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In the original paper, we erroneously neglected the influence of massive modes on the derivation of the four-gradient term in
the nonlinear sigma model (NLσM) action. Explicit integration of the massive modes gives the following additional contribution:

SM = πν

16
DD′

εTr[∇2Q̂(∇Q̂)2]. (Er1)

This term should be included on the right-hand side of Eq. (13). When combined with the contribution originating from the
gradient expansion without account of the massive modes, S(2)

0,η,ϕ = −πν
8 DD′

εTr[∇2Q̂(∇Q̂)2], Eq. (18), the overall coefficient of

the four-gradient term is halved, SM + S(2)
0,η,ϕ = −πν

16 DD′
εTr[∇2Q̂(∇Q̂)2]. Except for the coefficient of the four-gradient term,

the calculations and conclusions presented in the original paper remain unchanged. In particular, the interaction corrections to
the static part of the correlation function in the one-loop approximation presented in Sec. IV do not depend on the four-gradient
term. The mechanism for producing the four-gradient term SM through the coupling of soft and massive modes had been noted
previously in Ref. [1] in the context of the quantum Hall effect.

In order to understand the origin of SM , it is sufficient to focus on the noninteracting case as described in Sec. V B. Retracing
the steps outlined in Appendix B, the parametrization of the matrix Q̂, Eq. (B2), should be generalized to include massive
fluctuations [2] Q̂ → Q̂M = Û P̂M

ˆ̄U . Here, P̂M is a Hermitian matrix that is block diagonal in Keldysh space and δP̂M = P̂M − σ̂3

parametrizes massive fluctuations around the saddle point. Correspondingly, the Keldysh partition function is written as Z =∫
	†,	,P̂M ,Û I[P̂M] exp(iS) with

S =
∫

�	
(

Ĝ−1
0 + i

2τ
P̂M + ˆ̄U [Ĝ−1

0 , Û ]

)
�	 + iπν

4τ
Tr

[
P̂2

M

]
. (Er2)

In the expression for the partition function, I[P̂M] is the Jacobian arising due the parametrization of Q̂M . With the definition
Ĝ−1

M = Ĝ−1 + i
2τ

δP̂M , the partition function after integration over the fermionic fields can be presented as Z = ∫
P̂M ,Û eiS with

S = S[Û , δP̂M] + S[δP̂M ] and

S[Û , δP̂M ] = −i tr ln
[
1 + ĜM

ˆ̄U
[
Ĝ−1

0 , Û
]]

, (Er3)

S[δP̂M] = −i tr ln
[
1 + Ĝ

i

2τ
δP̂M

]
+ iπν

4τ
tr
[
P̂2

M

] − i ln I[P̂M]. (Er4)

Here, S[Û , δP̂M ] describes the coupling of soft and massive modes. The influence of the massive modes was entirely neglected in
the expansion described in Sec. V B of the original paper, which was based on S[Û , δP̂M = 0]. This expansion led to S1, Eq. (58),
and S2, Eq. (59) (which equals S(2)

0,η,ϕ in the notation of Sec. III A). The integration of the massive modes produces a contribution

to the NLσM with four gradients, SM [Eq. (Er1)], of the same form as S2. To obtain this term, it is sufficient to integrate δP̂M in the
Gaussian approximation. Therefore, S[δP̂M] should be expanded up to second order in δP̂M . Upon substituting P̂M = σ3 + δP̂M ,
linear terms in δP̂M cancel between the first two terms in Eq. (Er4) by virtue of the saddle-point approximation. Higher order
terms in δP̂M resulting from the expansion of the tr ln in Eq. (Er4) give subleading contributions (in the parameter 1/εF τ ), since
they involve a ξp integration over a product of only retarded (or only advanced) Green’s functions. The Jacobian I[P̂M] is not
easily evaluated in a continuum model, as it requires a regularization. However, from diagrammatic considerations one expects
deviations from the self-consistent Born approximation (which underlies the saddle-point equation), to be suppressed by powers
of (εF τ )−1. In effect, we approximate the quadratic form in δP̂M by S[δP̂M] ≈ iπν

4τ
tr[δP̂2

M].
Corrections to the NLσM originating from the coupling of soft and massive modes in S[Û , δP̂M ] can be organized as a

cumulant expansion in δS = S[Û , δP̂M ] − S[Û , δP̂M = 0]. δS, in turn, is obtained by expanding GM in powers of δP̂M . At first
order, the cumulant expansion gives δS(1) = 〈δS〉, where 〈· · · 〉 stands for a Gaussian average with the action S[δP̂M ]. Such terms
can be checked to give small corrections only. The contribution of interest originates from the second cumulant δS(2) = i

2 〈〈(δS)2〉〉
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FIG. 1. Generation of the four-fermion term SM through the coupling of soft and massive modes. The dashed line stands for an impurity
line connecting two retarded or two advanced Green’s functions.

by replacing ˆ̄U [Ĝ−1
0 , Û ] → O = 1

2m [V̂ i−→∇ i − ←−∇ iV̂ i] in Eq. (Er3), expanding the logarithm to second order in O, and further
expanding one of the two Green’s functions in the resulting expression for δS to first order in δP̂M as ĜM ≈ Ĝ − i

2τ
ĜδP̂MĜ.

After averaging with respect to δP̂M , one finds

SM = i

4πντ

∫
dr tr[(ĜOĜOĜ)‖r,r(ĜOĜOĜ)‖r,r]. (Er5)

Figure 1 displays the corresponding diagram. Focusing only on the particle-hole asymmetric contribution, one obtains

SM = −πνDD′
εTr[σ3V̂ i⊥V̂ i⊥V̂ j⊥V̂ j⊥], (Er6)

which results in Eq. (Er1). For a comparison with Ref. [1], notice the relation Tr[∇2Q̂(∇Q̂)2] = −Tr[(∇Q̂)2(∇Q̂)2Q̂].
Finally, we would like to note that after incorporating SM into the derivation, Eq. (66) should include the term

−πν
16 DD′

εTr[∇2Q̂(∇Q̂)2] on the right-hand side. Two additional remarks: (i) in the last sentence of the abstract, the phrase
“thermodynamic transport coefficient” should be replaced by “thermoelectric transport coefficient,” and (ii) the definition of δX̂
above Eq. (17) should read δX̂ = X̂ − σ̂3.
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