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Gate tunable anomalous Hall effect: Berry curvature probe at oxides interfaces
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The characterization and the experimental measurement of the Berry curvature in solids have become an
increasingly relevant task in condensed matter physics. We present the theoretical prediction of a gate tunable
anomalous Hall effect (AHE) in a nonmagnetic oxide interface as a hallmark of a nontrivial Berry curvature. The
observed AHE at low temperatures in the presence of a planar magnetic field comes from a multiband low-energy
model with a generalized Rashba interaction that supports characteristic out-of-plane spin and orbital textures.
We also discuss strategies for reconstructing the Berry curvature from the AHE nonlinearities in (111) SrTiO3

heterostructure interfaces.
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I. INTRODUCTION

The anomalous Hall effect (AHE), a hallmark of broken
time-reversal symmetry and spin-orbit coupling (SOC), has
long been an intriguing even though controversial subject.
In fact, some of the theories explain the AHE as an effect
of the skew scattering [1] or side jump mechanism [2] and
goes under the name of extrinsic AHE. Moreover, several
studies have pointed out the intrinsic origin of the AHE, re-
lated to the Berry curvature of the quasiparticles on the Fermi
surface [3–8]: the mobile charge carriers gain a transverse
momentum due to a magnetic polarization coming from the
Berry curvature of the occupied Bloch wave functions [cf.
Eq. (13)]. The corresponding Hall voltage, i.e., anomalous
Hall component, can be observed as an additional contribution
in the Hall measurements, superposed on the ordinary Hall
effect. This Berry scenario of the AHE has recently attracted
interest for its dissipationless and topological nature, and spe-
cially because it offers a direct measure of the Berry curvature
[9–11]. However, up to now, the experimental realization of
AHE in nonmagnetic systems and in the moderately dirty limit
remains elusive.

In this work, we propose oxide interfaces—artificially cre-
ated structures involving transition-metal oxide compounds—
as a platform for intrinsic AHE. Here the large SOC and the
multiorbital character of the bands enrich the variety of emer-
gent SOC phenomena [12], like the generation and control
of spin and orbital textures [13] at the origin of the AHE. In
particular, we show the latter as a direct probe of the Berry
curvature of the system. Among the oxides interfaces, recent
attention has been devoted to the (111) LAO/STO interface,
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whose trigonal geometry leads to exotic behaviours, including
analogy with graphene in the conducting state [14,15] and
anisotropic magnetic transport both in normal and supercon-
ducting state [16,17].

Here, we predict a gate tunable intrinsic anomalous Hall
conductivity (AHC) coming from out-of-plane spin and or-
bital textures [18] as a direct probe of a nonvanishing Berry
curvature in the presence of an in-plane magnetic field. We
show that this behavior arises from a generalized Rashba
coupling involving the total angular momentum of the bands,
and construct an effective Hamiltonian for the low-filling re-
gion, underlining the strong orbital character of the Rashba
interaction in the (111) direction. This behavior has not been
predicted in the more common (001) LAO/STO, establishing
the (111) STO interfaces among the reconfigurable platforms
for spin orbitronics [19].

The plan of the manuscript is the following: in Sec. II,
we describe the tight-binding (TB) Hamiltonian used for our
analysis. We show that this Hamiltonian gives rise to complex
spin and orbital angular momentum patterns throughout the
Brillouin zone. In Sec. III, we show that this Hamiltonian,
coupled with an in- or an out-of-plane external magnetic field,
induces a nontrivial Berry curvature, and that this is responsi-
ble for a nonvanishing AHC. We also discuss the temperature
dependence of this conductance. Finally, in Sec. IV, we dis-
cuss our results and draw our conclusions.

II. MODEL

We develop a TB model of the electrons at the interface
occupying the t2g orbitals of a bilayer of Ti atoms in STO
[20]. The Ti lattice projected along the (111) direction is a
honeycomb lattice [see Figs. 1(a) and 1(b)].
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FIG. 1. (a) Ti atoms in STO lattice, whose reticular constant
is a0 = 0.3905 nm. The orange and green dots represent atoms
belonging to two nonequivalent planes. (b) Projection of the two
nonequivalent planes of Ti over the (111) plane with our choice of
primitive vectors �R1 and �R2 and ã = √

2/3a0. The 3D Brillouin zone
and its 2D projection along the (111) direction can be seen in [21].
(c) Fermi surface for the Fermi energy EF = 0.025 eV. (d) Band
structure along two different directions in the Brillouin zone. (e)
Detail of the splitting at low fillings of the first doublet, exhibiting the
typical Rashba behavior. (c) and (d) and (e) are evaluated at �B = 0.

The Hamiltonian originating from the three t2g orbitals of
the Ti atoms in the α and β layers reads [15,22,23]

H = HTB + HSOC + HTRI + Hv, (1)

where HTB is the hopping Hamiltonian which in �k space can
be written as

HTB =
∑

�k

∑
i,αβ,σ

tαβ
i (tD, tI , �k)d†

iασ,�kdiβσ,�k, (2)

where diασ,�k is the annihilation operator of the electron
occupying the orbital i = xy, yz, zx belonging to the layer
α, β = Ti1, Ti2 and of spin σ = ±1/2. It depends on the
2D dimensionless quasi-momentum �k = ã �K , where �K is the

quasi-momentum, ã =
√

2
3 a0 is the in-plane lattice constant

with a0 = 0.3905 nm. The matrix tαβ
i (tD, tI , �k) includes the

nearest-neighbor hopping parameters, which have been sep-
arated in direct tD and indirect tI contribution, fixed to the
values tD = 0.5 eV and tI = 0.04 eV [15]. The matrix tαβ

i has
the following form in the basis {dyz, dzx, dxy} ⊗ {Ti1, Ti2} :

tαβ
i =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 εyz 0 0
0 0 0 0 εzx 0
0 0 0 0 0 εxy

ε∗
yz 0 0 0 0 0
0 ε∗

zx 0 0 0 0
0 0 ε∗

xy 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

where the interlayer contributions are

εyz = −tD
(

1 + ei(
√

3
2 kX − 3

2 kY )
)

− tI e
−i(

√
3

2 kX + 3
2 kY ),

εzx = −tD
(

1 + e−i(
√

3
2 kX + 3

2 kY )
)

− tI e
i(

√
3

2 kX − 3
2 kY ), (4)

εxy = −2tD cos(

√
3

2
kX )e−i 3

2 kY − tI ,

where �k = kX û110 + kY û112. HSOC is the atomic SOC cou-
pling, which has the following expression

HSOC = λ

2

∑
�k

∑
i jk,α,σσ ′

iεi jkd†
iασ,�kσ

k
σσ ′d jασ ′,�k, (5)

where εi jk is the Levi-Civita tensor, and σ k are the Pauli
matrices. We fix the SOC coupling λ = 0.01 eV, as a typical
order of magnitude [24]. HTRI is the trigonal crystal field and
it takes into account the strain at the interface along the (111)
direction. The physical origin of this strain is the possible
contraction or dilatation of the crystalline planes along the
(111) direction. This coupling has the form [25]

HTRI = �

2

∑
�k

∑
i �= j,α,σ

d†
iασ,�kd jασ,�k . (6)

We fix � = −0.005 eV as reported in [26]. Finally the last
term Hv describes an electric field in the (111) direction,
orthogonal to the interface, which breaks the reflection sym-
metry. Differently from previous studies [22,24], we treat the
effect of the electric field �E on the orbitals perturbatively. In
particular, following Ref. [27], we consider that �E induces an
hybridization of the atomic d orbitals of the STO from |d〉
to |d ′〉 = c1|p〉 + c2|d〉 + c3| f 〉, with |x〉 the atomic orbital x,
leading to renormalized hopping terms odd in lattice momen-
tum �k. It can thus be written as

Hv = v

2

∑
i,α,σ,�k

ξαd†
iασ,�kdiασ,�k +

∑
�k

∑
i j,αβ,σ

hαβ

i j,�k (v)d†
iασ,�kd jβσ,�k,

(7)

where ξTi1/Ti2 = ±1 and the expression of matrix elements
hαβ

i j,�k (v) are obtained in Appendix A. The electric field has

been fixed at the value v = 0.2 eV by comparison with the
Rashba splitting evaluated in Ref. [24].

In addition to the previous terms in Hamiltonian (1), one
can consider the Hamiltonian HH, describing the intraorbital
and interorbital Hubbard and Hund’s interactions [28], which
has in real space the form

HH = U
∑
r,α

nrα↑nrα↓ + 1

2

∑
r,α �=β,σσ ′

(U ′ − Jδσσ ′ )nrασ nrβσ ′ ,

(8)

where, nrασ is the number operator of the state located in
the site r. For the regime of small interaction parameters
(U,U ′, J ), we have verified that the effect of Hamiltonian
(8) is simply a renormalization of the chemical potential. The
analysis is given in Appendix B. Therefore in the following
we choose U = 0, J = 0 and U ′ = 0. Moreover, one can
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include a tetragonal distortion at low temperature [29] through
a contribution Hζ . This is further analyzed in Appendix C.

The Hamiltonian (1) leads to the band structure in Fig. 1(d),
where a Rashba-like splitting appears in the lowest band due
to the interplay between SOC and reflection symmetry break-
ing term. The splitting between the Kramers doublets, visible
in the Fermi surface in Fig. 1(c), is consistent with previous re-
sults [18]. The behavior for low filling can be recovered by the
effective Hamiltonian derived from a perturbative approach
truncated at the order ∼O(�k2):

Heff (�k) =
∑

i

Ei�k
(
1 − L2

i

) − λ

2
L̂ · Ŝ − 3�

2
L2

111

+ F (�k × L̂) + E0, (9)

where Ei(�k) is the renormalized band dispersion coming from
the second order expansion, Li and Si are the ith component
of the orbital and spin angular momentum operator for L = 1
and S = 1/2, respectively; the second term is a spin-orbit in-
teraction; L111 is the projection of �L along the (111) direction
and the second to last term is an orbital-Rashba interaction
[30], whose coefficient F = 0.0035 eV and it is derived in
Appendix A. We have verified that the effective Hamiltonian
gives the same spectrum of Hamiltonian (1) up to |�k| ∼ 0.5
(in unit of ã) while all the results are obtained using the full
Hamiltonian. In Eq. (9), a first signature of a generalized
Rashba coupling comes from the term (�k × L̂). Near �k = 0,
the Hamiltonian is dominated by atomic SOC, so we can
use as a basis the eigenstates of �J = �S + �L. Evaluating the
Hamiltonian over a multiplet of definite total angular momen-
tum J , the effective Hamiltonian can be written as

Heff (|�k| ∼ 0) = −�̃J2
111 + F̃ (�k × Ĵ ) +

∑
i

Ei(�k)
(
ν1 − τJ2

i

)
,

(10)

where J111 is the projection of the total angular momentum
in the (111) direction, ν, τ are the Landé factors, and �̃ and
F̃ are rescaled as well by the Landé fatcors. The SOC splits
the bands in two groups: four states of lower energy with
J = 3/2 and a doublet of J = 1/2 at higher energy. When
we evaluate this operators on the lower quadruplet states we
obtain ν = 3/4, τ = 1/3, �̃ = �/2, and F̃ = 2F/3. Since
the trigonal crystal field splits the states according to their
value of �J along the (111) direction, the first doublet in Fig. 1
has J111 = ±1/2, while the second doublet has J111 = 3/2.
For this reason, the splitting of the second doublet depicted in
Fig. 1(d) is not linear in the wave vector �k, as for the canonical
Rashba interaction, but cubic [31]. This cubic splitting is
naturally encoded in our multiband model giving rise to the
so called warping term, relevant for the AHC discussed below
[10]. We also note that Eq. (10) is not valid for a trigonal
crystal field comparable or even larger than the SOC, since
the eigenstates of total angular momentum are not anymore
a reasonable approximation to the real eigenstates of the
problem.

The interplay between spin and orbital angular momentum
causes peculiar patterns shown in Fig. 2 (see Appendix D for
the total angular momentum patterns). For the first two bands,
the pattern is Rashba-like with a spin amplitude changing with

FIG. 2. In- and out-of-plane spin and angular momentum mod-
ulation for the first and the third bands. The second and the fourth
are specular to the ones shown. The in-plane patterns are represented
by the arrows and are obtained by computing the mean value of the
spin (orbital) components S[110] (L[110]) and the S[112] (L[110]) over the
eigenstates of the chosen band. The colors indicate the out-of-plane
modulation.

�k. The third and the fourth bands have a Rashba-like vortex
near the � point, replaced by six secondary vortices at larger
�k. In both cases an out-of-plane component is present because
of the quasi-2D nature of the system.

III. ANOMALOUS TRANSPORT PROPERTY

The Hamiltonian described in Sec. II possesses time-
reversal invariance, under which the AHC vanishes identi-
cally. If we add to the Hamiltonian (1) a Zeeman term HB of
the form

HB = −μB �B · (L̂ + 2Ŝ) (11)

the time-reversal symmetry of the model is broken. This leads
to a nonvanishing out-of-plane Berry curvature. To evaluate
its effect on the intrinsic AHE, we employ a semiclassical
approach based on the Boltzmann equations within the time-
relaxation approximation. In the presence of a small in-plane
electric field �Eext, the electron group velocity is given by

�vg = 1

h̄

∂ε

∂�k − e

h̄
�Eext × ��, (12)

where the former term is the standard dynamical contribution,
while the latter is the geometric contribution connected to
the Berry curvature ��. This term gives origin to the intrinsic
AHE, mainly discussed in ferromagnetic systems [32]:

σ AH
XY = −e2

h̄

∑
n occ

∫
BZ

�n�k fth,�k (T )
d2�k

(2π )2
, (13)
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FIG. 3. (a) AHC as a function of the chemical potential μ for an
in-plane magnetic field |B| = 5 T, with an in-plane angle φ = π/2
at a temperature T = 10 K. The colors indicate the sum of the
contributes over two specific bands. (b) AHC as a function of μ and
for different values of | �B| with φ = π/2 and T = 10 K. (c) AHC as
a function of μ for different values of φ at | �B| = 5 T and T = 10 K.

where fth is the Fermi distribution at temperature T [where
X and Y are the (110) and the (112) directions] and �n�k
refers to the (111) component of the Berry curvature of the
nth band, the only nonvanishing component for a 2D sys-
tem. The magnetic field changes the eigenstates and therefore
enters implicitly the Berry curvature. The intrinsic AHE oc-
curs in the moderately dirty regime in which AHC becomes
nondissipative, i.e., independent of the scattering rate [33].
In this regime, the Berry phase of the quasiparticles on the
Fermi surface acts as an effective magnetic field generating
a transverse momentum. In the dirty regime, however, the
extrinsic AHC is proportional to the longitudinal conductivity.
The extrinsic to intrinsic crossover occurs when the scattering
rate becomes comparable to Fermi energy [34]. In general,
insurgence of point defects, such as oxygen vacancies and
intermixed cations at LAO/STO interfaces can be controlled
e.g. with an amorphous WO3 overlayer to increase the elec-
tron mobility [35]. Thus the intrinsic contribution can be made
evident.

Our main result is shown in Fig. 3 where we plot the AHC
as a function of the chemical potential in the presence of
an in-plane magnetic field. First, in panel (a), we observe a
highly nonlinear behavior as a function of the gate voltage. We
observe a modulation of the conductance which comes from
the sum of the three contributions associated to the doublets
of the electronic band structure in Fig. 1(d). In panel (b), we
show that this behavior extends over a wide range of magnetic
field magnitudes. In panel (c), we show the periodic behavior
of the AHC by varying the direction of the in-plane magnetic
field. The pattern reflects the C3v symmetry of the system;

FIG. 4. AHC as a function of the chemical potential μ when �B
is out-of-plane for (a) | �B| = 1 T and (b) | �B| = 5 T (the temperature
is fixed to T = 10 K). The colored lines represent the contributions
from the specific bands.

the conductance vanishes when the magnetic field is aligned
along the high symmetry lines �K(�K′) due to a residual
mirror symmetry which forces the AHC to vanish. The pres-
ence of a tetragonal field has been taken into account in
Appendix C and in that case these zero conductance lines are
reduced since the symmetry itself is reduced. The nonlinearity
and the strong modulation with applied magnetic field stems
from two major ingredients: the almost-degenerate multiband
structure and the complex topological structure of the Berry
curvature.

To discuss the relation between the AHC and Berry curva-
ture, we show the AHC σ AH

XY (μ) as a function of the chemical
potential for an out-of-plane magnetic field in Fig. 4. In
this case, the problem is simplified since the magnetic field
is aligned along the (111) direction and thus J111 is pre-
served. The conductivity has a nonlinear behavior, as in the
case of an in-plane magnetic field, and exhibits more than
one dip by varying the chemical potential. Differently from
the first dip, the second one is very sensitive to the magnitude
of the magnetic field and progressively raises on increasing
the magnetic field, until it completely disappears. This can
be qualitatively explained by the stronger dependence of the
second doublet band splitting on the magnetic field due to its
J = 3/2 character. This is in contrast with the first and third
doublet whose splitting is dominated by the Rashba term. This
permits us to conclude that the AHE can be optimized by a
gate voltage, at a fixed magnetic field, by moving it close to
the second doublet.

The dips in the conductivity appears when the Fermi sur-
face encircles one or more peaks of the Berry curvature
(see Fig. 5). The sum of the Berry curvatures of the two
bands within the same doublet is typically small, due to
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FIG. 5. Berry curvatures of the first and the third band at | �B| = 1
and 5 T. The dashed lines correspond to the Fermi contours, such that
when they encircle a maximum of the Berry curvature, a dip appears
in the Hall conductance.

partial cancellation (which would be exact under time-reversal
symmetry). The splitting of the bands of one doublet can
be taken as a small parameter, ε2�k = ε1�k + δε�k . Thus the
Fermi distribution, namely the Heaviside function at zero tem-
perature, is expanded as �(μ − ε1�k − δε�k ) ∼ �(μ − ε1�k ) +
δ(μ − ε1�k )δε�k . Since �2 = −�1 + δ�, the contribution of a
single doublet to the AHC is

σ AH,I
XY = −e2

h̄

∫
BZ

�2�kδ(μ − ε1�k )δε�k

+ δ��(μ − ε1�k )
d2�k

(2π )2
, (14)

where we can identify the first term as a ring contribution and
the second one as an area contribution. The ring contribution
is maximum where the curvature is peaked, and leads to the
peaks in the AHC; at higher fillings, the area contribution
saturates to a constant value and dominates, as can be seen
from Fig. 4. An analysis of the two contributions is provided
in Appendix E. The change in sign of the conductance comes
from the competition of the different doublets contribution:
this reflects the importance of the multiorbital character of the
interface for the tunability of the AHE. The out-of-plane mag-
netic field also gives a conventional Hall conductance which
can hinder the anomalous one since its order of magnitude has
been verified to be of the order of 104e2/h̄ when | �B| = 5 T
and it cannot be easily subtracted by the total conductance
experimentally since it is not linear. This is due to the multi-
band structure and the presence of the Berry curvature which
modifies the element of volume of the phase-space for each
band [36]. Therefore the major evidence of AHE comes from
an in-plane magnetic field, since the results shown in Fig. 3
are not affected by the conventional contribution.

FIG. 6. Anomalous Hall conductance as a function of the chem-
ical potential fixing | �B| = 5 T and φ = π/2 for different values of
temperature T .

Moreover, the AHE strongly depends on the temperature
as shown in Fig. 6, in which we notice the disappearance
of the sign change above 30 K. However, this temperature
is much higher than the one at which the experiments typi-
cally operate. The picture shows that the nonlinear behavior
is still present, but the modulation is strongly suppressed by
the temperature, since the ring contribution is absent due to
the smearing of the Fermi function. We point out that the
changing temperature not only affects the Fermi function, but
also the mobility of the bands and the scattering rate with
impurities. These effects can overcome the intrinsic contribu-
tion we evaluated, making more difficult to isolate it at higher
temperatures. The sign change also disappears by including
strong Coulomb electron-electron correlations as detailed in
Appendix B.

IV. DISCUSSION AND CONCLUSIONS

We have pointed out and discussed a gate tunable AHE
in an oxides interface. The multiband structure of (111)
LAO/STO is characterized by a strong near-degeneracy at
low fillings and momenta, as well as a strong dependence of
the orbital angular momentum on the filling. The combina-
tion of these features is responsible for a generalized Rashba
coupling in an external electric field. The SOC, which can be
quite large in oxides, naturally converts this coupling into a
novel Rashba coupling to the total angular momentum. As
a first consequence of this Rashba coupling here, we have
shown the presence of a spin and angular momentum patterns
in- and out-of-plane. Second, we have shown the emergence
of an AHC in the presence of an in plane magnetic field
due to a nontrivial topology of the Berry curvature. From
the study of the nonlinearity of the AHC, one can probe the
Berry curvature in the BZ, reconstructing its structure for
the different bands. Finally, the generalized Rashba coupling
can strongly affect the behavior of these materials in the
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superconducting phase in analogy with the case of (001)
LAO/STO interface [37,38].

Our study on LAO/STO interface easily extends to other
interfaces. The main requirement is the trigonal geometry
and the quenching of the t2g orbitals which is also found in
KaTiO3/SrTiO3 [39], as an example. This work opens the
way to a general study of the spin-orbitronic effects induced
by the generalized Rashba coupling in oxides interfaces and
paves the way to its experimental verification via a gate
tunable AHE.
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APPENDIX A: DERIVATION OF THE RASHBA TERM

In this section, we will derive the effective Rashba term
originated from the combination of the SOC and the inver-
sion symmetry breaking due to the electric field. Here we
will first give some details of the calculation of the hopping
elements originated from the modification of the orbital shape
due to the electric field, and thus the matrix elements of the
Hamiltonian (7). As we discussed in the main text, we follow
the calculation in Ref. [27], which was referred to another
geometry, therefore we will summarize the general idea and
give explicitly the results applied to the (111) STO geometry.

We need to diagonalize the Hamiltonian H = H0 + ηHE ,
where H0 = HTB + HSO + HTRI (expressed in real space),
HE = −eEjr j and η = 1 is the small parameter of the per-
turbation expansion. In our system, the electric field can be
expressed as �E = E0(1, 1, 1)/

√
3. It can be considered as a

small perturbation causing the atomic orbitals localized at
the position �R to change in the form |φα �R〉 = |φ0

α �R〉 + η|φI
α �R〉,

where |φ0
α �R〉 are the unperturbed atomic orbitals. The Hamil-

tonian matrix to first order in η changes in the following way:

Hαβ = 〈
φ0

α�0
∣∣H0

∣∣φ0
β �R

〉 + η
〈
φI

α�0
∣∣H0

∣∣φ0
β �R

〉
+ η

〈
φ0

α�0
∣∣H0

∣∣φI
β �R

〉 + η
〈
φ0

α�0
∣∣HE

∣∣φ0
β �R

〉 + O(η2). (A1)

The latest electrostatic term can be neglected since it couples
the same orbital to different sites; this is due to the distance
between neighboring sites which causes the matrix elements
of HE to be exponentially suppressed.

The modification of the atomic orbitals can be expressed as

∣∣φI
α �R

〉 =
∑
β �=α

〈
φ0

β �R
∣∣HE

∣∣φ0
α �R

〉
εα − εβ

∣∣φ0
β �R

〉
, (A2)

evaluated on the same site and where α runs over the d
orbitals, while β runs over all the other orbitals; here εα are
the on-site energies of the αth orbital. We emphasize that
the distortion of the orbitals is a completely local, on-site
effect. The angular part of the matrix element in Eq. (A2)
can be expressed in terms of the Gaunt Coefficients using the
spherical harmonics Y l

m of the wave functions in Eq. (A2)

Clm,l ′m′,l ′′m′′ =
∫

Y l
m

(
Y l ′

m′
)∗

Y l ′′
m′′d� (A3)

in which Y l
m comes from the electric field, Y l ′′

m′′ comes from
|φ0

α �R〉, which is a d orbital with l ′′ = 2, and Y l ′
m′ comes from

|φ0
β �R〉. The coefficients vanish unless l ′ = l ′′ ± 1, since l = 1.
The radial part of the matrix element is included in the

following coefficient defined as

ηβ = |e|| �E |
ε3d − εβ

∫
R3d (|�r|)|�r|3Rβ (|�r|)d|�r|. (A4)

where Rβ (|�r|) is the radial part of the wave function.
One can compute the corrections to the t2g states due to the

perturbation obtaining [40]∣∣dI
xy

〉 = ηp√
15

(|px〉 + |py〉)

+ η f√
7

[
2
√

2√
5

(| fx2y〉 + | fxy2〉) + | fxyz〉
]

(A5)

and obtaining |dI
yz〉 and |dI

zx〉 with cyclic permutations of x, y
and z. It is worthwhile noticing that the η f is small compared
to ηp [27], so that in the following we will consider only the
|pi〉 corrections.

Now we can calculate the matrix elements
(〈φI

α�0|H0|φ0
β �R〉 + 〈φ0

α�0|H0|φI
β �R〉). Let us assume for the

H0 eigenstates the following notation in the expansion of the
atomic orbitals expressed as a function of the quasimomentum
�K : ∣∣φTiα

i �K
〉 = |i �K , α〉 = 1√

N

∑
�r

e−i �K ·�r∣∣i(�r − �δα )
〉
, (A6)

where we emphasized the fact that two nonequivalent Ti
atoms in the same crystal cell are separated by a base vector,
so that �δα = {(0, 0), (0,−a0)} = {�0, �δ} in the 2D space. To
shorten the notation, we write the corrections of the d orbitals
defined in Eq. (A5) as∣∣di(�r)I

〉 = Ai j |p j (�r)〉. (A7)

First of all, let us calculate these matrix elements over the
nearest neighbor atoms, coupling the Ti atoms from different
layers. Therefore we need to compute the following matrix
elements:〈

dI
i, �K , 1

∣∣H0

∣∣d j, �K , 2
〉 + 〈

di, �K , 1
∣∣H0

∣∣dI
j, �K , 2

〉
=

∑
�a

A∗
ik

〈
pk (�r)|H0|d j (�r − �a − �δ)

〉
e−i �K ·�a

+ A jk
〈
di(�r)|H0|pk (�r − �a − �δ)

〉
e−i �K ·�a, (A8)

where �a are the vectors connecting the nearest neighbor
elementary cells. For every �a, we can associate a certain
direction in terms of the 2D-dimensionless quasi-momentum
�k = (kX , kY ) via projection of the (111) plane:

(i) for �a = �ax = a0(1, 0, 0) → �K · �ax = −
√

3
2 kX − 3

2 kY ;

(ii) �a = �ay = a0(0, 1, 0) → �K · �ay =
√

3
2 kX − 3

2 kY ;
(iii) �a = �az = a0(0, 0, 1) → �K · �az = 0;

where the latter is zero due to the fact that the two atoms
connected by �az are within the same elementary cell.
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We can evaluate the matrix elements appearing in Eq. (A8) for the t2g orbitals and thus obtain the following matrix elements
connecting Ti1 with Ti2

〈i�k, Ti1|H0| j�k, Ti2〉 = ηp
Vpdπ (

√
2)7/4

√
15

⎛
⎜⎝ 0 −2iei 3

2 kY sin (
√

3
2 kX ) 1 − e

i
2 (

√
3kX +3kY )

2iei3/2kY sin (
√

3
2 kX ) 0 1 − e− i

2 (
√

3kX −3kY )

−1 + e
i
2 (

√
3kX +3kY ) −1 + e− i

2 (
√

3kX −3kY ) 0

⎞
⎟⎠, (A9)

where we expressed the matrix using the basis
{|dyz〉, |dzx〉, |dxy〉} and introduced the Slater-Koster (SK)
integral Vpdπ . Let us now compute the next-to-nearest-
neighbor terms (NNN), coupling the Ti atoms belonging to
the same layer. In this case, the direction which connects two
different atoms, expressed in �k space, are

(i) for �a = �a1 = a0(0,+1,−1) → κ1 = −
√

3
2 kX + 3

2 kY ;

(ii) for �a = �a2 = a0(−1, 0,+1) → κ2 = −
√

3
2 kX − 3

2 kY ;
(iii) for �a = �a3 = a0(+1,−1, 0) → κ3 = √

3kX .
A straightforward calculation leads to two different matri-

ces HEπ and HEσ which are regulated by the two different SK
parameters Vpdπ and Vpdσ for the NNN contribution:

HEπ = ηp
2i√
15

Vpdπ

⎛
⎝ 0 −(sin(κ1) + sin(κ2) + 2 sin(κ3)) (sin(κ1) + 2 sin(κ2) + sin(κ3))

(sin(κ1) + sin(κ2) + 2 sin(κ3)) 0 −(2 sin(κ1) + sin(κ2) + sin(κ3))
(sin(κ1) + 2 sin(κ2) + sin(κ3)) (2 sin(κ1) + sin(κ2) + sin(κ3)) 0

⎞
⎠,

(A10)

HEσ = ηp
2i√
15

√
3Vpdσ

⎛
⎝ 0 (sin(κ1) + sin(κ2)) −(sin(κ1) + sin(κ3))

−(sin(κ1) + sin(κ2)) 0 (sin(κ2) + sin(κ3))
(sin(κ1) + sin(κ3)) −(sin(κ2) + sin(κ3)) 0

⎞
⎠, (A11)

where we have neglected the spin and the layer degree of
freedom, since it is diagonal in these labels. Referring to the
approximation made by Ref. [27], we can use the form for the
SK parameters

Vpdπ/σ = npdπ/σ

h̄2r3/2
a

m|a|7/2
, (A12)

where ra = 10.8 nm, h̄2/m = 7.62 × 10−2 eV nm2, npdσ =
−3.14, and npdπ = 1.36 and |a| is the distance between the
two atoms. Thus Vpdπ = 0.028 eV and Vpdσ = −0.065 eV.
Furthermore since the magnitude of the electric field can be
expressed via the electric potential between the two layers v as
| �E | = v

√
3/a0; we extract the value of η from the parameters

as ηp ∼ | �E |
10 eV/nm ∼ 0.09 since v = 0.2 eV and a0 = 3.905 nm.

Expansion for small fillings

The previous expression is the full inversion symmetry
breaking Hamiltonian, but it does not have the more common
form of the Rashba interaction. We will perform another per-
turbation calculation in order to derive the usual expression
of the Rashba term. We can evaluate exactly the eigenvectors
of the first two dominant terms in the complete Hamiltonian
which are the TB Hamiltonian and the electrostatic contribu-
tion due to the local �E action on the states, which is denoted
as HTB + Hv0.

The whole matrix HTB + Hv0, which is 12 × 12, admits as
eigenstates

|ψiσ,�k±〉 = αi(�k)eiφi (�k)|di1σ,k〉 + β±
i (�k)|di2σ,k〉, (A13)

with

α±
i (�k) = |εi(�k)|√

2|εi(�k)|2 + v2

2 ± v

√
v2

4 + |εi(�k)|2
,

β±
i (�k) =

(
v
2 ±

√
v2

4 + |εi(�k)|2
)

√
2|εi(�k)|2 + v2

2 ± v

√
v2

4 + |εi(�k)|2
, (A14)

φi(�k) = arg[εi(�k)],

where the orbitals are labeled by the index i and the spin using
the index σ . The corresponding eigenvalues are

E±
i (�k) = ±

√
v2

4
+ |εi(�k)|2. (A15)

These states are well separated in six upper bands |ψ+
iσ,k〉 and

six lower bands |ψ−
iσ,k〉. From now on we will take into ac-

count only the lower states, so we will neglect the ± label. The
six lower bands are degenerate at the origin. Consequently, for
sufficiently small values of �k, the TB hamiltonian splits the
bands only by an amount of the order of t3|�k|2.

In order to obtain the Electric field Hamiltonian on the six
lower bands for low fillings, we simultaneously linearize the
Electric field Hamiltonians (A10) and (A11) as a function of
�k and evaluate its matrix elements among the six lower states
in Eq. (A13), evaluated for �k = 0. The result is the following
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linear Hamiltonian:

(HE )i j = −iFεi jkκk, where

F = 2ηp√
15

(
Vpdπ (1 + 27/8αβ cos (φ)) +

√
3Vpdσ

)
,

(A16)

�κ = (κ1, κ2, κ3) as defined above and α, β, and φ are the
Eq. (A14) evaluated for �k = 0.

Identifying now the matrix elements of the orbital angular
momentum L̂ matrices, we can rewrite this term as

HE = 3√
2
F (�k × L̂) · �E

| �E | ⊗ 1σσ ′ . (A17)

This term, the so-called orbital Rashba coupling [30], has
the same structure of the Rashba coupling, but it involves
L̂ instead of Ŝ. The same coupling has been derived using
another electrostatic argument [41–44]. Having introduced
the notation of the angular momentum we can write also the
reduced 6 × 6 matrix of the TB over the states (A13) using
the same notation:

HTB =
∑

i

Ei
(
1 − L2

i

) ⊗ 1σσ ′, (A18)

where Ei are the quadratic expansion of Eq. (A15). Also HTRI

admits an expression of the form

HTRI = �

(
1 − 3

2
L2

111

)
. (A19)

Now, it is clear that, when �k is small enough that SOC is the
dominant contribution, the previous couplings can be eval-
uated over the SOC eigenstates, and thus the total angular
momentum appears leading to the Hamiltonian

Heff (|�k| ∼ 0) = −�

2
J2

111 + 2F
3

(�k × Ĵ )

+
∑

i

Ei(�k)
(
ν1 − τJ2

i

)
, (A20)

for which τ = 1/3 and ν = 3/4 when we evaluate this op-
erators on the lower quadruplet states (J = 3/2, L = 1, and
S = 1/2).

APPENDIX B: ROLE OF CORRELATIONS

The Hubbard Hamiltonian we take into account, written in
real space, is the following:

HH = U
∑
r,α

nrα↑nrα↓ + 1

2

∑
r,α �=β,σσ ′

(U ′ − Jδσσ ′ )nrασ nrβσ ′ ,

(B1)

in which nrασ is the number operator of the state located in the
site r occupying the orbital α with spin σ : we choose the basis
spin states to be aligned (or antialigned) with the direction
of the magnetic field. This choice is physically motivated by
the observation that a spin imbalance in the Hamiltonian can
only be generated by the magnetic field. We suppressed the
label of the Ti atom due the local nature of the interaction
(in other terms, r runs in the same time over the location
of the elementary cell and the type of atom). Considering

FIG. 7. Electronic band structure evaluated for (a)–(c) U = 0 eV
and J = 0 eV and (b)–(d) U = 0.5 eV and J = 0.1 eV with B = 5T
and φ = π/2. E = 0 corresponds to the Fermi level when the 2D
electron density is [(a) and (b)] n2D = 3.68 × 1013 or [(c) and (d)]
5.82 × 1013 cm−2.

the Hamiltonian in the mean field approximation we obtain,
suppressing the index of the site r,

HH =
∑

α

nα↑

(
U 〈nα↓〉 +

∑
β �=α

(U ′ − J )〈nβ↑〉 + U ′〈nβ↓〉)

)

+ (↑↔↓). (B2)

Due to translational invariance HH is local and can be written
in �k space. By choosing U ′ = U − 2J by rotational invari-
ance [45], the Hamiltonian has only two free parameters. The
band structure depends on the fillings, which are evaluated
self-consistently. Our algorithm proceeds in the following
way: in the absence of correlations we evaluate, for a fixed
chemical potential, the electron occupations for each orbital
〈n0

α〉 and the total occupation N0 = ∑
α〈n0

α〉. We include the
correlations and we evaluate the bands using the 〈n0

α〉. From
this band structure, we find the chemical potential at which
the total density is equal to N0. We use 〈n0

α〉 corresponding
to this renormalized chemical potential as a starting point for
a routine which self-consistently evaluates the correct filling
fractions. The renormalized bands in the regime of small
fillings considered in the paper are depicted in Fig. 7. The
predicted AH conductivity for different choices of parameters
is depicted in Fig. 8. The correlations do not change the
nonlinear behavior of the conductivity, and their main effect
is a renormalization of the magnetic field �B and the electric
field v depending on the filling. When we reach the regime of
U = 0.5 eV the behavior of the third doublet changes showing
a new dip and the curve does not change its sign anymore.
This behavior traces a new regime in the correlations which
can significantly modify the conductance: this property could
be exploited to test the strength of correlations in the (111)
LAO/STO interface, a question which is still debated in lit-
erature. We notice that the values of U considered in this
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FIG. 8. Anomalous Hall conductance as a function of the chem-
ical potential fixing | �B| = 5 T and φ = π/2 for different values of
correlation parameters.

work are not large, but they are comparable with the electron
bandwidth. Furthermore, in LAO/STO systems analyzed in
this work, the typical particle densities are low compared to
the half-filling regime. Accordingly, the net contribution to the
total energy from Hubbard interaction is small. Furthermore,
in these density regimes, the effects from polaron dynamics
can be important on the electronic states [46] giving rise to
a net lowering of the Hubbard interaction for the electronic
system.

APPENDIX C: BREAKING OF THE C3v SYMMETRY:
TETRAGONAL STRAIN

Figure 3 manifests the C3v symmetry of the system. In
the figure, we observe two different types of white line on
which the conductance vanishes. The vertical lines represent
the vanishing of the conductance for a fixed chemical poten-
tial, by varying the direction of the magnetic field. The zero
conductance, for this value of the chemical potential, does not
depend on the direction of �B since the shape of the Berry
curvature is only rotated, while the energy splitting between
the bands depends only on the magnitude of �B. The horizontal
lines, instead, depends on an accidental residual degeneracy of
the system and therefore the Berry curvature cannot be defined
along these lines, leading to the vanishing of the conductance.
The degeneracy we refer to is the reflection symmetry around
�B on the �M(�M′) line when �B is aligned to the �K(�K′)
line. This effect depends crucially on the C3v symmetry of the
system [47].

However, at low temperatures it is possible to have an
additional tetragonal distortion which can be comparable in
order of magnitude with the other couplings. This induces
a tetragonal strain at the interface, resulting in the energetic
preference of one orbital, e.g., the dxy, with respect to the
others. This term will reduce the symmetry of the lattice,
changing the prediction we made. In order to take into account
this distortion in the system one has to include the following

FIG. 9. Berry curvatures for (a) the first and (b) the third band
when the magnetic field is out-of-plane at | �B| = 5 T and ζ =
−0.003 eV. (c) Anomalous Hall conductance as a function of the
chemical potential. The dashed line in (a) represents the Fermi sur-
face at the dip of the conductance.

Hamiltonian:

Hz = ζ

2

∑
�k

∑
α,σ

d†
xy ασ,�kdxy ασ,�k, (C1)

where we choose ζ = −0.003 eV. This term can be writ-
ten with the angular momentum notation we used for the

FIG. 10. Anomalous Hall conductance as a function of μ for
different values of φ at | �B| = 5 T, ζ = −0.003 eV and T = 10 K.
The pattern is periodic with a change in sign of the conductance for
φ = nπ/2, with n ∈ Z.
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FIG. 11. In- and out-of-plane spin and angular momentum modulation for the first, the third and the fifth band. The second, the
fourth and the sixth are specular to the ones shown. The in-plane patterns are represented by the arrows and are obtained by computing
the mean value of the spin components J[110] and the J[112] over the eigenstates of the chosen band. The colors indicate the modulation
out-of-plane.

derivation of Eqs. (A17)–(A19) by the same procedure

Hz = ζ

2

(
1 − L2

z

)
. (C2)

Equation (C2) can be further expressed in terms of the total
angular momentum �J when the SOC is the dominant interac-
tion, obtaining

Hz ∼ ζ

3
J2

z + cost. (C3)

Since both J2
z and J2

111 appear in the Hamiltonian, it is impos-
sible to select a set of eigenstates which are also eigenstates
of one of the component of �J .

When the out-of-plane magnetic field is included into the
system the tetragonal strain modifies the shape of the Berry
curvature, reducing the symmetry of the system from C3v to
a in-plane reflection, as one can see in Fig. 9(a). However,
this has however limited consequences on the AHC for out-
of-plane magnetic field, as one can observe in Fig. 9(c).

The most interesting effect is observed for configurations
with in-plane magnetic field. The tetragonal strain generally
removes the horizontal white lines in Fig. 10(a) except when
the magnetic field is orthogonal to the direction of the in-plane
projection of the strain direction. This behavior is exemplified
in Fig. 10(b) where σ AH

XY = 0 only when φ = 0 or π due to
this symmetry protection.

FIG. 12. [(a)–(d)] Berry-ring and Berry-area of the first doublet for values of the chemical potentials highlighted by the lines in the right
panel evaluated for an out-of-plane magnetic field of | �B| = 5 T. [(e)–(f)] Integrated contribution to the Hall conductivity of the three doublets
(red, blue, and green, respectively): we show the total contribution from all the doublets in black.
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APPENDIX D: TOTAL ANGULAR MOMENTUM PATTERN

In Fig. 11 we show the in- and out-of-plane pattern of
the total angular momentum �J for sake of completeness. The
mean value of | �J| saturates to its highest value for the first
two doublets to 3/2h̄ while for the third one to 1/2h̄: which is
another sign of the total angular momentum interpretation for
the low energy doublets.

APPENDIX E: RING AND AREA CONTRIBUTION TO THE
ANOMALOUS CONDUCTANCE

In this section, we discuss the different behavior of the two
contributions in the expression

σ AH,I
XY = −e2

h̄

∫
BZ

[�2�kδ(μ − ε1�k )δε�k + δ��(μ − ε1�k )]

× d2�k
(2π )2

, (E1)

which represents the AHC due to the first energy doublet.
We refer to the first member of the integrand as a Berry ring
(�I

ring = �2�kδ(μ − ε1�k )δε�k) and to the second as a Berry area

(�I
area = δ��(μ − ε1�k )), and we refer to their integrals as

ring and area contribution respectively. We extend the previ-
ous expression to finite but small temperature to regularize the
integral with the delta function:

σ AH,I
XY = −e2

h̄

∫
BZ

�2�k
∂ fth

∂ε1�k
(ε1�k − μ)δε�k

+ δ� fth(ε1�k − μ)
d2�k

(2π )2
. (E2)

The plots of the Berry-ring and the Berry-area for the first
doublet are represented in Figs. 12(a)–12(d) for two different
μ corresponding to the energies in right panel. When the
chemical potential is fixed to the first value, e.g., the solid red
dip in Fig. 12, the Berry-ring contribution is higher in value
and is everywhere positive.

The Berry-area contribution is smaller in value, since, the
Berry curvature of the two components of the doublet nearly
cancel out. Far from the dip in the AHC, the ring contribution
saturates to a small value while the area contribution domi-
nates. The AHC separated into the different contributions for
all the three doublets is shown in Figs. 12(e)–12(f).
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