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Orbital disorder and ordering in NaTiSi2O6: 29Si and 23Na NMR study
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NaTiSi2O6 is an exemplary compound, showing an orbital assisted spin-Peierls phase transition at Tc = 210 K.
We present the results of 29Si and 23Na nuclear magnetic resonance (NMR) measurements of NaTiSi2O6. The use
of magic angle spinning (MAS) techniques unambiguously shows that only one dynamically averaged silicon site
can be seen at T > Tc. At cooling, the 29Si MAS NMR spectrum shows interesting changes. Immediately below
Tc, the spectrum gets very broad. Cooling further, it shows two broad lines of unequal intensities which become
narrower as the temperature decreases. Below 70 K, two narrow lines have chemical shifts that are typical for
diamagnetic silicates. The hyperfine couplings for the two sites are 29Hhf = 7.4 kOe/μB and 4.9 kOe/μB. In the
paramagnetic state at high temperature, the spin-lattice relaxation of 29Si was found to be weakly temperature
dependent. Below Tc the Arrhenius-type temperature dependence of the relaxation rate indicates an energy gap
�/kB = 1000(50) K. In the temperature region from 120 to 300 K, the relaxation rate was strongly frequency
dependent. At room temperature, we found a power law dependence T −1

1 ∝ ω
−0.65(5)
L . For 70 K < T < 120 K,

the relaxation appeared to be nonexponential, which we assigned to a relaxation due to fixed paramagnetic
centers. Simulation of the magnetization recovery curve showed activation type temperature dependence of the
concentration of these centers. The NMR spectrum of 23Na shows the line with typical shape for the central
transition of a quadrupolar nucleus. A small frequency shift of 23Na resonance corresponds to a very small
hyperfine coupling 23Hhf = 0.32 kOe/μB. In addition, at T > Tc the 23Na spectrum shows another Lorentzian
shaped resonance which we attribute to the Na sites where the quadrupolar coupling is partly averaged by ionic
motion.

DOI: 10.1103/PhysRevB.106.075429

I. INTRODUCTION

NaTiSi2O6 (NTSO) is a Mott insulator with a clinopyrox-
ene structure [1,2] made by zigzag chains of edge sharing
TiO6 octahedra. The chains are separated by SiO4 tetrahe-
dra (Fig. 1). The discovery of the phase transition at Tc =
210 K [1], where the high-temperature paramagnetic spin
system transforms gradually into a diamagnetic state, at-
tracted great interest [1–11]. For a modest spin-spin exchange
coupling constant, J/kB = 300 K [1], Tc in NTSO is very
high compared to spin-Peierls transitions in other Ti3+ spin
chain compounds such as TiPO4 with strong intrachain cou-
pling J/kB = 965 K, but much lower spin-Peierls transition
TSP = 111 K [12]. The powder x-ray diffraction (XRD) data
[1,2] showed that the magnetic phase transition in NTSO
is accompanied by a structural phase transition, where the
high-temperature phase with equal Ti-Ti distances transforms
into the low-temperature phase with alternating short and
long Ti-Ti distances. Similar phase transition at even higher
temperature Tc = 230 K has been detected in isostructural
pyroxene compound LiTiSi2O6 [1].

*ivo.heinmaa@kbfi.ee
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The zigzag configuration of the octahedra in the NTSO
chain (Fig. 1) puts clear constraints to the coupling between
3d1 electrons of Ti3+ ions. A single electron of the Ti3+ shell
in the crystal field of a distorted octahedron can occupy three
possible t2g orbitals: dxy, dzx, and dyz. It was considered that
at high temperature, T > Tc, due to the equal Ti-Ti distances,
the lowest two energy levels are degenerate while the latter
orbital at a bit higher energy is almost unoccupied. At low
temperature, the two lowest energy levels become unequal,
leading the system into a dimerized and diamagnetic ground
state with a singlet-triplet gap � = 53 meV (615 K) [3].

In an early description of a one-dimensional (1D) zigzag
chain, Hikihara and Motome [5] pointed out two most proba-
ble configurations of Ti3+ spin- and orbital-ordering patterns:
(i) the nearest neighbors have spin-ferro and orbital-antiferro
configuration and (ii) the neighbors have spin-antiferro (spin-
dimer) and orbital-ferro configuration. The first case favors
the Hund’s rule coupling and is consistent with equal Ti-Ti
distances in the chain, whereas the second case favors the
superexchange interaction, spin-singlet state of the dimers and
alternating Ti-Ti distances. Originally, the authors proposed
[5] that at Tc the orbital order changes from the pattern (i) to
the pattern (ii).

Ab initio calculations of NTSO [10,11,13,14] showed that
below Tc the spin-dimer coupling is favored, whereas at high
temperature they proposed that the d electron of Ti occupies
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FIG. 1. Crystal structure of NaTiSi2O6 at 100 K [(a)–(c)] [2].
Edge shared TiO6 octahedra (blue) form zigzag chains which are
separated by SiO4 tetrahedra (light green and dark green), Na ions
are forming two rows between zigzag chains. Unlike the high-
temperature structure, which has a single silicon ion in its unit cell,
the low-temperature structure has two different silicon ions. In panel
(b), the dimer dxz orbitals lie in xz plane, the drawing plane. The
two oxygens of Si1 tetrahedra (light green) are connected to the two
neighboring Si2 tetrahedra (dark green), and the other two oxygens
are connected to three Ti3+ ions of two dimers. The Si2 tetrahedra
have two nearest neighbor Si1 tetrahedra and three nearest Ti3+ ions,
but the dxz orbital of the third Ti3+ is orthogonal to the oxygen of
Si2 tetrahedron, and most probably does not contribute to the spin
density at Si2. Na+ ions are surrounded by eight nearest oxygen ions
as shown in panel (c), four of which are connected to three near-
est TiO6 octahedra, four have connection to the neighboring NaO8

polyhedra. The magnetic susceptibility curve of NTSO is given in
panel (d). The raw data are the dark gray curve, the blue dash-dotted
line is the curve corresponding to the Curie tail ascribed to ≈1.5%
localized impurities. The black line corresponds to the susceptibility
after subtracting the Curie tail. The red dashed line corresponds to the
susceptibility of homogeneous Heisenberg antiferromagnetic chain
[16] for exchange interaction between the neighbors, J/kB = 300 K,
known as the Bonner-Fisher curve [17].

more or less equally all three t2g states. Recent DFT calcula-
tions showed [8] that involvement of the third t2g orbital and
oxygen-atom-mediated electron hopping comparable to the
direct hopping integral between neighboring Ti atoms results
in much stronger quantum fluctuations. The authors calculated
the energy levels and hopping integrals for several orbital
configurations of zigzag chain and found similar results: At
low-temperature structure the AF spin configuration is stable
by about 20 meV whereas for high-temperature structure the
AF and FM configurations are almost degenerate.

Using their heat conductivity measurements, Rivas-Murias
et al. [7] reported an interesting finding—in the wide tempera-
ture region 150–300 K, the heat conductivity shows glass-like
behavior. The behavior was attributed to the rapid orbital
fluctuations above Tc in an orbital-liquid state.

Recently, the local structure of NTSO was studied by x-ray
and neutron diffraction using atomic pair distribution function
(PDF) method [15]. The PDF method allows detecting of local
interatomic distances without the need to have long-range
order and has been used to detect local dimers in many similar
dimerized compounds [9]. Koch et al. [15] established two
different Ti-Ti distances above Tc similar to the case at low

T and concluded that on warming above Tc the dimers evolve
into a short-range orbital degeneracy lifted (ODL) state per-
sisting up to temperature at least 490 K. The proposed ODL
state involves local segments (domains) of xy dimers and zx
dimers separated by domain walls consisting of Ti3+ ions with
antiferro-orbital couplings of occupied yz orbitals or ions of
occupied mixed orbitals zx-xy.

Nuclear magnetic resonance techniques are known to pro-
vide valuable information about the local order and local
dynamics of spins. In this paper, we explore NTSO using the
29Si and 23Na nuclear magnetic resonance (NMR).

II. EXPERIMENTAL

A polycrystalline sample of NaTiSi2O6was prepared by a
solid-state reaction as described in Ref. [3]. The MAS NMR
measurements were carried out on a Bruker AVANCE-II-360
spectrometer at 8.45 T external magnetic field (resonance
frequency 71.44 MHz for 29Si and 95.119 MHz for 23Na)
using a home-built cryoMAS probe for 15×1.8 mm Si3N4

rotors [19,20]. The spectra were recorded with π/2 − τ −
π − τ − echo pulse sequence where the delay τ was set to
one rotor period. In the whole temperature region, the sample
spinning frequency was adjusted to 30 kHz. The temperature
of the fast-rotating sample was measured with a temperature
sensor (LakeShore Cernox) at spinner assembly and corrected
using an earlier calibration of the temperature dependence
of 207Pb chemical shift for Pb(NO3)2. The frequency shifts
for 29Si and 23Na are given respective to tetramethylsilane
(TMS) and NaCl resonances, respectively. We used the line-
shape analysis provided by the Bruker TopSpin program. The
spin-lattice relaxation T1 was found to be almost equal in
rotating sample and static sample. Therefore, T1 has been
measured on static sample with saturation-recovery pulse
sequence. The magnetic susceptibility was measured with
physical property measurement system (PPMS) (Quantum
Design) vibrating sample magnetometer (VSM) at 8.45 T,
the same field strength as NMR spectra were recorded.
Additional T1 measurements were performed in Bruker mag-
nets of 4.7 and 11.7 T as well as at various fields of the
PPMS.

III. RESULTS

A. 29Si MAS NMR spectra

Temperature dependence of the 29Si MAS NMR spectrum
is given in Fig. 2. At T = 320 K, the spectrum shows a
single Lorentzian line at 707 ppm with a width (FWHH) of
57 ppm. With decreasing temperature, the isotropic Knight
shift follows the temperature dependence of the magnetic
susceptibility. At the phase transition, the resonance line
broadens abruptly. In a spectrum recorded at 188 K, another
line (line B) at smaller Knight shift is clearly seen. At lower
temperatures, the spectrum shifts to the diamagnetic direction,
the lines become narrower, the intensity of the line B increases
and that of the line A decreases. At temperature 57 K, the
spectrum shows two narrow lines at −100 and −117 ppm
(typical range of silicon chemical shifts of silicates [21]) with
the widths of 8.3 and 7.5 ppm, respectively. Following the
study of the 29Si chemical shifts in titanosilicates [22], one
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FIG. 2. (a) The temperature dependence of the 29Si MAS NMR
spectrum of NaTiSi2O6. (b) The spectrum at 320 K can be well
fitted by a single Lorentzian line. (c) Below the phase transition,
the spectrum consists of two broad Lorentzian lines with unequal
intensities. (d) At low temperature, the spectrum contains two narrow
Lorentzian lines, denoted by A and B, of equal intensities and widths;
the temperature dependence of the lines width and relative intensities
are given in panels (e) and (h). (f) The Knight shift of both lines is
proportional to the magnetic susceptibility. (g) For the lines A and
B, two different hyperfine couplings are obtained from the Clogston-
Jaccarino plot [18].

should expect that the silicon with effectively two nearest
neighbor Ti3+ ions can be assigned to the line at −117 ppm,
and the line at −110 ppm belongs to silicon with effectively
three nearest Ti3+ neighbors. The Knight shift of both lines
follows linearly the magnetic susceptibility curve:

K (T ) = K0 + Hhf

NAμB
χ. (1)

Here, K0 is the temperature-independent shift, the chemical
shift, and Hhf is the hyperfine coupling constant. From a
Clogston-Jaccarino plot [18] [Fig. 2(g)], K vs χ , we deter-
mined the hyperfine couplings 29Hhf = 7.42 and 4.90 kOe/μB

for A and B resonances, respectively.

B. 29Si spin-lattice relaxation
29Si spin-lattice relaxation T1 was measured using static

sample and saturation-recovery pulse sequence. At tempera-
tures above the phase transition, T > 210 K, the magnetiza-
tion recovery was single exponential. Due to inhomogeneous
broadening at temperatures below the phase transition, the
magnetization recovery at different positions of the broad line
showed different T1 values. The data in Fig. 3 are measured at
the maximum and show almost single exponential magnetiza-
tion recovery. The temperature dependence of the relaxation
rate is given in the main panel of Fig. 3. The relaxation rate
at T > 210 K is only weakly dependent on temperature as
expected for ordinary paramagnetic compounds. According
to Moriya [23], the relaxation in paramagnetic state at high

FIG. 3. Temperature dependence of the 29Si spin-lattice relax-
ation rate as measured from the recovery of the intensity at maximum
of the line (a). The inset (b) shows the frequency (field) dependence
of the relaxation rate at T = 295 K. Here, the data at high frequencies
(black squares) are measured on AVANCE spectrometers at fixed
field, and the low-frequency data are measured in the adjustable
magnetic fields of PPMS. In panel (c), we show typical nonexpo-
nential recovery of the 29Si magnetization at temperatures below
120 K, where the red line shows exponential recovery, and the blue
line corresponds to the magnetization recovery due to paramagnetic
centers in the model by Bodart et al. [24] (Eq. (3); see text). Panel
(d) shows the temperature dependence of amplitude α from the fit to
the nonexponential recovery, and the panel (e) shows the temperature
dependence of the concentration c from the same fit (see text).
The red line in panel (e) corresponds to the fit to the temperature
dependence of the concentration of paramagnetic centres.

temperature can be given as

1

T1
= 2γ 2

N

√
2π I (I + 1)

3ωE z′ H2
h f , (2)

where γN is the nuclear gyromagnetic ratio, I is the nuclear
spin, Hhf is the total hyperfine coupling as in Eq. (1), z′ = 3
is the number of the nearest paramagnetic neighbors next to
the nucleus, the Heisenberg exchange frequency is given as
ωE = (|J|kB/h̄)

√
2zS(S + 1)/3 (in units of rad s−1), where

z = 2 (in present case) is the number of nearest neighbor Ti3+

ions, S = 1/2 is the electronic spin, and J is the magnitude
of the exchange interaction (in Kelvin). Taking the hyperfine
coupling Hh f = 7.42 kOe/μB from Clogston-Jaccarino plot
[Fig. 2(g)] and J/kB = 300 K, we obtain the high temper-
ature relaxation rate T −1

1 = 102 s−1, which is a right order
of magnitude as seen in Fig. 3. An interesting finding of a
strong dependence of the relaxation rate on the 29Si Larmor
frequency fL (e.g., applied magnetic field) as T −1

1 ∝ f −2/3
L

[see Fig. 3(b)] will be discussed below.
Below the phase transition, the relaxation rate decreases

quickly, with activation-type decay T −1
1 ∝ exp(−1000/T ).

The activation-type decay of the relaxation rate has been
recorded in several spin-Peierls compounds [25–27] and is
caused by the opening of an energy gap in the spectrum
of magnetic fluctuations. For the fully dimerized spin 1

2
Heisenberg AF chain the singlet-triplet gap value � = J/kB

is expected. Here we attribute the fast relaxation decay to the
fast activation type decay of the magnetic hyperfine shift K (T )
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as T−1
1 ∝ K (T )2. This will give us K (T ) ∝ exp(−500�T )

and, according to Eq. (1), we have χ (T ) ∝ exp(−500�T ).
From this we get an estimate of the excitation gap as � =
500 K and intradimer exchange energy as J/kB = 500 K.

In the temperature range 70 < T < 140 K, the nuclear
magnetization recovery becomes nonexponential with typical
∝ t1/2 time dependence in the beginning of the recovery.
Such behavior has been assigned to the relaxation mechanism
due to paramagnetic impurities [28]. The mechanism has been
analyzed by two groups [24,29], who provided almost identi-
cal models for the description of the process. In this so-called
Bodart model, the magnetization recovery is given by two
parameters—the concentration of the relaxation centers, c,
and the amplitude of the relaxation source α:

M0 − MZ (t )

M0
= 1

1 − c
[F (c2αt ) − cF (αt )], (3)

where F (x) = e−x − √
πx erfc(

√
x), with the complemen-

tary error function erfc(z) = 2√
π

∫ ∞
z e−t2

dt . It is noted that
the actual meaning of the concentration c and the amplitude
alpha (α) are related to the symmetry of the structure. In
addition, the formulas are valid within a certain region of
concentrations—the model does not work on high concentra-
tions, since the relaxation centers need to be diluted, and in our
case, it does not work at very low concentration, since we have
≈1% of paramagnetic impurities from synthesis. We assumed
the description is valid in the temperature region, where the
parameter α is reasonably constant. Using this formalism, we
obtained the parameters α and c from the fit to the nonex-
ponential magnetization recovery curves in the temperature
region from 60 to 140 K. Typical nonexponential magneti-
zation recovery curve is given in Fig. 3(c). One can see that
the model given by Eq. (3) perfectly describes experimental
curve. The temperature dependence of the parameter c (pro-
portional to the concentration of paramagnetic centers in the
lattice) and the parameter α are given in Figs. 3(e) and 3(d),
respectively. Figure 3(e) shows that in noted temperature re-
gion the concentration of the paramagnetic centers decreases
by more than an order of magnitude, while the parameter α is
almost constant in the region between 60 to 140 K. Thus, we
consider this temperature region valid for the measurements
of the concentration of fixed paramagnetic centers. The tem-
perature curve of the concentration is given in Fig. 3(e). It
is well reproduced by the activation law c ∝ exp(−Ea/T ),
with Ea/kB = 300 K. Surprisingly, the activation energy for
excitation of the centers is almost two times lower than 600 K,
which is needed for creation of broken singlets [3]. Therefore,
we believe the paramagnetic centers we see in the relaxation
originate from orbital disorder in the structure such as domain
walls between the ordered sequences in the zigzag chain,
between zigzag and zagzig orders, as proposed in Feiguin
et al. [8] and Koch et al. [15]. The situation resembles the
well-known case of domain walls in the Su-Schiffer-Heeger
model of polyacetylene [31]. We carried out similar measure-
ments of the concentration of paramagnetic centers in three
different magnetic fields: 14.1, 8.5, and 4.7 T magnetic fields
[Fig. 3(a)]. In all three measurements, the activation energy
was essentially the same, Ea/kB = 300 ± 20 K.

C. 23Na MAS NMR
23Na is a quadrupolar nucleus with a spin I = 3

2 and with
an electric quadrupolar moment Q. The term in the nuclear
Hamiltonian corresponding to the quadrupolar interaction is
usually given [32,33] as

HQ = eQVzz

4I (2I − 1)

[
3I2

z − I (I + 1) + η

2
(I2

+ + I2
−)

]
, (4)

where the spin operators have their usual notations, Vαα

(α = x, y, z) denote the principal components of the elec-
tric field gradient (EFG) tensor V, with the convention
|Vxx| � |Vyy| � |Vzz|, and eQ is the nuclear quadrupolar mo-
ment. The asymmetry parameter η is defined as η = (Vxx −
Vyy)/Vzz.

The NMR spectrum of a quadrupolar nucleus gives unique
information about the local charge distribution outside the ion.
In an external magnetic field, the nuclear Hamiltonian for a
nucleus with a spin 3

2 has 2I + 1 = 4 eigenstates (noted
as m = − 3

2 , − 1
2 , + 1

2 , + 3
2 ) and three allowed transitions

[m ↔ (m ± 1)] between the states. The energy levels of
the eigenstates depend on the quadrupolar interaction, which
is characterized by the quadrupolar coupling constant Cq =
(e2qQ)h (eq = Vzz), and the asymmetry parameter η. In the
case of cubic symmetry of local charges, the EFG is zero,
the energy levels of the nuclear Hamiltonian are equidistant,
the energy of all transitions equals to the Zeeman energy
(including chemical shift, dipolar shift etc), and the NMR
spectrum consists of a single line at the Larmor frequency
like in the case of a I = 1

2 nucleus. In case the local charge
distribution is not cubic, the NMR spectrum of a spin I = 3

2
nucleus shows three lines corresponding to the transitions
called satellite transitions (m = ± 3

2 ↔ ± 1
2 ) and central

transition (m = − 1
2 ↔ + 1

2 ). The position of the central tran-
sition line occurs around the Larmor frequency, and those of
the satellite transitions lines about ± Cq away from the Lar-
mor frequency, depending on the orientation of the external
magnetic field in the frame of the quadrupolar coupling tensor.
Although the line of the central transition occurs close to the
Larmor frequency, it is shifted by the quadrupolar interaction
in second order. Therefore, in powder samples, it shows a pe-
culiar double horn shape. In the MAS NMR experiment, this
line is substantially narrowed, but the peculiar line shape is
still characterizing the quadrupolar couplings. The analysis of
that shape allows determination of the quadrupolar coupling
parameters.

In the structure of NTSO, there is one sodium ion in a unit
cell, which has eight oxygen nearest neighbors [Fig. 1(c)].
Since the local symmetry is not cubic, the EFG at 23Na
nuclei is finite, and the NMR spectrum is influenced by the
quadrupolar interaction as described above. As it turns out,
the resonance lines of satellite transitions in powder sample
are too broad (Cq ≈ 3.1 MHz) to be observed in MAS NMR
experiment, but the central transition can be easily measured.
Simulation of the line shape gives the values of the Knight
shift, the quadrupolar coupling constant, and the asymmetry
of the EFG tensor. The temperature dependence of the Knight
shift and the quadrupolar coupling parameters are given in
Figs. 4(e) and 4(f). At high temperature, we detected another,
featureless resonance line with considerable relative intensity
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FIG. 4. Temperature dependence of the 23Na MAS NMR spec-
trum of NTSO: (a) the black line is the recorded spectrum; the red
line corresponds to the fitting. The detailed view of the spectrum at
306 K (b) shows two resonances corresponding to Na sites denoted
as Na1 (blue stripes) and Na2 (green); the line corresponding to
Na1 sites has typical double horn shape of central transition of
quadrupolar nucleus in a powder sample, whereas the resonance
corresponding to the sites Na2 has featureless Gaussian-Lorentzian
shape. Below the phase transition, the spectrum shows only one Na1
line (c). Temperature dependence of relative intensity of the Na2
resonance is shown in panel (d). Panel (e) shows temperature depen-
dences of the quadrupolar coupling constant, Cq, and the asymmetry
parameter, η, as fitting parameters to the Na1 line shape. Panel (f)
shows that temperature dependence of the isotropic value of mag-
netic shift 23Kiso (blue squares) scales perfectly with the temperature
dependence of the magnetic susceptibility χ (full line). The hyperfine
coupling 23Hh f = 0.32 kOe/μB was obtained from 23Kiso vs χ plot.
Temperature dependence of sodium spin lattice relaxation rate 1/T1

is given in panel (g).

of ≈25% [Fig. 4(b)]. This line we assigned to a sodium
ion where the quadrupolar coupling is partially averaged
due to fluctuation of the EFG. Below Tc. this line disap-
pears [Figs. 4(c) and 4(d)]. Almost temperature-independent
quadrupolar coupling constant is in accord with very weak
temperature dependence of the mean Na-O bond length, de-
creasing from dmean = 2.424 Å at 300 K to dmean = 2.416 Å
[2]. The spin lattice relaxation of 23Na [Fig. 4(g)] shows a
weak temperature dependence at T > Tc due to fluctuations
of paramagnetic spins, like the relaxation of 29Si. At lower
temperatures, the relaxation follows 1/T1 ∝ T 2 dependence
as typical for quadrupolar nuclei relaxing due to the Raman
mechanism of lattice vibrations [32].

IV. DISCUSSION

A. Orbital disorder below Tc

The single resonance line in 29Si MAS NMR (Fig. 2) of
NTSO indicates that either (i) there is only one silicon site
in the lattice or (ii) the different surroundings of silicon are
averaged by fast orbital fluctuations. The case (i) is clearly in
contradiction with recent observations by x-ray PDF experi-
ments [15], which clearly established different Ti-Ti distances
at temperature far above Tc. Therefore, the single resonance of

29Si must be a result of (ii), a motional narrowing [30]. Here
we did not mention the possibility that in magnetic com-
pounds some resonances may be invisible due to silicon sites
with the large static hyperfine field or due to fast relaxation.
The sites with large static hyperfine fields can be ignored be-
cause this would need some different Ti3+ sites in the lattice,
which are not observed by x-ray [2]. In addition, magnetically
different Ti3+ sites would show up in the K vs χ plots, which
are perfectly linear for the isotropic hyperfine shift for 29Si,
and for 23Na as well. Too fast T1 or T2 relaxation could be
excluded by the same reasons. Taking the full linewidth in
rigid lattice as 300 ppm (= 21.3 kHz) equal to the value im-
mediately below Tc [Figs. 2(b) and 2(e)], we get an estimate to
the correlation time of orbital fluctuations in high-temperature
structure as τc < 10−4 s−1.

According to the temperature development of the NMR
spectra, below Tc this fluctuation freezes, and the spectrum
shows static disorder, a distribution of magnetic shifts in a
rigid lattice. The ordering gradually develops with decreasing
temperature. At around T ≈ 130 K, the two different silicon
sites are well seen, and thus we can consider this temperature
as the temperature where the low-temperature structure is es-
tablished. At cooling further, the NMR lines become narrower
as the number of paramagnetic Ti3+ ions decreases. Dynamic
and static orbital disorder in the region of 130 K < T < 300 K
is in good agreement with glass-like behavior of heat conduc-
tivity in this temperature region [7].

The assignment of the lines A and B in the 29Si NMR
low-temperature spectrum to the two silicon sites in the low-
temperature structure of NTSO (Fig. 1) can be done as given
above: The line A belongs to the site Si1, where the silicon is
effectively connected to three Ti3+ ions; and the line B to the
site Si2, connected effectively to two nearest neighbor Ti3+

ions. This assignment is validated by the 3:2 ratio of the hy-
perfine couplings: 29Hh f (Si1) = 7.42 kOe/μB vs 29Hh f (Si2) =
4.90 kOe/μB.

A question remains as to why the intensity of the B line at
high temperatures is much smaller compared to the A line.
One possible way to explain this is to assume occupation
of the third d orbital, e.g., the dyz orbital involved in the
configuration of the ODL state [15].

B. Magnetic susceptibility

In Fig. 5, we show the susceptibility curve in compar-
ison with calculated susceptibilities. As noted above, the
high-temperature susceptibility is very well described by the
calculation within the Bonner-Fisher model [16,17], in good
agreement with the previous measurement [1]. Here we used
the coupling parameter J/kB = 300 K and the g = 1.94, a
little lower than g = 2 (typical for d1 electrons of Ti3+ ions in
octahedral field [34]). The susceptibility for isolated dimers in
Heisenberg AF chains has well-known analytical temperature
curve for dimers [16]:

χ (T ) = NA(μBg)2

kBT
[
3 + exp

(
J

kBT

)] , (5)

where NA is the Avogadro’s number, μB is the Bohr magneton,
g is the electron g factor, and J is the intradimer exchange
coupling constant. If we use the same exchange coupling
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FIG. 5. Temperature dependence of the magnetic susceptibil-
ity of NTSO. The experimental curve with subtracted Curie tail
(black circles) is compared to the susceptibility calculated in the
Bonner-Fischer model for uniform Heisenberg antiferromagnetic
chain (red line) and the susceptibility curve for isolated dimers with
coupling constant J/kB = 300 K (dashed orange curve) and with
J/kB = 550 K (blue dash-dotted line).

constant J/kB = 300 K in a dimer model, we reach the en-
hanced susceptibility as given by the dashed orange line in
Fig. 5. In other words, at Tc one expects the magnetization
increase. According to the NMR spectra, the low-temperature
dimerized structure is set below T < 130 K, where one
can expect the susceptibility curve for isolated dimers be-
ing justified. Blue curve in Fig. 5 shows good fit to the
experimental data using considerably higher J/kB value of
550 K. Rather strong intradimer exchange couplings J/kB

between 396 to 626 K have been reported by first principles
calculations [10,13], and are related to the short intradimer
distance dTi−Ti = 3.08 Å in NTSO [2], much shorter than that
in dimerized TiPO4, with dTi−Ti = 3.13 Å [35], where the
exchange coupling, obtained from high-temperature suscep-
tibility curve, is even larger J/kB = 965 K [12].

C. Spin-lattice relaxation

An interesting finding from 29Si spin-lattice relaxation
measurements is the frequency dependence of the relaxation
rate presented in Fig. 3(b) (inset). The room-temperature data
show T −1

1 ∝ f −0.65
L , where fL is the Larmor frequency. This

trend was observed in the broad Larmor frequency region
from 9 to 119 MHz. The temperature curves in Fig. 3(a)
show that similar trend of the frequency dependence of T1

is present at temperatures down to ≈130 K. Recall that in
ordinary 3D paramagnetic compounds the nuclear relaxation
is independent of the Larmor frequency [23], depending only
on the exchange frequency of electron spins as given above.

In 1D AF Heisenberg chains, the relaxation at low frequen-
cies is enhanced due to 1D spin diffusion. The spin diffusion
causes a low-frequency enhancement of the spectral density
of spin fluctuations and is observed in the NMR relaxation

as 1/T1 = A + B f
− 1

2
L , where A is the relaxation due to the

spin exchange as given above and B is a constant (see, e.g.,
Refs [36–39]). In some cases, the dependence is weaker. For
example, careful muon spin relaxation λ measurements as a
function of magnetic field B on an organic radical-ion salt with
ideal S = 1/2 Heisenberg AF chain showed field (frequency)
dependence as λ ∝ B−n with n = 0.350(7) [40], in reason-
able agreement with theory [41].

We are not aware of nuclear relaxation measurements on
AF chains with orbital disorder, but it is known that any kind
of disorder causes enhancement of the low-frequency spectral
density as proved by proton relaxation study of spin dynam-
ics in antiferromagnetic hetero-metallic molecular rings [42],
where the authors demonstrate that in the homometallic ring
Cr8, the relaxation rate at high temperature was frequency
independent, whereas in the substituted rings Cr7Cd, Cr7Ni
and Cr7Fe the high-temperature relaxation became frequency
dependent. It is interesting to note that ”disorder” in a series
of doped paratacamites (”Herbertsmithites”) MCu3(OH)6Cl2

(M = Zn, Mg), quantum spin liquid candidates with frustrated
kagome lattice, causes frequency dependence of muon spin
relaxation rate 1/T1 ∝ ω−0.66

L [43,44], similar to the present
case.

V. CONCLUSION

Using 29Si and 23Na MAS NMR spectra, we have studied
the orbital ordering in NTSO. Temperature dependence of
the spectra shows that dynamic order at high temperature
freezes at Tc into a disordered state with different local con-
figurations of orbitals. With cooling further, the orbitals order
gradually into well-defined dimers with singlet ground state.
The magnetic susceptibility and spin lattice relaxation data
are in accordance with relatively strong intradimer exchange
coupling at low temperatures J/kB = 500 (50) K. The spin-
lattice relaxation rate 1/T1 was found to be strongly dependent
on resonance frequency. At room temperature, we obtained
T −1

1 ∝ f −2/3
L in a broad frequency region.
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