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We study the S > 1/2 antiferromagnetic Heisenberg model on the 1/5-depleted square lattice as a function of
the ratio of the intraplaquette coupling to the interplaquette coupling. Using stochastic series expansion quantum
Monte Carlo simulations, we numerically identify three quantum phases, including the dimer phase, Néel phase,
and plaquette valence-bond-solid phase. We also obtain the accurate quantum critical points that belong to the
O(3) universality class using the large-scale finite-size scaling. Most importantly, we study the dynamic spin
structure factors of different phases, which can be measured by inelastic neutron scattering experiments. The low-
energy excitations can be explained as triplons in the dimer phase and plaquette valence-bond-solid phase, while
in the Néel phase, the more prominent magnon mode can be found as the spin magnitude increases. Furthermore,
we find a broader continuum at smaller S, which may be the dynamical signature of nearly deconfined spinon
excitations.
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I. INTRODUCTION

The 1/5-depleted square lattice has been found in some
real materials, such as the compound CaV4O9 [1–5] and
the iron-based superconductor K0.8Fe1.6Se2 [6–18]. To under-
stand the magnetic properties of these materials, we can study
the Heisenberg model with competing intraplaquette, interpla-
quette, and other range exchange interactions. Among them,
the competition of two unfrustrated intraplaquette and inter-
plaquette exchange interactions can induce quantum phase
transitions between the Néel-ordered phase and two valence-
bond-solid phases [see Fig. 1(a)], which can be handled by
large-scale quantum Monte Carlo (QMC) simulation. Despite
the well-studied S = 1/2 case, it is still worth accurately esti-
mating the quantum critical points and studying its dynamical
properties of this unfrustrated model in the higher-spin case.
It is worth mentioning that the square-octagon lattice is topo-
logically equivalent to the 1/5-depleted square lattice. The
former lattice can be realized in a carbon-based material that
can host superconductivity with doping [19–21].

Here, we briefly review some previous studies of the
S = 1/2 Heisenberg model on the 1/5-depleted square lattice
[4,22–29]. When the ratio of the intraplaquette coupling J
to the interplaquette coupling J ′ tends to zero, the ground
state of this model belongs to a dimer phase and it can
be effectively projected into a total S = 2 Affleck-Kennedy-
Lieb-Tasaki (AKLT) state on the square lattice [30], whereas
the system forms a plaquette valence-bond-solid (PVBS)
phase in the limit J/J ′ → ∞. In between two gapped VBS
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phases, there is an intermediate Néel ordered phase, and
two quantum critical points were estimated to be J/J ′ =
0.603520(10) and J/J ′ = 1.064382(13), respectively [30].
Thus, the slightly stronger intraplaquette coupling or the
frustrating next-nearest-neighbor interaction gives rise to the
gapped PVBS phase, which has been used to explain the spin
gap observed in the compound CaV4O9 [3–5].

For a higher-spin case, the spin-S AKLT state can be re-
alized when the lattice coordination number z and the spin
quantum number S satisfy the relation z = 2S/n, where n is
a positive integer number [31–33]. Importantly, the AKLT
states on most two-dimensional Archimedean lattices are
universal resources for measurement-based quantum compu-
tation [34–42]. The S = 3/2 AKLT model on the honeycomb
is a weak symmetry-protected topological (SPT) phase that
is protected by translational symmetry rather than the on-
site symmetry [43,44], and it can be probed effectively by
the strange correlator [45–47]. The S = 3/2 model on a
1/5-depleted square lattice also satisfies the relation z =
2S/n and can form the AKLT phase shown in Fig. 1(b), in
which each spin-3/2 physical particle can divide into three
virtual spin-1/2 degrees of freedom and each two neighbor-
ing virtual spin-1/2 particles belonging to different physical
particles can form a singlet. However, previous study has
suggested that the AKLT model and the Heisenberg model
may be not in the same phase on a trivalent lattice, unlike
the one-dimensional chain [32,48–51]. The S = 3/2 AKLT
model on the 1/5-depleted square lattice that contains the
biquadratic and bicubic terms is left for future study. In
this paper, we mainly study the S > 1/2 antiferromagnetic
Heisenberg model on the 1/5-depleted square lattice with only
nearest-neighbor interactions by using large-scale QMC sim-
ulations. We study the evolutions of phase boundaries and
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FIG. 1. (a) The schematic phase diagram of the antiferromag-
netic Heisenberg model on the 1/5-depleted square lattice, including
two VBS phases and one Néel phase in between. J and J ′ are
the intraplaquette and interplaquette interactions, respectively. The
green dashed square shows a unit cell with the sublattice la-
bels α = 1, 2, 3, 4. (b) Illustration of the spin-3/2 AKLT state on
the 1/5-depleted square lattice. Each spin-3/2 physical particle
(blue large circles) can be regarded as the symmetric subspace of
three virtual spin-1/2 particles (blue small circles). (c) The phase
boundaries of the Heisenberg model with different spin magnitudes
S = 1/2, 1, 3/2. We set J = 1 when J > J ′, and set J ′ = 1 when
J < J ′ in turn.

dynamical properties as the spin magnitude S increases. Our
numerical results can help to understand the magnetic proper-
ties of Mott insulators with multiorbitals on the 1/5-depleted
square lattice or its topologically equivalent square-octagon
lattice.

The rest of the paper is organized as follows. In Sec. II,
we introduce the Hamiltonian and the QMC methods for the
higher-spin case. In Sec. III, we study the phase boundaries
based on the finite-size scaling hypothesis at criticality (see
Fig. 1) and we also study the dynamic spin structure factor of
different phases by stochastic analytic continuation of QMC
data. Section IV gives our final conclusion.

II. MODEL AND METHODS

We study the S > 1/2 antiferromagnetic Heisenberg model
on a 1/5-depleted square lattice, which is topologically
equivalent to a square-octagon lattice. The Hamiltonian is
expressed as

H = J
∑
〈i j〉

Si · S j + J ′ ∑
〈i j〉′

Si · S j, (1)

where Si denotes the spin-S operator on each site i, 〈i j〉
denotes nearest-neighbor sites on the intraplaquette bonds,
and 〈i j〉′ denotes the interplaquette bonds. J, J ′ > 0 are the
intraplaquette and interplaquette antiferromagnetic couplings,
respectively. For simplicity, we set J ′ = 1 for J � J ′, and
J = 1 for J > J ′ in the whole paper. Thus, the two potential
quantum critical points can be expressed as Jc (J ′ = 1) and J ′

c
(J = 1), respectively.

To obtain the phase boundaries of the Heisenberg model
on the 1/5-depleted square lattice, we employ sign-free QMC
simulations based on the stochastic series expansion, which
has been described in detail in Refs. [52–55]. Here, we briefly
summarize two important update schemes used in the higher-
spin case, comparing with the standard spin-1/2 one.

The first one is diagonal updates. Because of the nonuni-
form coupling strengths on the interplaquette bonds and
intraplaquette bonds, we consider the following acceptance
probabilities to satisfy detailed balance:

P([0, 0]p → [1, b]p) = min

[
JbNbβ〈α(p)|H1,b|α(p)〉

Ln − n
, 1

]
,

P([1, b]p → [0, 0]p) = min

[
Ln − n + 1

JbNbβ〈α(p)|H1,b|α(p)〉 , 1

]
.

(2)
Here Ln is the cutoff of the operator string and n is the number
of the nonunit operators. Jb represents J and J ′ on the intrapla-
quette and interplaquette bonds, respectively. More detailed
explanations can be found in Ref. [52].

The second one is operator-loop updates. For the higher-
spin case, even without external magnetic field and anisotropy,
there are four possible paths through the vertices, including
bounce, continue-straight, switch-and-reverse, and switch-
and-continue processes [54]. First, the operator loop starts at
a random position on one of the vertices and the spin state
on this position is changed to one of the other 2S possible
states. Next, according to the detailed balance condition, the
paths are chosen with a probability proportional to the vertex
weight. This procedure is repeated until the loop reaches the
initial position, meanwhile with a same spin state.

III. NUMERICAL RESULTS

We mainly explore the S > 1/2 antiferromagnetic Heisen-
berg model on a 1/5-depleted square lattice with periodic
boundary condition and the inverse temperature β = 1/T =√

N (i.e., β = 2L) unless specifically mentioned. Here, L
represents the linear number of the unit cells as shown in
Fig. 1(a).

A. The spin-3/2 case

First, we study the phase boundaries of the S = 3/2
Heisenberg model on the 1/5-depleted square lattice. Two
dimensionless quantities, the L-normalized uniform magnetic
susceptibility χL and the spin stiffness ρsL are used to detect
the quantum critical points. The uniform magnetic susceptibil-
ity and the spin stiffness are expected to scale as χ ∼ Lz−d and
ρs ∼ L2−z−d at the quantum critical points. Here, d = 2 is the
spatial dimension and z = 1 is the dynamic critical exponent
due to the three-dimensional O(3) universality class in this
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FIG. 2. (a), (b) The uniform magnetic susceptibility multiplied
by L and (c), (d) the spin stiffness multiplied by L of the S = 3/2
antiferromagnetic Heisenberg model on the 1/5-depleted square lat-
tice with L = 8, 10, 16, 20, 32 near the quantum critical point Jc.
The results are obtained from QMC simulations. Data collapses
are achieved for a fixed standard O(3) value 1/ν = 1.406 and
Jc = 0.1392(2).

model [56]. Thus, the two dimensionless quantities χL and
ρsL are expected to be fixed values for different linear lattice
sizes L at the quantum critical points.

The uniform magnetic susceptibility χ is defined as

χ = β

N

〈(
N∑

i=1

Sz
i

)2〉
, (3)

and the x direction of spin stiffness ρx
s can be obtained from

ρx
s = 3

2βN
〈(N+

x − N−
x )2〉, (4)

where N+
x and N−

x are the total number of off-diagonal op-
erators transporting spin along the positive and negative x
direction, respectively. The derivations of Eqs. (3) and (4) are
expounded in Ref. [52]. The spin stiffness ρ

y
s in the y direction

has the same definition as Eq. (4). In practice, we extract spin
stiffness from ρs = (ρx

s + ρ
y
s )/2 on the topologically equiva-

lent square-octagon lattice with spatial isotropy.
To obtain the quantum critical points, we calculate the

dimensionless quantities χL and ρsL with different linear
sizes L = 8, 10, 16, 20, 32. As shown in Figs. 2(a) and 2(c),
the uniform magnetic susceptibility χL and the spin stiffness
ρsL measured on different L both roughly cross each other
at the first critical point Jc, which confirms that a continuous
quantum phase transition occurs between a dimer phase and
a Néel phase [57]. When the coupling ratio J/J ′ < Jc, the
uniform magnetic susceptibility χL gradually goes to zero
as the linear size L is increased and the gapped dimer phase
emerges as expected.

According to the finite-size scaling hypothesis at critical-
ity, the dimensionless quantities satisfy the following form
[52,58]:

Q(t, L) ∼ fQ(tL1/ν ), (5)
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FIG. 3. (a), (b) The uniform magnetic susceptibility multiplied
by L and (c), (d) the spin stiffness multiplied by L of the S = 3/2
antiferromagnetic Heisenberg model on the 1/5-depleted square lat-
tice with L = 8, 10, 16, 20, 32 near the quantum critical point J ′

c.
The results are obtained from QMC simulations. Data collapses
are achieved for a fixed standard O(3) value 1/ν = 1.406 and
J ′

c = 0.1814(4).

where t = (J − Jc)/Jc for J � J ′ is the reduced coupling and
ν is the correlation length exponent. In the finite-size scaling
analysis, we try to fix the correlation length exponent ν at
the known most accurate O(3) value 1/ν = 1.406 via classical
three-dimensional Heisenberg simulations [59–62]. Then we
can proceed to perform data collapses in order to get a better
estimate of the critical point Jc based on Eq. (5). It is worth
noting that the lack of a certain local symmetry can bring
about corrections to the O(3) universality class, e.g., in the
staggered dimerized model [62–64].

As shown in Figs. 2(b) and 2(d), we present the results of
the dimensionless quantities χL and ρsL versus the reduced
quantity tL1/ν . The good data collapses of χL and ρsL are
achieved at Jc = 0.1392(2) when we set J ′ = 1. Therefore,
with the knowledge of the three-dimensional O(3) universality
class as expected, we get the accurate estimation of the first
quantum critical point that is Jc = 0.1392(2).

Next, we focus on the second quantum critical point in
the phase diagram of the S = 3/2 Heisenberg model on the
1/5-depleted square lattice. The uniform magnetic suscepti-
bility χL and the spin stiffness ρsL with different L cross
each other again at the other critical point J ′

c (see Fig. 3).
Here we would like to emphasize that the second quantum
critical point occurs at J > J ′ instead of J � J ′. Moreover,
a good data collapse of χL and ρsL with the accurate value
1/ν = 1.406 for the O(3) universality class are obtained based
on finite-size scaling as shown in Figs. 3(b) and 3(d). The
quantum critical point of this continuous phase transition is
estimated to be J ′

c = 0.1814(4) when we set J = 1. And the
disordered and gapped PVBS phase can be found when the
ratio of the intraplaquette coupling J ′ to the interplaquette
coupling J is less than 0.1814(4).

Therefore, two quantum critical points of the S = 3/2
Heisenberg model on the 1/5-depleted square lattice are
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FIG. 4. The phase diagram of the S = 3/2 antiferromagnetic
Heisenberg model on the 1/5-depleted square lattice consists of the
dimer phase, Néel phase, and PVBS phase. The squared staggered
magnetization m2

s is obtained from QMC simulations on this lattice
with L = 8 in the whole phase regions. The insets show the finite-size
dependence of m2

s with linear sizes L = 4, 6, 8, 10, 12, 14, 16 near
the quantum critical points J/J ′ = 0.1392 (left) and J ′/J = 0.1814
(right), respectively. The error bars are smaller than the symbols.

obtained accurately to be Jc = 0.1392(2) and J ′
c = 0.1814(4)

using finite-size scaling. In Fig. 1(c), we show the phase dia-
gram of this model versus the coupling ratios J/J ′ for J � J ′
and J ′/J for J > J ′, respectively. The dimer phase and the
PVBS phase represent the spin singlets formed on the interpla-
quette bonds and plaquettes, respectively [65]. What’s more,
in the dimer phase, the spin-3/2 singlets are expected on the
dimer bonds, and an effective gapless spin-3/2 chain is spec-
ulated to be formed by the dangling spins on the open edge
similar to the spin-1/2 case [30,66]. In addition, the dimer
order and plaquette order can be revealed from the critical
behavior of the spin correlations on the different bonds at the
quantum phase transition, which are discussed in Appendix A
in more detail.

With the coordination number z = 3 of the 1/5-depleted
square lattice, an AKLT state can be formed in the spin-3/2
case. However, due to the nature of the two-dimensional bi-
partite lattice, the ground state of the pure Heisenberg model
without biquadratic and bicubic terms is more likely to be
a Néel phase for arbitrary S. Next, we numerically calculate
the spin correlations and get the extrapolated magnetic order
in the intermediate Néel phase. We also have numerically
confirmed that other magnetic orders, such as block antifer-
romagnetic orders, are not the ground state whatever the spin
magnitude is. To detect the Néel order, we define the squared
staggered magnetization as

m2
s = 1

N2

〈(
N∑

i=1

(−1)iSz
i

)2〉
, (6)

where (−1)i = ±1 is the staggered phase factor according to
the Néel-type spin configuration as illustrated in Fig. 1(a). The
finite-size scaling of the staggered magnetization is expected
to be of order O(N−1/2) [67,68].

In Fig. 4, the squared staggered magnetization m2
s in the

thermodynamic limit is shown versus the coupling ratios J/J ′
for J � J ′ and J ′/J for J � J ′, respectively. The squared stag-
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FIG. 5. (a), (b) The uniform magnetic susceptibility multiplied
by L and (c), (d) the spin stiffness multiplied by L of the S = 1 an-
tiferromagnetic Heisenberg model on the 1/5-depleted square lattice
near the quantum critical point Jc. Data collapses are achieved for a
fixed standard O(3) value 1/ν = 1.406 and Jc = 0.2534(4).

gered magnetization gradually decreases to zero as expected
in the disordered dimer phase and the PVBS phase. The insets
of Fig. 4 further show the finite-size dependence of m2

s as a
function of N−1/2 near the quantum critical points, in which
total sites like N = 64, 144, 256, 400, 576, 784, 1024 (where
N = 4L2) are used to do the extrapolations. The squared stag-
gered magnetization m2

s is extrapolated to zero in the thermo-
dynamic limit at these two quantum critical points. However,
the Néel order parameter m2

s in the intermediate phase as
shown in Fig. 4 is enhanced compared to the spin-1/2 case.

In conclusion, we have got the phase diagram of the
S = 3/2 antiferromagnetic Heisenberg model on the
1/5-depleted square lattice, including the dimer phase,
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FIG. 6. (a), (b) The uniform magnetic susceptibility multiplied
by L and (c), (d) the spin stiffness multiplied by L of the S = 1 an-
tiferromagnetic Heisenberg model on the 1/5-depleted square lattice
near the quantum critical point J ′

c. Data collapses are achieved for a
known standard O(3) value 1/ν = 1.406 and J ′

c = 0.3587(4).
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TABLE I. The estimated results of the quantum critical points
on the 1/5-depleted square lattice for different spins. The phase
boundaries for the spin-1/2 case are quoted from Ref. [30].

Spin S Jc (J ′ = 1) J ′
c (J = 1)

1/2 0.603520(10) 0.939512(12)
1 0.2534(4) 0.3587(4)
3/2 0.1392(2) 0.1814(4)

the Néel phase, and the PVBS phase with the quantum
critical points Jc = 0.1392(2) and J ′

c = 0.1814(4). These
two quantum phase transitions between the two valence-
bond-solid phases and the symmetry-broken phase with
long-range Néel order both belong to the three-dimensional
O(3) universality class by mapping it to a nonlinear σ model
[69,70]. Our numerical results confirm the standard O(3)
critical exponent based on the convincing data collapses for
large-scale finite-size scaling. We also show the magnetization
of the Néel phase in the thermodynamic limit.

B. The spin-1 case

In this section, we explore the ground-state properties
of the S = 1 antiferromagnetic Heisenberg model on the
1/5-depleted square lattice to seek rule without further cal-
culations on other higher-spin case. Similar to the spin-3/2
case, we can get the phase boundaries with high accuracy by
using large-scale finite-size scaling.

To get the quantum critical points, we also extract the two
dimensionless quantities, the L-normalized uniform magnetic
susceptibility χL and the spin stiffness ρsL defined in Eqs. (3)
and (4). Figures 5(a) and 5(c) show the results of χL and
ρsL with various linear sizes L = 8, 10, 16, 20, 32, 40 near
the quantum critical point Jc between the dimer phase and the
Néel phase. Figures 5(b) and 5(d) show a good data collapse
with a fixed standard O(3) value 1/ν = 1.406 and an accu-
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FIG. 7. The squared staggered magnetization m2
s of the antifer-

romagnetic Heisenberg model on the 1/5-depleted square lattice
as a function of N−1/2 (where N = 4L2) at J/J ′ = 1 for different
spins S = 1/2, 1, 3/2, 2. The dashed curves are the second-order
polynomial fits. The inset shows more details about the finite-size
extrapolation for the spin-1/2 case.
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FIG. 8. (a) Left panel: The 20-site supercell (green dashed
square) on the 1/5-depleted square lattice. Right panel: The folded
Brillouin zone (blue small solid square) and the wave vector path
(red dashed lines) in the extended Brillouin zone. (b) and (c) show
the dynamic spin structure factor Szz(q, ω) of the S = 3/2 antifer-
romagnetic Heisenberg model on the 1/5-depleted square lattice at
J/J ′ = 1 which is in the Néel phase. (b) is obtained from QMC
simulations and stochastic analytic continuation with linear system
size M = 8 of supercell and β = 40. (c) is obtained from linear spin
wave theory.

rate estimate Jc = 0.2534(4) according to finite-size scaling
hypothesis at criticality. Therefore, the quantum phase transi-
tion from the dimer phase to the Néel phase is a continuous
transition with the critical point Jc = 0.2534(4).

As seen in Figs. 6(a) and 6(c), the uniform magnetic sus-
ceptibility χL and the spin stiffness ρsL with different linear
sizes L both also cross each other at the quantum critical
point J ′

c between the Néel phase and the PVBS phase in
the S = 1 case. Similarly, we fix the correlation length ex-
ponent at the standard O(3) value 1/ν = 1.406 and perform
finite-size data collapse fits to find a precise estimate of J ′

c
as shown in Figs. 6(b) and 6(d). The quantum critical point
between the Néel phase and the PVBS phase is estimated to
be J ′

c = 0.3587(4). We summarize the accurate estimations of
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antiferromagnetic Heisenberg model on the 1/5-depleted square lattice with linear system size M = 8 of supercell and β = 40. Here (a) is in
the dimer phase, (b)–(g) are in the Néel phase and (h) is in the PVBS phase.

the quantum critical points for S � 1/2, which are listed in
Table I.

Additionally, to verify the suppression of quantum fluc-
tuation when S gets larger and goes to the classical
Heisenberg limit, we calculate the squared staggered mag-
netization m2

s defined in Eq. (6) with different S. Figure 7
shows the finite-size extrapolations of m2

s versus N−1/2 on
the 1/5-depleted square lattice with different system sizes
N = 64, 144, 256, 400, 1024 at J/J ′ = 1. As we expect, the
squared staggered magnetization for different spins can be
extrapolated to nonzero values in the thermodynamic limit
by using the second-order polynomial fits. The finite-size
scaling results of the squared z-component staggered magneti-
zation are m2

s = 0.0097(3), 0.172(6), 0.495(3), 0.935(16) for
the spin magnitudes S = 1/2, 1, 3/2, 2, respectively. Here,
we only consider the z component of the squared staggered
magnetization, so the estimates are one third of the square of
total staggered magnetization. For the spin-1/2 case, the long-
range antiferromagnetic order is relatively small due to the
quantum fluctuation and depleted characteristics, whereas the
antiferromagnetic order shows a considerable increase toward
the classical limit as S gets larger.

To conclude, we get the accurate critical points in the phase
diagrams of the Heisenberg model on the 1/5-depleted square
lattice for various spin magnitudes, which are summarized in
Table I. The whole phase diagrams versus the coupling ratios
for different spins S = 1/2, 1, 3/2 are shown in Fig. 1(c). A
higher proportion of the intermediate Néel phase can be found
on the lattice with higher spins, which means that the disor-
dered dimer and PVBS phases originate from the quantum
nature of magnetic systems.

C. Magnetic excitations

Next, we study the spin excitations of the spin-3/2 Heisen-
berg antiferromagnet on the 1/5-depleted square lattice.

The longitudinal dynamic spin structure factor Szz(q, ω) is
obtained from the QMC simulations combined with stochas-
tic analytic continuation along the path (0, 0) → (π, 0) →
(π, π ) → (0, 0) → (0, π ) → (π, 0) of the extended Bril-
louin zone. To make more momentum points fall into that
path in the finite-size lattice, we choose the lattices to be the
multiples of the supercell shown in Fig. 8(a) [71].

In Fig. 8(b), we show the dynamic spin structure factor
Szz(q, ω) of the S = 3/2 antiferromagnetic Heisenberg model
on the 1/5-depleted square lattice with linear system size
M = 8 of supercell [illustrated in the left panel of Fig. 8(a)]
and β = 40 at the coupling ratio J/J ′ = 1, which belongs
to the Néel phase. And the total lattice size is equal to
N = 20M2. From the excitation spectra, the gapless Gold-
stone mode can be found at the wave vector q = (π, π ) as
we expect. And the spectral weight of the gapless magnon
mode nearly vanishes at q = (0, 0) due to the conservation
of Sz [72,73]. Moreover, a unique magnon dispersion occurs
between the wave vectors q = (0, π ) and (π, 0) because of the
presence of a magnon pole around q ≈ (π/5, 3π/5), owing to
the depleted characteristic of the lattice and the Brillouin zone
folding.

To further understand the spin excitations, we show the
results of the dynamic spin structure factor Szz(q, ω) obtained
by linear spin-wave theory as can be seen in Fig. 8(c). A
Holstein-Primakoff transformation is performed to bosonize
the Hamiltonian, in which the spin operators can be replaced
by the boson creation and annihilation operators [74]:

Sz
i = S − a†

i ai, S+
i ≈

√
2Sai, S−

i ≈
√

2Sa†
i ,

Sz
j = b†

jb j − S, S+
j ≈

√
2Sb†

j, S−
j ≈

√
2Sb j,

(7)

where a†
i , ai (b†

j , b j) are for up (down) spins as illustrated in
Fig. 1(a). Then the spin-wave dispersions and dynamic spin
structure factor Szz(q, ω) can be calculated after diagonaliz-
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FIG. 10. The dynamic spin structure factor Szz(q, ω) of the antiferromagnetic Heisenberg model on the 1/5-depleted square lattice with
linear system size M = 8 of supercell and β = 40 at J/J ′ = 1 for different spins S = 1/2, 1, 3/2. The results are obtained from QMC
simulations and stochastic analytic continuation.

ing the Hamiltonian. As shown in Fig. 8(c), the spin wave
can nicely capture the low-energy excitation spectra obtained
from the QMC simulations. However, there are nearly flat
bands in the high energy separating from the low-energy
branches in the spin-wave dispersions, which is different from
the high-energy broad spectrum of the QMC results (see
Fig. 8). Here, we provide some potential reasons to account
for the high-energy part. First, the stochastic analytic con-
tinuation numerical methods have not yet distinguished the
multimagnon continua and the single-magnon quite well in
a small range of frequencies [75]. Second, the high-energy
continua may be contributed by magnons with strong inter-
actions and even nearly deconfined spinons, which cannot
be simply captured by the linear spin-wave theory [76]. And
the presence or absence of the nearly deconfined excitations
around q = (π, 0) and (0, π ) need to be further confirmed.

When the coupling ratio J/J ′ keep decreasing toward the
quantum critical point Jc = 0.1392(2), the excitation spec-
tra are gradually pushed to lower energy and tend to be
gapped at the wave vectors q = (0, 0) and (π, π ) as shown
in Figs. 9(b)–9(d). In the dimer phase, we choose a repre-

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

Sz
z (

)

/(JS)

S = 1/2
S = 1
S = 3/2

FIG. 11. The dynamic spin structure factor Szz(q, ω) of the
uniform antiferromagnetic Heisenberg model on the 1/5-depleted
square lattice with M = 8 and β = 40 at the wave vector q = (π, 0)
for different spins S = 1/2, 1, 3/2.

sentative point J/J ′ = 0.1 (J ′ = 1) to study the dynamical
properties. In Fig. 9(a), we show the dynamic spin structure
factor Szz(q, ω) at J/J ′ = 0.1 using the QMC simulations and
stochastic analytic continuation. The excitation spectrum is
gapped as expected. The spin singlets can form on the dimer
bonds. And a dimer singlet can be excited to a triplet that can
move in the whole lattice, which is a well-known triplon exci-
tation [77]. Further decreasing J/J ′ to the isolated dimer limit,
a nearly flat band can be observed in the spectrum, which is
consistent with the exact diagonalization results shown in Ap-
pendix B. In Figs. 9(e)–9(g), we also show the evolution of the
excitation spectra when J ′/J decreases (i.e., J/J ′ increases)
toward the quantum critical point J ′

c = 0.1814(4). An observ-
able separation process can be found between the low-energy
magnon mode and the high-energy continuum. It is worth
mentioning that the separation does not occur exactly at the
critical point. More discussions in other spin-S system can be
found in Appendix C. Similarly, we choose the coupling ratio
J ′/J = 0.1 (J = 1) for the PVBS phase. In Fig. 9(b), a fully
gapped spectrum can also be found, and a prominent triplon
mode appears around ω = 1.0. In the high-energy part, there
is another excitation separating from the low-energy triplon
mode in the PVBS phase [71], which can be captured by the
energy spectrum of the isolated plaquette.

In addition, we also extract the excitation spectra of the
spin-1/2 and spin-1 cases, aiming to compare the similarities
and differences between the spin-3/2 and lower-spin case. As
shown in Fig. 10, the dynamic spin structure factor Szz(q, ω) at
J/J ′ = 1 are shown for different spins S = 1/2, 1, 3/2, which
all belong to the Néel phase [see Fig. 1(c)]. The overall shapes
of the spin-1/2 and spin-1 excitation spectra are similar to the
spin-3/2 case due to the existence of the gapless Goldstone
mode in the Néel phase. The more detailed results of the
dynamic spin structure factor Szz(q, ω) at the wave vector q =
(π, 0) are shown in Fig. 11. A broader high-energy continuum
can be found in the excitation spectra of the lower-spin case,
especially for S = 1/2, which may indicate the presence of the
nearly deconfined spinons [78]. However, for the higher-spin
case, the broad continuum disappears, which may be due to
the confinement of spinons in the classical limit S → ∞.

IV. CONCLUSION

In this paper, we have revealed the phase diagram of
the spin S > 1/2 antiferromagnetic Heisenberg model on the
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1/5-depleted square lattice. By using the extensive finite-size
scaling of the QMC results, we obtain the accurate quan-
tum critical points and numerically verify that the continuous
quantum phase transitions belong to the three-dimensional
O(3) universality class with standard critical exponents.

To generalize to other higher-spin cases, we have represen-
tatively studied the ground-state properties of 1/5-depleted
square-lattice Heisenberg model for the spin-1 and spin-3/2
case. According to the QMC results, when the spin magnitude
increases, the magnetic order enhances, and the region of Néel
phase extends to a larger area. Thus, in the higher spin case,
very weak interactions between the plaquettes (or dimers)
can give rise to the Néel phase. In other words, quantum
fluctuation becomes very weak to suppress the long-range
antiferromagnetic order as the spin magnitude increases.

Moreover, we have studied the dynamical properties of
the S = 3/2 Heisenberg model versus the coupling ratio on
the 1/5-depleted square lattice. The dynamic spin structure
factor Szz(q, ω) is well extracted by using stochastic analytic
continuation of the imaginary-time correlation function ob-
tained from the QMC simulations. In the dimer phase and
the PVBS phase, the low-energy excitations are numerically
verified as the gapped triplons. In the Néel phase, there are
well-defined gapless Goldstone modes (magnons) at the wave
vectors q = (π, π ) and (0,0), which is consistent with the lin-
ear spin wave theory, and the depleted characteristic of the
lattice and the Brillouin zone folding give rise to a magnon
pole around q ≈ (π/5, 3π/5). What’s more, the evolution
of the separation between the low-energy and high-energy
spectra can be well studied owing to the two triplet excitations
in the isolated PVBS limit. Finally, we have also calculated
the dynamic spin structure factor Szz(q, ω) for the spin-1/2
and spin-1 cases. The excitation spectra of the lower-spin
case show a broader continuum, especially at (π, 0) and
(0, π ), suggesting that the nearly deconfined spinons may
exist.

The spin-S Heisenberg model on the 1/5-depleted square
lattice can be simulated with ultracold atoms in optical lat-
tices in the future or be synthesized in more Mott insulators
with multiorbitals. Our numerical results can provide guid-
ance for realizing different phases in this model, and the
excitation spectra with different spin magnitudes provide a
playground for studying the gapped triplons, magnons, and
possible nearly deconfined spinons, which can be identi-
fied in inelastic neutron scattering and related experiments.
Moreover, adding the biquadratic and bicubic interactions
in the S = 3/2 case can induce an AKLT phase and some
other phases, which is still worthy to study by the den-
sity matrix renormalization group and tensor network in the
future.
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APPENDIX A: SPIN CORRELATIONS ON THE DIMER
AND PLAQUETTE BONDS

In this Appendix, we discuss the dimer order and the
plaquette order of the spin-3/2 antiferromagnetic Heisen-
berg model on the 1/5-depleted square lattice. To detect the
dimer and the plaquette orders in different phases, we can
use the spin correlations of interplaquette and intraplaquette
nearest-neighbor bonds as order parameters. The dimer order
parameter can be defined as

D = − 2

N

∑
〈i j〉′

〈
Sz

i Sz
j

〉
, (A1)

and the plaquette order parameter is defined as

P = − 1

N

∑
〈i j〉

〈
Sz

i Sz
j

〉
. (A2)

Here, 〈i j〉′ denotes the dimer bonds and 〈i j〉 denotes the
intraplaquette bonds [79]. The parameter N/2 represents the
number of the dimer bonds. We introduce minus signs in
Eqs. (A1) and (A2) on account of the antiferromagnetic cou-
plings. These two order parameters are also the hallmarks of
first derivations of ground-state energy with respect to J and
J ′ according to Hellmann–Feynman theorem.

Figure 12 shows the dimer order parameter D and the
plaquette order parameter P versus the coupling ratios. As
expected, the dimer order parameter D decreases and the pla-
quette order parameter P increases gradually as the coupling
ratio J/J ′ is increased. Moreover, the first derivative of the
plaquette order parameter P with respect to J/J ′ reaches a
local maximum at the quantum critical point between the
dimer phase and the Néel phase, which means a rapidly de-
creasing P when entering the dimer phase. Similarly, as shown
in Fig. 12(b), the plaquette order parameter P dominates and
the dimer order parameter D is reduced to near zero quickly
in the PVBS phase.
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FIG. 12. The dimer order parameter D and the plaquette order
parameter P are calculated by QMC simulations with L = 8. The
phase boundaries deduced from the first derivatives of D and P with
respect to the coupling ratios agree with our finite-size scaling results
in the main text.
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E0 )].

APPENDIX B: ISOLATED DIMER AND PLAQUETTE

The model we study has two limits with isolated dimer
and plaquette. Here we show the excitation spectra of two-
site and four-site Heisenberg models of spin-1/2,1 and 3/2
in the Mz = 0 sector using exact diagonalization, where Mz

is the eigenvalue of the total spin component along the zth
axis (see Fig. 13). In the dimer case, there is one triplet
excitation above the singlet ground state, and the excitation
energy is equal to J ′ = 1. In the plaquette case, there are two
triplet excitations that contribute to the dynamic spin structure
factors in Fig. 9 of the main text.

APPENDIX C: SEPARATION PROCESS BETWEEN
THE LOW-ENERGY AND HIGH-ENERGY EXCITATIONS

In this Appendix, we further study the dynamical evolu-
tions of the S = 1/2 and S = 1 antiferromagnetic Heisenberg
model on the 1/5-depleted square lattice versus the coupling
ratio J ′/J . As shown in Fig. 14, the dynamic spin struc-
ture factor Szz(q, ω) is obtained from QMC calculations and
stochastic analytic continuation with linear system size M = 4
of supercell and β = 20. We can find that the separation
processes of the excitation spectra occur mainly between the
coupling ratios J ′/J = 0.3 and J ′/J = 0.5. Similar to the S =
3/2 case in the main text, the separations between the low-
energy and high-energy excitations do not always occur with
the quantum phase transition synchronously, particularly in
the S = 1/2 case.
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FIG. 14. The dynamic spin structure factor Szz(q, ω) of the S = 1/2 and S = 1 antiferromagnetic Heisenberg model on the 1/5-depleted
square lattice with linear system size M = 4 of supercell and β = 20. (a), (e), and (f) are in the Néel phase, (b) and (g) are close to the quantum
critical point J ′
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