (DFT) has been the
workhorse of electronic structure calculations for many
decades, providing important qualitative and quantitative in-
sights into many materials properties. The success of DFT
is attributed to the reduced computational complexity—cubic
scaling with system size—via the Kohn-Sham (KS) formu-
lation [2], which reduces the many-body Schrödinger equa-
tion to an effective single-electron problem for ground-state
properties. Thus, the electronic ground state, for given posi-
tions of nuclei, can be computed by solving the Kohn-Sham
eigenvalue problem. However, computing the ground-state en-
ergy of the system also requires structural relaxations, which
necessitates the evaluation of ionic forces, and, in the context
of periodic geometries, also the stress tensor associated with
the cell geometry.

The ionic force on a nucleus is simply the negative deriva-
tive of the electronic ground-state energy with respect to the
position of the nucleus. The dependence of the electronic
ground-state energy on the position of nuclei comes about in
the following two ways. Firstly, a change in nuclear positions
results in a change in the electrostatic interaction energy,
specifically the electron-nuclear and the nuclear-nuclear elec-
trostatic energy. Secondly, the wave functions and the electron
density, implicitly depend on the nuclear positions. How-
ever, the latter does not contribute to the ionic forces as the
first variation of the electronic ground-state energy with re-
spect to the wave functions and the electron density vanishes.
Thus, in principle, in a continuous setting, the ionic force is
simply the classical electrostatic force, which is the celebrated

Hellman-Feynman theorem [3,4]. However, in practice, in a
discrete setting, there is often a need to account for additional
contributions known as Pulay forces [5], arising due to the
dependence of the basis set on the positions of the nuclei.
Similar considerations are needed while computing the stress
tensor, which is the derivative of the electronic ground-state
energy with respect to the strain tensor. As a consequence,
there exists a large body of work describing the calculation
of nuclear forces [6–30] and stress tensor [9,24,31–46] in the
discrete basis sets used to solve the Kohn-Sham problem.

In this work, we derive the expressions for ionic forces
and stress tensor in DFT calculations using the enriched
finite-element (EFE) basis, and conduct verification stud-
ies to ascertain the accuracy. The finite-element (FE) basis,
which comprises local piecewise continuous polynomials
as basis functions, offers systematic convergence and ex-
cellent parallel scalability in DFT calculations, given the
local nature of the basis. While many prior efforts have
developed and explored the use of FE basis for DFT calcu-
lations (cf., e.g., [47–57]), recent developments [58,59] have
demonstrated the utility of FE basis for conducting fast and
accurate large-scale pseudopotential DFT calculations involv-
ing many tens of thousands of electrons [58–61]. However, for
all-electron electronic structure calculations, although prior
works [47,48,56,57,62–72] have demonstrated the systematic
convergence of the FE basis, the computational cost remains
high, given the large number of FE basis functions that are
needed to accurately describe the all-electron wave functions.
The EFE basis, which enriches the FE basis with compactly
supported enrichment functions, such as those constructed
from single-atom wave functions, can be used to significantly
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reduce the number of FE basis functions, and conse-
quently improve the computational efficiency of all-electron
calculations. While EFE basis has been employed for both all-
electron calculations [73–76] as well as calculations involving
hard pseudopotentials [77,78], in the present work we con-
sider the framework of all-electron density functional theory.

The general approach to computing atomic forces or
stresses in most numerical implementations relies on the
outer variations of the Kohn-Sham energy functional with
respect to the position of atoms (for computing forces) or the
lattice vectors (for computing stress tensor). In the present
work, however, we adopt a configurational force approach,
which is based on inner variations of the Kohn-Sham en-
ergy functional. The configurational forces correspond to the
generalized variational derivative of the Kohn-Sham energy
functional with respect to the position of a material point x.
The formulation is closely related to a recent work by Mota-
marri and Gavini [79], who proposed the configurational force
approach for the FE basis. In the present work, we extend the
formulation of configurational forces to the enriched FE basis
proposed in [74,76], and derive the additional contributions
that arise from the atom-centered enrichment functions. An
advantage of the configurational force approach is that it pro-
vides a unified framework to compute ionic forces as well as
cell stresses for geometry optimization.

We present numerical results that demonstrate the accuracy
and efficacy of the proposed formulation to compute forces
and cell stresses using the enriched FE basis for all-electron
calculations. We perform calculations on two molecular sys-
tems, carbon monoxide (CO) and sulfur trioxide (SO3), to
demonstrate the applicability of the formulation to compute
ionic forces in nonperiodic systems. Further, we consider
two periodic calculations, involving stress computations for
the diamond eight-atom unit cell as well as ionic forces for
silicon carbide (SiC) with a divacancy. In each case, we
find convergence rates of close to O(h2p−1) with respect to
the mesh size h and the FE order p. Additionally, the ionic
forces and stresses computed from finite differencing the elec-
tronic ground-state energy were in excellent agreement with
those obtained from the derived expression, thus ascertaining
the accuracy and variational consistency of the expressions.
Moreover, we also compare the obtained ionic forces and
cell stresses against other widely used codes, and demonstrate
good agreement.

The remainder of the paper is organized as follows. In
Sec. II, we derive expressions for the ionic forces and stress
tensor for all-electron Kohn-Sham density functional the-
ory calculations using the enriched FE basis. We do so by
first presenting the real-space formulation of the Kohn-Sham
variational problem employed in this work in Secs. II A
and II B. Subsequently, we provide details of the enriched
finite-element basis employed in this work in Sec. II C.
The expressions of the configurational forces are derived in
Sec. II D for the enriched finite-element basis. We conclude
the section by describing the utility of configurational forces
to evaluate ionic forces and the stress tensor in Sec. II E.
Next, in Sec. III, we present the numerical study and results
that demonstrate the accuracy and efficacy of the proposed
formulation to compute ionic forces and cell stresses. Finally,
in Sec. IV, we summarize our findings and present an outlook.

II. FORMULATION

In this section, we derive the expressions for ionic forces
and stress tensor in all-electron Kohn-Sham density functional
theory calculations using the enriched FE basis. In particular,
we use the configurational forces approach which facilitates
the computation of both the ionic forces and cell stresses in
a unified framework. A configurational force is simply the
Gâteaux derivative of the Kohn-Sham electronic ground-state
energy functional along the direction of a prescribed defor-
mation of the underlying space, with the deformation being
characterized by a generator function. The configurational
forces corresponding to an appropriate choice of generator
functions are in turn used to evaluate the ionic forces and the
stress tensor. The idea of using configurational forces to eval-
uate ionic forces and stress tensor in the context of FE basis
was previously proposed for orbital-free DFT [80] and Kohn-
Sham DFT [79]. In this work, we extend the formulation to
all-electron Kohn-Sham DFT calculations using enriched FE
basis, which is a mixed basis constructed by augmenting the
FE basis with atom-centered numerical enrichment functions.
While the derivation presented in this work is similar in spirit
to [79], there are some key differences. Firstly, we consider the
discrete Kohn-Sham energy functional as our starting point, as
opposed to the continuous setting in which the configurational
forces were derived in the previous work [79]. This is essential
in order to account for, as well as delineate, the contributions
from the enrichment functions to the configurational forces.
In the absence of basis enrichment functions, the expressions
derived in this work would reduce to those presented in [79].
Secondly, in this work, we use the smeared charge approach
proposed in [78], which enables a more efficient treatment of
the electrostatic interactions arising from nuclear charges.

In the following sections, we present the formulation and
derive the expressions for computing the ionic forces and
stress tensor. For brevity, we only consider periodic systems.
The expressions for the nonperiodic case may be deduced by
simply replacing the Brillouin zone sampling by an evaluation
at k = 0. In Secs. II A and II B, we present the Kohn-Sham
energy functional and the real-space formulation used in this
work. This is followed by a brief description of the enriched
FE employed in this work in Sec. II C. We present the con-
figurational forces in Sec. II D, and present the approach to
evaluate the ionic forces and stress tensor in Sec. II E.

A. Kohn-Sham density functional theory

Consider a periodic unit cell � containing Ne electrons and
Na nuclei with ionic position vectors R = {R1, R2, . . . , RNa}.
Neglecting spin, the free energy of the system in Kohn-Sham
density functional theory [1,2] at finite temperature [81] is
given by

F (�uk , uk, R) = Ts(�
uk , uk, R) + Exc(ρ) + Eel(ρ, R)

− Eent (�
uk ), (1)

where uk = {u1,k(x), u2,k(x), . . . , uN,k(x)} (N > Ne/2) rep-
resent electronic wave functions corresponding to k, a point
in the reciprocal space. These wave functions are considered
to be nonorthogonal, in general. �uk represents the ma-
trix corresponding to the single-particle density operator (�̂)
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expressed in the nonorthogonal basis uk. Hence, the elements
of the matrix are given by �uk

pq =∑N
r=1 Sk−1

pr 〈ur,k|�̂|uq,k〉,
where Sk is the overlap matrix whose elements are given by

Sk
m,n =

∫
�

u∗
m,k(x)un,k(x)dx. (2)

The superscript “∗” in the above expression denotes complex
conjugate. The electron density ρ(x) in Eq. (1) can be written
in terms of the density matrix and nonorthogonal wave func-
tions as follows:

ρ(x) = 2
 

�BZ

{
N∑

p,q,r=1

�uk
pqSk−1

qr u∗
r,k(x) up,k(x)

}
dk, (3)

where the average integral over the Brillouin zone, in practice,
is computed as a discrete sum over k points lying in the
Brillouin zone (BZ) with an associated weight wk. A common
choice for the k-point grid is the Monkhorst-Pack scheme
[82], which is adopted in this work. In the present work, we
restrict our analysis to spin-independent systems. However,
all the ideas discussed subsequently can be generalized to
spin-dependent systems.

The first constituent of the free-energy functional in Eq. (1)
is the kinetic energy of the noninteracting electrons, Ts, which
is given by

Ts(�
uk , uk ) = 2

 
�BZ

{
N∑

p,q,r=1

∫
�

�uk
pqSk−1

qr u∗
r,k(x)

×
(

−1

2
(∇ + ik)2

)
up,k(x)dx

}
dk. (4)

The exchange-correlation functional in the local density ap-
proximation [83,84] adopted in this work is given by

Exc(ρ) =
∫

�

F (ρ)dx =
∫

�

εxc(ρ)ρ(x)dx. (5)

Eel represents the classical electrostatic interaction energy be-
tween the electrons and nuclei and can be written as follows:

Eel(ρ, R) = EH(ρ) + Eext(ρ, R) + EZZ(R), (6)

where EH and EZZ are the Hartree energy and the nuclear
repulsive energy, respectively, and are given by

EH(ρ) = 1

2

∫
�

∫
R3

ρ(x)ρ(x′)
|x − x′| dx′dx (7)

and

Ezz(R) = 1

2

∑
I

∑
J, J �=I

ZI ZJ

|RI − RJ | . (8)

Note that, in the above equation, the sum over J represents all
nuclei in R3 while the sum over I includes only those in the
domain �. Eext in Eq. (6) represents the interaction between
electrons and nuclei and is given by

Eext (ρ, R) = −
∑

J

∫
�

ρ(x)
ZJ

|x − RJ |dx. (9)

Lastly, the entropic energy of the electrons in Eq. (1) is
given by

Eent(�
uk ) = −2σ

 
�BZ

tr[�uk ln �uk

+ (I − �uk ) ln (I − �uk )]dk, (10)

where σ = kBT with kB denoting the Boltzmann constant and
T denoting the electronic temperature.

The electronic ground state, for given nuclear positions, is
given by the following variational problem:

min
�uk ∈RN×N

min
uk∈[H1

per (�)]N
Fc(�uk , uk, R), ∀ k ∈ BZ, (11)

where Fc is a constrained free-energy functional given by

Fc = F − μ

[
2 tr

( 
�BZ

�uk dk
)

− Ne

]
. (12)

In the above equation, μ, which is the Lagrange multiplier
corresponding to the constraint on the number of electrons,
also denotes the Fermi level. We note that H1

per(�) denotes the
Hilbert space of periodic functions such that the functions and
their first-order derivatives are square integrable in �.

B. Local real-space formulation of Kohn-Sham DFT

Here we present the local real-space formulation that forms
the basis for the derivation of the configurational forces ex-
pression. To begin with, the electrostatic interaction energy
Eq. (6) presented in the previous section is extended in real
space. However, this extended interaction can be recast into
a local variational formulation using auxiliary electrostatic
potentials (cf. [80]) as

EH(ρ) + Eext (ρ, R) + Ezz(R) = max
φ∈H1

per (�)

{∫
�

[
[ρ(x) + b(x, R)]φ(x) − 1

8π
|∇φ(x)|2

]
dx
}

−
Na∑

I=1

max
VI ∈H1(R3 )

{∫ [
bI (x, R)VI (x) − 1

8π
|∇VI (x)|2

]
dx
}
. (13)

In the above equation, b(x, R) =∑I bI (x, R) =∑
I −ZI δ̃(|x − RI |) is the nuclear charge density represented

using regularized Dirac-delta functions centered at the nuclei.
Also, the second term in Eq. (13) serves the purpose of
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removing the nuclear self-interaction contribution contained
in the first term.

In the present work, however, we adopt the smeared charge
representation for the nuclear charge [78] which is computa-
tionally more efficient in a discrete setting. To this end, the
nuclear charge density is written as

bs(x) =
∑

I

bs,I (x) =
∑

I

−ZI g(|x − RI |, rc,I ), (14)

where g(|x − RI |, rc,I ) denotes a smeared charge which is
localized within |x − RI | < rc,I and integrates to unity. We
employ the following form for the unit smeared charge [78]:

g(r, rc) =
{−21(r−rc )3(6r2+3rrc+r2

c )
5πr8

c
, 0 � r � rc,

0, r > rc.
(15)

The rc,I ’s are chosen to be the largest possible values that
avoid overlap between two neighboring smeared charges. We
note that, while not explicitly indicated, the smeared charge
sphere is considered to wrap around the periodic boundary
should it breach the boundaries of the computational domain.
The local reformulation for the electrostatic energy using
smeared nuclear charge is given by

Eel(ρ, R) = EH(ρ) + Eext (ρ, R) + Ezz(R)

= max
φ∈H1

per (�)
Lel(φ, ρ, R), (16)

where

Lel(φ, ρ, R)

=
∫

�

[
[ρ(x) + bs(x, R)]φ(x) − 1

8π
|∇φ(x)|2

]
dx

+
∑

I

∫
�I

ρ(x)[VI (|x − RI |) − Vs,I (|x − RI |, rc,I )]dx

−
∑

I

1

2

∫
�I

bs,I (x)Vs,I (|x − RI |, rc,I )dx. (17)

In the above, [ρ(x) + bs(x, R)] constitutes a charge-neutral
system. The second term is a correction term containing the
difference between the exact nuclear potential (VI ) corre-
sponding to the point nuclear charge and the smeared nuclear
potential (Vs,I ) corresponding to bs,I . These are given by

VI (r) = −ZI

r
, (18)

Vs,I (r, rc,I ) = −ZIvg(r, rc,I ), (19)

where vg(r, rc) is the potential corresponding to the g(r, rc)
and is given by

vg(r, rc) =
{

9r7−30r6rc+28r5r2
c −14r2r5

c +12r7
c

5r8
c

, 0 � r � rc
1
r , r > rc.

(20)

We note that since VI and Vs,I are identical for r > rc,I , the
correction for each nucleus is evaluated only inside the sphere
of radius rc,I around RI , whose domain is denoted by �I .
The last term in Eq. (17) removes the self-interaction energy
corresponding to the smeared nuclear charges.

Finally, the electronic ground-state energy for a given posi-
tion of the nuclei R can be computed using Eqs. (11) and (16)

as the following variational problem:

E0(R) = L(�̄uk , ūk, φ̄, R)

= min
�uk ∈RN×N

min
uk∈[H1

per (�)]N
max

φ∈H1
per (�)

L(�uk , uk, φ, R),

(21)

where

L(�uk , uk, φ, R)

= Ts(�
uk , uk, R) + Exc(ρ) + Lel(φ, ρ, R)

− Eent (�
uk ) − μ

[
2 tr

( 
�BZ

�uk dk
)

− Ne

]
. (22)

In the above, L denotes the local reformulation of the
constrained free-energy functional Fc. The solution to the
variational problem in Eq. (21) is equivalent, for the ground-
state density and energy of the system, to the solution of the
Kohn-Sham equations with the fractional occupancy deter-
mined by the Fermi-Dirac distribution. We denote �̄

uk , ūk,
and φ̄ to be the extremizers of the variational problem.

C. Enriched finite-element basis

The EFE basis used in this work is constructed by augment-
ing the FE basis with atom-centered enrichment functions.
The enrichment functions, which attempt to capture the highly
oscillatory behavior of the wave functions around the nuclei,
obviate the need for highly refined finite-element mesh near
the nuclei, thus greatly reducing the computational cost. In
this work, we derive configurational forces in the context
of enriched finite-element basis presented by Kanungo and
Gavini [74]. We note that using the EFE basis tends to yield
ill-conditioned matrices in both the generalized eigenvalue
problem and the linear system of equations (electrostatics).
This affects the robustness of the self-consistent field itera-
tions. There are many approaches [85,86] proposed in recent
years to address this problem. In particular, Rufus et al. [76]
have proposed the orthogonalized enriched FE (OEFE) basis,
in which the atomic solutions are orthogonalized with respect
to the underlying FE basis before augmenting as enrichments.
The OEFE basis yields well-conditioned matrices ensuring
numerical robustness. However, we note that the EFE basis
presented in [74] and the OEFE basis presented in [76] span
the same function space. Thus, in this work we employ the
following strategy to compute ionic forces and cell stresses.
First, we compute the electronic ground state using the OEFE
basis. We subsequently transform the fields from the OEFE
to the EFE basis. Finally, we evaluate the forces and stresses
using the expressions presented in this work. We derive the
configurational force expressions in the EFE basis to avoid
accounting for the additional contributions arising from the
orthogonalizing terms in the OEFE basis.

Next, we provide a brief overview of the EFE basis. In the
EFE basis, the wave functions uα,k(x) are approximated as

uα,k(x) ≈ uh
α,k(x)

=
nh∑

i=1

NC
i (x)uC

α,k,i︸ ︷︷ ︸
Classical FE

+
Na∑

I=1

nI∑
j=1

NE ,uk
j,I (x − RI )uE

α,k, j,I︸ ︷︷ ︸
Enrichment

.

(23)
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In the above equation, the superscript h indicates a discrete
field, and the superscripts C and E are used to distinguish
the classical and the enrichment components, respectively.
In particular, NC

i (x) denotes the ith classical FE basis func-
tion, and uC

α,k,i denotes the expansion coefficient of NC
i (x)

for uα,k. Similarly, NE ,uk
j,I (x) denotes the k-point dependent

enrichment function for uα,k (∀α). The index I runs over all
the atoms (Na) in the system, and the index j runs over all

the atomic Kohn-Sham orbitals (nI ) we include for the atom
I . In other words, the Ith atom, situated at RI , contributes
nI enrichment functions, each centered around RI . uE

α,k, j,I

represents the expansion coefficient of NE ,uk
j,I (x − RI ) corre-

sponding to uα,k. The reader is referred to [74,76] for the form
of NE ,uk

j,I (x − RI ).
In a similar vein, the electrostatic potential φ is

given as

φ(x) ≈ φh(x) =
nh∑

j=1

NC
j (x)φC

j︸ ︷︷ ︸
Classical FE

+
Na∑

I=1

NE ,φ
I (x − RI )φE

I︸ ︷︷ ︸
Enrichment

. (24)

As with the discretization of uα,k [Eq. (23)], NC
j (x) denotes the jth classical FE basis function and φC

j denotes its corresponding

coefficient. Similarly, NE ,φ
I (x − RI ) is the Ith enrichment function with a corresponding coefficient φC

I .
Thus, in the finite-dimensional EFE basis, the electronic ground-state energy is given by

Eh
0 (R) = L

(
�̄

uk ,
{
uh

α,k

({
NC

i (x)
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (x − RI )
}
,
{
ūE

α,k, j,I

})}
, φh
({

NC
j (x)

}
,
{
φ̄C

j

}
,
{
NE ,φ

I (x − RI )
}
,
{
φ̄E

I

})
, R
)

= min
�uk ∈RN×N

min
{uC

α,k,i}∈CN×nh
min{

uE
α,k,ν

}
∈CN×n

uk
E

max{
φC

j

}
∈Rnh

max{
φE

I

}
∈RNa

L
(
�uk ,

{
uh

α,k

({
NC

i (x)
}
,
{
uC

α,k,i

}
,
{
NE ,uk

j,I (x − RI )
}
,
{
uE

α,k, j,I

})}
, φh
({

NC
j (x)

}
,
{
φC

j

}
,
{
NE ,φ

I (x − RI )
}
,
{
φE

I

})
, R
)
.

(25)

In the above equation, {· } are used to denote lists of
functions or scalar coefficients running over all indices.
�̄

uk , {ūC
α,k,i}, {ūE

α,k, j,I}, {φ̄C
j }, and {φ̄E

I } denote the discrete
ground-state solution (stationarity point of L) for given nu-
clear positions R and basis functions. These quantities can be
computed by solving the Kohn-Sham equations in the EFE
basis. In particular, in the context of canonical eigenfunc-
tions, {ūC

α,k,i} and {ūE
α,k,ν} are the solution of the generalized

Kohn-Sham eigenvalue problem; �̄
uk contains the fractional

occupancies of the eigenstates given by the Fermi-Dirac dis-
tribution; {φ̄C

j } and {φ̄E
I } are solutions to the Poisson problem

governing the electrostatic interactions.

D. Configurational forces

We now derive expressions for the configurational force
corresponding to the electronic ground-state free energy in
Eq. (21). We employ the approach of inner variations, where
the generalized force corresponding to a perturbation of un-
derlying space is evaluated. To this end, we define a bijective
mapping τε : R3 
→ R3 which represents an infinitesimal per-

turbation of the underlying space, mapping a material point x
to a new point xε = τε(x). Using a Taylor series expansion in
ε, this mapping can be written as

τε(x) = x + εϒ(x) + O(ε2), (26)

where ϒ(x) = d
dε

τε(x)|ε=0 is the generator of the spatial
perturbation. We note that x0 = x denotes the reference con-
figuration.

The configurational force corresponding to a prescribed
τε(x) is given by

d

dε
Lε(�̄uk,ε

, ūε
k, φ̄

ε, Rε )

∣∣∣∣
ε=0

, (27)

where �̄
uk,ε, ūε

k, and φ̄ε are the extremizers of the constrained
free-energy functional in the perturbed configuration (Lε). In
other words, the configurational force is the Gâteaux deriva-
tive of Lε in the direction of ϒ(x) with all the electronic fields
set to the electronic ground state.

In the discrete setting with the enriched finite-element ba-
sis, the configurational force is given by

F̂ h[ϒ(x)] = d

dε
Lε
(
�̄

uk,ε
,
{
uh

α,k

({
NC,ε

i (xε )
}
,
{
ūC,ε

α,k,i

}
,
{
NE ,uk

j,I

(
xε − Rε

I

)}
,
{
ūE ,ε

α,k, j,I

})}
,

φh
({

NC,ε
j (xε )

}
,
{
φ̄C,ε

j

}
,
{
NE ,φ

I

(
xε − Rε

I

)}
,
{
φ̄E ,ε

I

})
, Rε

)∣∣
ε=0. (28)

We note that in computing the configurational force in the discrete setting, we choose the generator from the subspace spanned
by the FE basis (cf. Sec. II E) as it allows us to take advantage of the isoparametric nature of FE basis functions. In the above,
�̄

uk,ε
, {ūC,ε

α,k,i}, {ūE ,ε
α,k, j,I}, {φ̄C,ε

j }, and {φ̄E ,ε
I } represent the ground-state electronic fields in the discrete setting, i.e., the extremizers

of Lε in subspace spanned by the enriched FE basis. It is important to note here that the enrichment functions {NE ,uk
j,I (xε − Rε )}
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and {NE ,φ
I (xε − Rε )} retain their form even when the underlying space is deformed, as these are a priori computed enrichment

functions independent of the finite-element discretization.
For the sake of further simplification, we express the constrained free-energy functional in terms of the energy density f as

L
(
�uk ,

{
uh

α,k

({
NC

i (x)
}
,
{
uC

α,k,i

}
,
{
NE ,uk

j,I (x − RI )
}
,
{
uE

α,k, j,I

})}
, φh
({

NC
j (x)

}
,
{
φC

j

}
,
{
NE ,φ

I (x − RI )
}
,
{
φE

I

})
, R
)

=
∫

�

f
(
�uk ,

{
uh

α,k

({
NC

i (x)
}
,
{
uC

α,k,i

}
,
{
NE ,uk

j,I (x − RI )
}
,
{
uE

α,k, j,I

})}
, φh
({

NC
j (x)

}
,
{
φC

j

}
,
{
NE ,φ

I (x − RI )
}
,
{
φE

I

})
, R
)
dx.

(29)

The configurational force is decomposed as follows (refer to the Appendix for details):

F̂ h[ϒ(x)] = d

dε

[∫
�ε

f ε
(
�̄

uk,ε
,
{
uh

α,k

({
NC,ε

i (xε )
}
,
{
ūC,ε

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE ,ε

α,k, j,I

})}
,

φh
({

NC,ε
j (xε )

}
,
{
φ̄C,ε

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E ,ε

I

})
, Rε

)
dxε

]∣∣∣∣
ε=0

= F̂1[ϒ(x)] + F̂2[ϒ(x)], (30)

where F̂1 denotes the contribution to the configurational force that arises from all dependencies on ε excepting those that arise
from the enrichment functions, and F̂2 denotes the contribution to the configurational force that arises from the enrichment
functions. In particular,

F̂1[ϒ(x)] = d

dε

[∫
�ε

f ε

(
�̄

uk,ε
,
{
uh

α,k

({
NC

i (x)
}
,
{
ūC,ε

α,k,i

}
,
{
NE ,uk

j,I (x − RI )
}
,
{
ūE ,ε

α,k, j,I

})}
,

φh
({

NC
j (x)

}
,
{
φ̄C,ε

j

}
,
{
NE ,φ

I (x − RI )
}
,
{
φ̄E ,ε

I

})
, Rε

)
dxε

]∣∣∣∣
ε=0

. (31)

We note that, in writing the above expression, we have made use of the isoparametric nature of the FE basis functions, i.e.,
NC,ε

i (xε ) = NC
i (x). We note that the configurational force is of a similar form as the one considered in Motamarri and Gavini

[79], albeit in a discrete setting. Thus, using the previously derived results [79], we note that we can evaluate F̂1[ϒ(x)] in terms
of the canonical Kohn-Sham eigenfunctions as follows:

F̂1[ϒ(x)] =
∫

�

E : ∇ϒ(x)dx + F K + F S, (32)

where the Eshelby tensor E is given by

E =
( 

�BZ

[∑
α

f̄α,k
{∇ūh,∗

α,k(x) · ∇ūh
α,k(x) − 2i ūh,∗

α,k(x)k · ∇ ūh
α,k(x) + (|k|2 − 2ε̄α,k )

∣∣ūh
α,k(x)

∣∣2}]dk

+εxc(ρ̄h)ρ̄h(x) + [ρ̄h(x) + bs(x, R)]φ̄h(x) − 1

8π
|∇φ̄h(x)|2

)
I

−
 

�BZ

[∑
α

f̄α,k
{∇ūh,∗

α,k(x) ⊗ ∇ūh
α,k(x) + ∇ūh

α,k(x) ⊗ ∇ūh,∗
α,k(x) − 2i ūh,∗

α,k(x)
[∇ūh

α,k(x) ⊗ k
]}]

dk

+ 1

4π
∇φ̄h(x) ⊗ ∇φ̄h(x) (33)

and

F K =
 

�BZ

[∑
α

f̄α,k

∫
�

{
−2iūh,∗

α,k(x)
d

dε
kε

∣∣∣∣
ε=0

· ∇ ūh
α,k(x) + d

dε
|kε|2

∣∣∣∣
ε=0

∣∣ūh
α,k(x)

∣∣2}dx

]
dk. (34)

We note that, in the above expression, kε depends on the nature of the generator. For a Gaussian-type generator used in the force
calculations (cf. Sec. II E), since there is no change in the lattice vectors, we have

kε(k) = k ⇒ d

dε
kε

∣∣∣∣
ε=0

= 0. (35)

However, under affine deformations, this dependence is given by

kε(k) = (I − εCT )k ⇒ d

dε
kε

∣∣∣∣
ε=0

= −CT k, (36)
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where C is a second-order tensor independent of x. F S in Eq. (33) contains contributions from the smeared nuclear charges, and
is given by

F S =
∑

I

[∫
�I

ρ̄h(x)∇(VI (|x − RI |) − Vs,I (|x − RI |, rc,I )) · (ϒ(x) − ϒ(RI ))dx
]

+
∑

I

[∫
�I

ρ̄h(x){VI (|x − RI |) − Vs,I (|x − RI |, rc,I )}∇ · ϒ(x)dx
]

−
∑

I

[∫
�I

φ̄h(x)ZI∇g(|x − RI |, rc,I ) · (ϒ(x) − ϒ(RI ))dx
]
. (37)

We now turn our attention to F̂2[ϒ(x)] in Eq. (30), which contains the contributions arising from the ε dependence of the
enrichment functions. We provide here the expression for F̂2[ϒ(x)], and refer to the Appendix for the details of the derivation:

F̂2[ϒ(x)] =
 

�BZ

[∑
α

f̄α,k

∫
�

{
∇
(

d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

)
· ∇ūh

α,k(x) + ∇ūh,∗
α,k(x) · ∇

(
d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

)

− 2i
d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

k · ∇ūh
α,k(x) − 2i ūh,∗

α,k(x)k · ∇ d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

+ |k|2 d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

ūh
α,k(x)

+|k|2ūh,∗
α,k(x)

d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

}
dx
]

dk

+
∫

�

d

dε
ρ̃h,ε(xε )

∣∣∣∣
ε=0

[
Vxc(x) + φ̄h(x) +

∑
I

[VI (|x − RI |) − Vs,I (|x − RI |)]
]

dx

+
∫

�

[
ρ̄h(x) + bs(x, R)

] d

dε
φ̃h,ε(xε )

∣∣∣∣
ε=0

dx −
∫

�

1

4π
∇
(

d

dε
φ̃h,ε(xε )

)∣∣∣∣
ε=0

· ∇φ̄h(x)dx

−
 

�BZ

[∑
α

f̄α,k

∫
�

2ε̄α,k

{
d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

ūh
α,k(x) + ūh,∗

α,k(x)
d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

}
dx

]
dk, (38)

where

d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

:= d

dε
uh

α,k

({
NC

i (x)
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE

α,k, j,I

})∣∣∣∣
ε=0

=
Na∑

I=1

nI∑
j=1

ūE
α,k, j,I∇NE ,uk

j,I (x − RI ) · (ϒ(x) − ϒ(RI )) (39)

and

d

dε
φ̃h,ε(xε )

∣∣∣∣
ε=0

:= d

dε
φh
({

NC
j (x)

}
,
{
φ̄C

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E

I

})∣∣∣∣
ε=0

=
Na∑

I=1

φ̄E
I ∇NE ,φ

I (x − RI ) · (ϒ(x) − ϒ(RI )) (40)

account for contributions from the enrichment functions. We
note that d

dε
ρ̃h,ε(xε )|ε=0 can be computed using Eq. (39). We

remark that F̂2[ϒ(x)] vanishes when the enrichment functions
are absent, i.e., when ūE

α,k, j,I = φ̄E
I = 0.

We now summarize the various steps involved in com-
puting the ionic forces and the stress tensor, and provide
details of the computational complexity associated with each
step:

(1) The first step involves computing the electronic ground
state in the discrete basis. This entails computing coefficients
{ūC

α,k,i}, {ūE
α,k, j,I}, {φ̄C

j }, and {φ̄E
I }. The computational com-

plexity of this step is O(mN2), where m is the total number

of basis functions, which is also proportional to the number of
quadrature points used in evaluating the various integrals, and
N is the total number of wave functions.

(2) A preprocessing step for computing forces and stress
tensor involves (i) evaluating ūh

α,k(x), ∇ūh
α,k(x), φ̄h(x),

∇φ̄h(x), ρ̄h(x), etc., at the quadrature points; and (ii) eval-
uating the Eshelby tensor E at all quadrature points. The
computational complexity of computing all these quantities
scales as O(mN ).

(3) Compute the forces on ions using the appropriate
generators (see Sec. II E for details). A breakdown of steps
involved and their associated costs are listed below:
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(a) Compute the generator ϒ(x) and its gradient, for
each ion, at the quadrature points. The cost scales as O(m)
since the generators are localized around the respective ion.

(b) Evaluate F S, whose computational complexity is
O(m) due to the locality of VI (|x − RI |) − Vs,I (|x −
RI |, rc,I ) and g(|x − RI |, rc,I ).

(c) Computing F̂1[ϒ(x)], for generators corresponding
to all ions, using the precomputed E [see step (2) above]
incurs O(m) cost due to the locality of the generators.

(d) Before computing F̂2[ϒ(x)], we compute
d
dε

ũh,ε
α,k(xε )|ε=0 (∀α), d

dε
φ̃h,ε(xε )|ε=0, and d

dε
ρ̃h,ε(xε )|ε=0 at

quadrature points where the generators are nonzero. The
computational complexity of this step is O(m).

(e) Finally, we compute F̂2[ϒ(x)], for all ions, whose
computational complexity is O(mN ) owing to the locality
of the generators.
(4) Compute cell stress components using a generator cor-

responding to an affine deformation of the cell (see Sec. II E
for details). The computational complexity of this step is
O(mN ).

Thus, the computational complexity of computing the ionic
forces and the stress tensor scales as O(mN ), which is lower
order compared to the solution of the electronic ground state
that scales as O(mN2).

E. Computation of ionic forces and stress tensor

We now discuss the approach to compute the ionic forces
and stress tensor from the configurational force. In order to
compute the force on a nucleus along the ith direction, we
choose a generator whose ith component is a function cen-
tered at the nucleus with all other components to be zero.
For instance, to compute the force on the Ith nucleus in the
x direction, we consider the following generator:

ϒ(x) = { f (x) 0 0}. (41)

In particular, as the FE basis functions can also be used to
perturb the space, owing to the isoparametric nature of the
basis functions, we choose generators constructed from the FE
basis. To this end, we use the lowest order subspace of the typ-
ically higher-order finite-element function space employed. In
other words, we choose f to be given by

f (x) =
8∑

i=1

NC,lin
i (x)ci, (42)

where NC,lin
i (x) are trilinear FE basis functions which con-

stitute a subspace of the original classical FE basis spanned
by functions NC

i (x). The coefficients, ci’s, are computed to be
the value of f at the corner vertices of finite-element cells.
The typical form of f we employ in this work is a Gaussian
centered at the nucleus whose ionic force we are interested in
computing. Thus,

ck = f (xk ) = g(|xk − RI |). (43)

We note that g(r) is chosen such that it satisfies the following
constraints: (a) the support of the function is such that it does
not contain any other nuclei other than the one under consid-
eration, and (b) g(0) = 1. The former constraint is essential to
ensure that the sole contribution to the configurational force is

from the nucleus of interest. The latter constraint mimics the
perturbation of the underlying space displacing the Ith nucleus
by ε [Eq. (26)]. In the present work we choose

g(r) = exp(αrβ ), (44)

with α = −0.8 and β = 4. The force on the Ith nucleus in
the x direction is simply the negative of the configurational
force evaluated using the above generator [Eq. (41)]. More
importantly, in the context of structural relaxation, the value of
the computed force and the nature of the generator determine
not only the next position of the given nucleus, but also the FE
mesh around it.

In order to compute the stress tensor associated with cell re-
laxations, the prescribed perturbations correspond to an affine
deformation of the periodic domain �p, which preserves the
periodicity of the cell. To elaborate, the generator is given by
ϒ(x) = Cx, where C, a second-order tensor, is independent of
x. By writing the stress tensor in terms of the derivative of the
energy density with respect to the strain tensor, and expanding
the energy density in terms of the strain, it can be shown
that [79]

d

dε
F ε

c (ūε, f̄ε, φ̄ε, Rε )

∣∣∣∣
ε=0

= �p
1

2
[(C + CT) : σ], (45)

where σ is the stress tensor whose individual components can
be computed by appropriately selecting the components of C.
For instance, to compute σxx, we choose C to be

C =
⎧⎨⎩1 0 0

0 0 0
0 0 0

⎫⎬⎭.

III. RESULTS AND DISCUSSION

In this section, we present numerical results that demon-
strate the accuracy of the proposed formulation to compute
forces and stresses using the enriched FE basis for all-electron
calculations. We first consider two molecular systems, carbon
monoxide (CO) and sulfur trioxide (SO3), to demonstrate the
applicability of the formulation to nonperiodic systems. This
is followed by two periodic calculations, diamond eight-atom
cubic cell and silicon carbide (SiC) cubic cell with a diva-
cancy. For each of these benchmark systems, we perform the
following studies. Firstly, we study the rate of convergence of
the ionic force or stress tensor component with respect to dis-
cretization, i.e., decreasing finite-element mesh size. We also
benchmark the accuracy of our calculations with Gaussian
basis for nonperiodic systems and the linearized augmented
plane wave with local orbitals (LAPW+lo) basis for periodic
systems. In the next study, we use the finite-difference test
wherein the underlying space is deformed by an infinites-
imal amount using a generator and the force or the stress
component is computed by finite difference of the electronic
ground-state energy at each configuration. This is compared
against the values obtained using the configurational force
expression. This finite-difference test serves as a verification
of the derived expressions, as well as establishes the varia-
tionality of the expression. Finally, to further ascertain the
variationality of the computed ionic force or stress tensor
component, we vary the position of the nucleus or the lattice
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FIG. 1. Schematic: CO molecule of bond length 2.4 bohrs.

vector and study the agreement between the ionic force/stress
tensor obtained by fitting the electronic ground-state energy
to a higher-order polynomial and the corresponding value
evaluated using the configurational force expression.

In all the following simulations, we use an n-stage Ander-
son mixing [87] for density mixing with a stopping criterion
of 10−8 on the L2 norm of the density difference. Moreover,
we set the electronic temperature, T , to 500 K.

A. Nonperiodic systems

1. Carbon monoxide

We consider a CO molecule of bond length 2.4 bohrs
(cf. Fig. 1) in a simulation box of 80 bohrs. We consider
the x component of the force acting on the O atom as the
metric to ascertain the accuracy. In order to demonstrate
the convergence with respect to discretization, for a given
set of enrichment functions, we compute the force Fh using
three levels of increasingly refined finite-element meshes. We
conduct this study using quadratic and cubic spectral finite el-
ements. Figure 2 plots the error in the force against (1/Nel )1/3,
where Nel represents the number of finite elements. We note
that (1/Nel )1/3 provides a measure of the finite-element mesh
size for convergence studies. The total number of basis func-
tions for the coarsest discretization is 10 048 and 33 912 for
the quadratic and cubic FE meshes, respectively. For every
next level of refinement, each finite element in the simulation
domain is subdivided into eight child elements. Hence, the
number of basis functions for each successive refinement in-

FIG. 2. Convergence of force on the O atom of a CO molecule.

FIG. 3. Schematic: CO variationality test.

creases eightfold. Moreover, the number of enrichment basis
functions used is ten (corresponding to the 1s, 2s, 2px, 2py,
and 2pz orbitals of both the C and O atoms). The exact value
of force, F0, is computed by performing the same calculation
using an EFE basis containing a highly refined quartic FE
mesh. We find the F0 to be 0.202 802 Ha/bohr. The corre-
sponding force value using a pc-4 Gaussian basis in NWCHEM

is 0.202 830 Ha/bohr. The error in the force for finite-element
discretization is expected to be of the form

|Fh − F0| = C

(
1

Nel

)q/3

, (46)

with q denoting the rate of convergence. We note that, for both
the element types, we find the value of q to be close to 2p − 1,
which is the optimal rate of convergence. Next, we conduct the
finite-difference test by applying the perturbations [Eq. (26)]
to the underlying space based on a generator [Eq. (41)] cen-
tered at the O atom by setting the ε to −0.02, −0.01, 0.0,
0.01, and 0.02. In each case, we perform the ground-state
calculation to obtain the electronic ground-state energy. Using
the energy values, we obtain the ionic force on the O atom in
the x direction, by using a five-point stencil. We find that the
finite-difference value and the configurational force agree to
within 2.5 × 10−6 Ha/bohr.

In order to demonstrate the variationality of the computed
ionic force, we keep the C atom fixed and vary the x co-
ordinate of the O atom as shown in Fig. 3. In each case,
we compute the electronic ground-state energy and the ionic
force, F , on the O atom in the x direction. Fitting the
energy using a fourth-order polynomial, we compare the force
obtained using the derivative of the energy with that obtained
from the configurational force expression in Fig. 4. This
agreement between the calculated ionic force and the force

FIG. 4. Comparison of computed force F on the O atom and the
derivative of energy fit E (t ) for CO.
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FIG. 5. Schematic: SO3 molecule of bond length 3 bohrs.

deduced from the energy ascertains the variational consistency
of the formulation. Moreover, the equilibrium bond length
obtained by ionic relaxation is found to be 2.1295 bohrs. The
corresponding value using NWCHEM is 2.1294 bohrs.

2. Sulfur trioxide

We consider the planar SO3 molecule of bond length 3
bohrs (cf. Fig. 5) in a simulation box of 80 bohrs. We consider
the x component of the force acting on the O atom as the
metric of interest. For a given set of enrichment functions,
we compute the force, Fh, using three levels of increasingly
refined finite-element meshes, using quadratic and cubic spec-
tral finite elements. Figure 6 plots the error in the force against
(1/Nel )1/3. The total number of basis functions for the coarsest
discretization is 63 857 and 215 515 for the quadratic and
cubic FE meshes, respectively. The number of enrichment
basis functions employed for this system is 24. The value of
F0 is computed by performing the same calculation using an
enriched basis containing a highly refined quartic FE mesh,
which is computed to be 0.121 280 Ha/bohr. The correspond-
ing force value using a pc-3 Gaussian basis (performed using
NWCHEM) is 0.121 051 Ha/bohr. We note that the more ac-

FIG. 6. Convergence of force on the O atom for SO3.

FIG. 7. Comparison of computed force F on the O atom and
derivative of the energy fit E (t ) for SO3.

curate pc-4 basis calculations could not be performed due to
nonconvergence arising from linear dependence in the basis.
The rates of convergence, q = 2.7 and q = 4.5 for quadratic
and cubic finite elements, respectively, are close to the optimal
rates of convergence.

The finite-difference test by perturbing the underlying
space, in a manner similar to the CO molecule, is in agreement
with the configurational force to within 3.5 × 10−6 Ha/bohr.
Further, Fig. 7 demonstrates the variationality by varying the
x coordinate of the O atom lying on the x axis. Again, we
find an excellent agreement between the computed force and
the force deduced from the energy. Additionally, upon ionic
relaxation, the calculated equilibrium S-O bond length using
the enriched FE basis is 2.6951 bohrs and the corresponding
value obtained using NWCHEM is 2.6956 bohrs.

B. Periodic systems

1. Silicon carbide periodic cell with a divacancy

We consider a silicon carbide cubic diamond-structured
periodic cell with vacancies introduced as shown in Table I.
The quantity of interest we consider here is the force on the
first C atom in the x direction. All calculations performed for
this material system involve sampling the Brillouin zone at
the � point. As with the previous two systems, we perform
the convergence study using quadratic and cubic spectral finite
elements.

Figure 8 plots the error in the force against (1/Nel )1/3. The
total number of basis functions for the coarsest discretization

TABLE I. SiC divacancy fractional coordinates. v denotes va-
cancy site.

Species Fractional coordinates

C (0.0,0.0,0.0)
C (0.5,0.5,0.0)
C (0.0,0.5,0.5)
v (0.5,0.0,0.5)
Si (0.25,0.25,0.25)
Si (0.75,0.75,0.25)
Si (0.75,0.25,0.75)
v (0.25,0.75,0.75)

085108-10



IONIC FORCES AND STRESS TENSOR IN … PHYSICAL REVIEW B 106, 085108 (2022)

FIG. 8. Convergence of the force on the C atom of SiC divacancy.

is 32 768 and 110 592 for the quadratic and cubic FE meshes,
respectively. The number of enrichment basis functions
employed for this system is 42. As evident from the figure,
close to optimal rates of convergence are obtained for both
the element types. The exact value of force F0 is computed by
performing the same calculation using an enriched basis con-
taining a highly refined quartic FE mesh. We find the F0 to be
0.023 709 1 Ha/bohr. The corresponding force value obtained
using the LAPW+lo basis in the ELK code is 0.023 796 2
Ha/bohr. We note that this value was obtained using a low
muffin-tin radius of 1.0 bohr, as opposed to 1.8–2.0 bohrs
typically used for the energy calculations. The spherical av-
eraging inside the muffin tins may have a more pronounced
effect on the forces as compared to the energies. Calculations
with muffin-tin radius lower than 1.0 bohr were not performed
in this study due to the steep increase in the cost associated
with reducing the muffin-tin radius.

In the the finite-difference test, we observe that the com-
puted force and the finite-difference force agree to within
3.3 × 10−6 Ha/bohr. Next, we vary the z coordinate of the
first C atom to study the variationality of the computed force.
The comparison between the calculated force and the force
obtained using the derivative of the energy is shown in Fig. 9.

FIG. 9. Comparison of computed force F and derivative of the
energy fit E (t ) for SiC.

FIG. 10. Convergence of hydrostatic stress for diamond unit cell.

In the figure, t is used to denote the z coordinate of the first C
atom.

2. Diamond unit cell

We consider an eight-atom diamond unit cell of lattice
constant a = 7.0 bohrs. The quantity of interest we consider
for this system is the hydrostatic stress. We first study the
convergence rates of the stress with respect to the mesh size.
We perform this study using quadratic and cubic spectral finite
elements. For these calculations, unless otherwise stated, the
Brillouin zone is sampled at k = (0.2, 0.3, 0.4) to verify the
accuracy of the derived expressions and implementation when
the computed KS wave functions are complex valued.

Figure 10 plots the error in the force against (1/Nel )1/3. The
total number of basis functions for the coarsest discretization
is 32 768 and 110 592 for the quadratic and cubic FE meshes,
respectively. The number of enrichment basis functions em-
ployed for this system is 40. As evident from the figure, close
to optimal rates of convergence are obtained for both the
element types. An enriched FE calculation using a highly re-
fined quartic mesh yielded σ0 = 0.001 551 46 Ha/bohr3. The
corresponding value of stress obtained using the LAPW+lo
basis is 0.001 547 24 Ha/bohr3. We note that this value was
obtained by performing a finite difference on the energy since
the ELK code, used for benchmarking, does not currently have
the capability to directly evaluate the value of stress.

In order to conduct the finite-difference test, we first
deduce the value of hydrostatic stress from the electronic
ground-state energies at lattice constants a, a(1 ± ε), a(1 ±
2ε) using ε = 0.01. This value is then compared with the hy-
drostatic stress evaluated using configurational forces, and we
find an agreement of 1.1 × 10−6 Ha/bohr3. Finally, to study
the variationality of the computed hydrostatic stress, we com-
pare the computed value of stress using configurational forces
at various lattice constants with the stress obtained by fitting
the the electronic ground-state energy to a polynomial of the
lattice constant. A 5 × 5 × 5 Monkhorst-Pack grid is used to
sample the Brillouin zone in this calculation. The comparison
is shown in Fig. 11, and we observe good agreement ascer-
taining the variational nature of the formulation. Moreover,
we find the equilibrium lattice constant to be 6.680 bohrs. The

085108-11



NELSON D. RUFUS AND VIKRAM GAVINI PHYSICAL REVIEW B 106, 085108 (2022)

FIG. 11. Comparison of computed stress σ and derivative of
energy fit E (t ) for diamond.

corresponding value using an LAPW+lo calculation is 6.681
bohrs.

IV. SUMMARY

In the present work, we derived and implemented the
configurational force approach in the context of enriched
finite-element basis to compute ionic forces and the stress
tensor in all-electron density functional theory calculations.
The approach provides a unified expression for both ionic
forces and stress tensor to conduct structural relaxations. The
derived configurational force is variational, and inherently
accounts for Pulay corrections arising from the dependence
of the basis on the nuclear positions. Further, both periodic
and nonperiodic calculations can be handled using the same
framework.

The accuracy of the formulation was verified using the four
benchmark systems. Force calculations were demonstrated
for CO and SO3 molecules, and SiC periodic cell with a
divacancy. Stress calculations were demonstrated for the di-
amond unit cell. In each case, we found convergence rates
of O(hα ), α ≈ 2p − 1, with respect to mesh size h, where p
denotes the polynomial order of the finite-element basis. The
finite-difference test for each system showed a tight agreement
between the force deduced from the energy and that evaluated
using the derived configurational force expression. Moreover,
for all systems we demonstrated the variationality of the
proposed approach by showing a good agreement between
the evaluated configurational force and the derivative of the
polynomial fit of the electronic ground-state energy.

Previous works [74,76] have shown the merits of enriched
finite elements for all-electron DFT calculations, such as
systematic convergence, numerical efficiency, and scalability.
This work extends the utility of the enriched finite-element
basis by presenting an approach to compute the ionic forces
and stress tensor for performing structural relaxations in all-
electron DFT calculations.
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APPENDIX

We present the details of the derivation of the configurational force expression given in Sec. II. The notation used here is
consistent with the main text. We recall from Eq. (28) that the configurational force is defined as

F̂ h[ϒ(x)] = d

dε
Lε
(
�̄

uk,ε
,
{
uh

α,k

({
NC,ε

i (xε )
}
,
{
ūC,ε

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE ,ε

α,k, j,I

})}
,

φh
({

NC,ε
j (xε )

}
,
{
φ̄C,ε

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E ,ε

I

})
, Rε

)∣∣
ε=0. (A1)

Since �̄
uk,ε, {ūC,ε

α,k,i}, {ūE ,ε
α,k, j,I}, {φ̄C,ε

j }, and {φ̄E ,ε
I } constitute the stationarity point of the constrained free-energy functional

Lε, the partial derivative of Lε with respect to any of these quantities vanishes. Hence, the configurational force expression
reduces to

F̂ h[ϒ(x)] = d

dε
Lε
(
�̄

uk ,
{
uh

α,k

({
NC,ε

i (xε )
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE

α,k, j,I

})}
,

φh
({

NC,ε
j (xε )

}
,
{
φ̄C

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E

I

})
, Rε

)∣∣
ε=0, (A2)

where �̄
uk , {ūC

α,k,i}, {ūE
α,k, j,I}, {φ̄C

j }, and {φ̄E
I } are computed in the unperturbed (ε = 0) configuration.

Next, we turn our attention to the basis functions. We note that, under a spatial perturbation, the form of the classical finite-
element basis function changes owing to the deformation of the underlying finite-element mesh. However, the form of the
enrichment functions, which are a priori constructed, remains the unchanged. As noted in the main text, given the isoparametric
nature of the FE basis functions, we have

NC,ε
i (xε ) = NC

i (x). (A3)
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Using the notion of the energy density f defined in Eq. (29), the free-energy functional in the deformed configuration is given
by

Lε
(
�̄

uk ,
{
uh

α,k

({
NC

i (x)
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE

α,k, j,I

})}
, φh

({
NC

j (x)
}
,
{
φ̄C

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E

I

})
, Rε

)
=
∫

�ε

f ε
(
�̄

uk ,
{
uh

α,k

({
NC

i (x)
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE

α,k, j,I

})}
, φh

({
NC

j (x)
}
,
{
φ̄C

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E

I

})
, Rε

)
dxε

=
∫

�

gε
(
�̄

uk ,
{
uh

α,k

({
NC

i (x)
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (xε − Rε
I )
}
,
{
ūE

α,k, j,I

})}
, φh

({
NC

j (x)
}
,
{
φ̄C

j

}
,
{
NE ,φ

I (xε − Rε
I )
}
,
{
φ̄E

I

})
, Rε

)
dx,

(A4)

where, gε(· · · ) = f ε(· · · )det( ∂xε

∂x ).
We note that the expression for the configurational force derived in Motamarri and Gavini (2018) [79] holds for the classical

finite-element basis. However, in the case of the enriched finite-element basis, the enrichment functions in the perturbed space
({(NE ,uk

j,I (xε − Rε
I )}, {NE ,φ

I (xε − Rε
I )}) are dependent on ε. We perform the following simplification to arrive at the additional

contributions arising from the enrichment functions:

F̂ h[ϒ(x)] =
∫

�

[∑
α

{
∂gε

∂uh
α,k

∣∣∣∣
ε=0

d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

+ ∂gε

∂uh,∗
α,k

∣∣∣∣
ε=0

d

dε

˜uh,ε,∗
α,k (xε )

∣∣∣∣
ε=0

+ ∂gε

∂∇uh,∗
α,k

∣∣∣∣
ε=0

· d

dε
∇˜uh,ε,∗

α,k (xε )

∣∣∣∣
ε=0

+ ∂gε

∂∇uh
α,k

∣∣∣∣
ε=0

· d

dε
∇ũh,ε

α,k(xε )

∣∣∣∣
ε=0

}
+ ∂gε

∂φh

∣∣∣∣
ε=0

d

dε
φ̃h,ε(xε )

∣∣∣∣
ε=0

+ ∂gε

∂∇φh

∣∣∣∣
ε=0

· d

dε
∇φ̃h,ε(xε )

∣∣∣∣
ε=0

]
dx

+ d

dε

∫
�

gε
(
�̄

uk ,
{
uh

α,k

({
NC

i (x)
}
,
{
ūC

α,k,i

}
,
{
NE ,uk

j,I (x − RI )
}
,
{
ūE

α,k, j,I

})}
,

φh
({

NC
j (x)

}
,
{
φ̄C

j

}
,
{
NE ,φ

I (x − RI )
}
,
{
φ̄E

I

})
, Rε

)
dx

∣∣∣∣
ε=0

. (A5)

The last term in the above equation is denoted by F̂1[ϒ(x)] in the main text [cf. Eq. (30)], which is the contribution to the
configurational force from the classical finite-element basis, and it is written out using the expressions presented in Motamarri
and Gavini (2018) [79]. The additional contribution arising from the enrichment functions is given by

F̂2[ϒ(x)] =
∫

�

[∑
α

{
∂gε

∂uh
α,k

∣∣∣∣
ε=0

d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

+ ∂gε

∂uh,∗
α,k

∣∣∣∣
ε=0

d

dε

˜uh,ε,∗
α,k (xε )

∣∣∣∣
ε=0

+ ∂gε

∂∇uh,∗
α,k

∣∣∣∣
ε=0

· d

dε
∇˜uh,ε,∗

α,k (xε )

∣∣∣∣
ε=0

+ ∂gε

∂∇uh
α,k

∣∣∣∣
ε=0

· d

dε
∇ũh,ε

α,k(xε )

∣∣∣∣
ε=0

}
+ ∂gε

∂φh

∣∣∣∣
ε=0

d

dε
φ̃h,ε(xε )

∣∣∣∣
ε=0

+ ∂gε

∂∇φh

∣∣∣∣
ε=0

· d

dε
∇φ̃h,ε(xε )

∣∣∣∣
ε=0

]
dx, (A6)

where d
dε

ũh,ε
α,k(xε )|ε=0 and d

dε
φ̃h,ε(xε )|ε=0 are defined in Eqs. (39) and (40), respectively.

In the above equation, we also require the derivatives of gε with respect to various fields, evaluated at ε = 0, which we present
next. For clarity, we drop the ε suffix when we derive expressions for these derivatives. We note that g can be written as

g = gKE + gxc + gelec + gent + gconst, (A7)

where gKE, gxc, gelec, gent, and gconst represent energy densities corresponding to the kinetic energy, exchange-correlation energy,
electrostatic energy, entropic energy, and the constraint, respectively. From Eq. (4), gKE can be written as

gKE
(
�uk ,

{
uh

α,k

}
,
{∇uh

α,k

}) = 2
N∑

p,q,r=1

 
�BZ

�uk
pqSk

qr
−1
(

1

2
∇uh,∗

r,k · ∇uh
p,k − iuh,∗

r,k k.∇uh
p,k + 1

2
|k|2uh,∗

r,k uh
p,k

)
dk. (A8)

Hence,

∂gKE

∂∇uh
α,k

= 2
N∑

p,q,r=1

 
�BZ

�uk
pqSk

qr
−1
[

1

2
∇uh,∗

r,k δpα − iuh,∗
r,k kδpα

]
dk, (A9)

where δi j is the Kronecker delta. When wave functions are given by the canonical (orthogonal) Kohn-Sham eigenfunctions, Sk

is an identity matrix and �uk is simply a diagonal matrix containing fractional occupancies fα,k. Hence, the above expression
can be further simplified as follows:

∂gKE

∂∇uh
α,k

=
 

�BZ

fα,k
[∇uh,∗

α,k − 2iuh,∗
α,kk

]
dk = C1. (A10)
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On similar lines, we have

∂gKE

∂∇uh,∗
α,k

=
 

�BZ

fα,k∇uh
α,kdk = C2. (A11)

The derivative of gKE with respect to the wave function is given by

∂gKE

∂uh
α,k

= 2
N∑

p,q,r=1

 
�BZ

�uk
pq

{
δSk

qr
−1

δuh
α,k

(
1

2
∇uh,∗

r,k · ∇uh
p,k − iuh,∗

r,k k · ∇uh
p,k + 1

2
|k|2uh,∗

r,k uh
p,k

)
+ Sk

qr
−1 1

2
|k|2uh,∗

r,k δpα

}
dk. (A12)

Using SkSk−1 = I , we can show the following in the context of orthogonal Kohn-Sham eigenfunctions:

δSk−1

δuh
α,k

= − δSk

δuh
α,k

. (A13)

Using this result in Eq. (A12), we have

∂gKE

∂uh
α,k

= A1 + C3, (A14)

where

A1 = −2
N∑

p,q,r=1

 
�BZ

�uk
pq

δSk
qr

δuh
α,k

(
1

2
∇uh,∗

r,k · ∇uh
p,k − iuh,∗

r,k k · ∇uh
p,k + 1

2
|k|2uh,∗

r,k uh
p,k

)
dk (A15)

and

C3 = 2
 

�BZ

fα,k
1

2
|k|2uh,∗

α,kdk. (A16)

Similarly, we can show that the derivative of gKE with respect to uh,∗
α,k can be given by

∂gKE

∂uh,∗
α,k

= B1 + C4, (A17)

where

B1 = −2
N∑

p,q,r=1

 
�BZ

�uk
pq

δSk
qr

δuh,∗
α,k

(
1

2
∇uh,∗

r,k · ∇uh
p,k − iuh,∗

r,k k · ∇uh
p,k + 1

2
|k|2uh,∗

r,k uh
p,k

)
dk (A18)

and

C4 = 2
 

�BZ

fα,k

(
−ik · ∇uh

α,k + 1

2
|k|2uh

α,k

)
dk. (A19)

We note that the derivative of gKE with respect to the potential φh is zero. Before we move on to the terms beyond kinetic energy,
we derive a useful result for the electron density. Recall that the electron density [cf. Eq. (3)] is given by

ρh(x) = 2
N∑

p,q,r=1

 
�BZ

�uk
pqSk

qr
−1

uh,∗
r,k uh

p,kdk. (A20)

Hence, we have the following results for the electron density:

δρh

δuh
α,k

= A2 + C5 and
δρh

δuh,∗
α,k

= B2 + C6, (A21)

where

A2 = −2
N∑

p,q,r=1

 
�BZ

�uk
pq

δSk
qr

δuh
α,k

uh,∗
r,k uh

p,kdk and C5 = 2
 

�BZ

fα,kuh,∗
α,kdk (A22)

and

B2 = −2
N∑

p,q,r=1

 
�BZ

�uk
pq

δSk
qr

δuh,∗
α,k

uh,∗
r,k uh

p,kdk and C6 = 2
 

�BZ

fα,kuh
α,kdk. (A23)
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Moving on to the other terms in Eq. (5), beyond gKE, we can write the energy density for the exchange-correlation energy as

gxc = F (ρh). (A24)

Therefore, the derivatives with respect to the wave functions are given by

δgxc

δuh
α,k

= Vxc
δρh

δuh
α,k

= C7 and
δgxc

δuh,∗
α,k

= Vxc
δρh

δuh,∗
α,k

= C8, (A25)

where Vxc = δF
δρh is the exchange-correlation potential. The derivative of gxc with respect to the potential φh is zero. From Eq. (17),

the electrostatic energy density is given by

gelec = (ρh + bs)φh − 1

8π
|∇φh|2 +

∑
I

ρh(VI − Vs,I ) −
∑

I

1

2
bs,IVs,I . (A26)

Hence, we can write derivatives of gelec with respect to the wave functions as follows:

∂gelec

∂uh
α,k

= δρh

δuh
α,k

(
φh +

∑
I

(VI − Vs,I )

)
= C9 and

∂gelec

∂uh,∗
α,k

= δρh

δuh,∗
α,k

(
φh +

∑
I

(VI − Vs,I )

)
= C10. (A27)

The derivative with respect to the electrostatic potential and its gradient are given by

∂gelec

∂φh
= ρh + bs = C11 and

δgelec

δ∇φh
= − 1

4π
∇φh = C12. (A28)

We note that gent and gconst do not contribute to F̂2[ϒ(x)] since they are not directly dependent on the wave functions or the
electrostatic potential.

We now substitute all constituents derived above into Eq. (A6), and write the expression for F̂2[ϒ(x)] as follows:

F̂2[ϒ(x)] = A + B + C. (A29)

In the above, C includes all terms excepting those involving A1, A2, B1, and B2, and is given by

C =
 

�BZ

[∑
α

f̄α,k

∫
�

{
∇
( d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

)
· ∇ūh

α,k(x) + ∇ūh,∗
α,k(x) · ∇

( d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

)
− 2i

d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

k · ∇ūh
α,k(x) − 2i ūh,∗

α,k(x)k · ∇ d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

+ |k|2 d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

ūh
α,k(x)

+ |k|2ūh,∗
α,k(x)

d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

}
dx

]
dk +

∫
�

{
Vxc(x) + φ̄h(x) +

∑
I

[VI (|x − RI |) − Vs,I (|x − RI |)]
}

d

dε
ρ̃h,ε(xε )

∣∣∣∣
ε=0

dx

+
∫

�

[
ρ̄h(x) + bs(x, R)

] d

dε
φ̃h,ε(xε )

∣∣∣∣
ε=0

dx −
∫

�

1

4π
∇
[

d

dε
φ̃h,ε(xε )

]∣∣∣∣
ε=0

· ∇φ̄h(x)dx, (A30)

where

d

dε
ρ̃h,ε(xε )

∣∣∣∣
ε=0

:= 2
 

�BZ

∑
α

f̄α,k

[(
d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

)
ūh

α,k(x) + ūh,∗
α,k(x)

(
d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

)]
dk. (A31)

In Eq. (A29), A and B include all terms not accounted by C. These can be rearranged and written as follows:

A + B = −2
N∑

p,q,r=1

 
�BZ

d

dε
S̃k

qr

∣∣∣∣
ε=0

�uk
pq

∫
�

(
1

2
∇ūh,∗

r,k · ∇ūh
p,k − iūh,∗

r,k k · ∇ūh
p,k + 1

2
|k|2ūh,∗

r,k ūh
p,k

+
[

Vxc(x) + φ̄h(x) +
∑

I

[VI (|x − RI |) − Vs,I (|x − RI |)]
]

ūh,∗
r,k ūh

p,k

)
dx dk, (A32)

where the integral over � in the above equation reduces to the eigenvalues of the Kohn-Sham equation for canonical Kohn-Sham
eigenfunctions {ūh

α,k}. Further, d
dε

S̃k|ε=0 is a diagonal matrix with elements given by

d

dε
S̃k

αα

∣∣∣∣
ε=0

:=
∫

�

(
d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

)
ūh

α,k(x) + ūh,∗
α,k(x)

(
d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

)
dx. (A33)
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Hence, we have

A + B = −2
 

�BZ

[∑
α

f̄α,k

∫
�

ε̄α,k

{
d

dε
ũh,ε ∗

α,k (xε )

∣∣∣∣
ε=0

ūh
α,k(x) + ūh,∗

α,k(x)
d

dε
ũh,ε

α,k(xε )

∣∣∣∣
ε=0

}
dx

]
dk. (A34)

Using the results in Eqs. (A30) and (A34), we obtain the the expression for F̂2[ϒ(x)] presented in Eq. (38).
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