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Observation of type-III corner states induced by long-range interactions
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Long-range interactions (LRIs) are ubiquitous in nature. Higher-order topological (HOT) insulators represent
a new phase of matter. A critical issue is how LRI dictates the HOT phases. In this work, we discover four
topologically distinct phases, i.e., HOT phase, bound state in the continuum, Dirac semimetal (DSM) phase, and
trivial insulator phase in a breathing kagome circuit with tunable LRIs. We find an emerging type-III corner state
in the HOT phase, which splits from the edge state continuum and originates from the strong coupling between
nodes at different edges. We experimentally detect this novel state by impedance and voltage measurements. In
the DSM phase, the Dirac cone exhibits an itinerant feature with a tunable position that depends on the LRI
strength. Our findings provide a deeper understanding of the LRI effect on exotic topological states and pave the
way for regulating interactions in topolectrical circuits.
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I. INTRODUCTION

Long-range interactions (LRIs) typically represent the two-
body potential decaying algebraically at large distances with a
power smaller than the spatial dimension. Paradigms of LRIs
include electromagnetism, gravity, 2D vortices, etc. Physical
systems with LRIs can exhibit many peculiar properties in
their dynamics and statistics, such as negative specific heat
and temperature jumps [1,2]. Recently, the LRIs have been
shown to impose certain effects on the topological states
[3–9]. For instance, Li et al. observed a type-II corner state
in the photonic breathing kagome crystal in the presence of
a weak LRI [5]. An open question is how a strong enough
LRI dictates the topological phase. Quantum-optical technol-
ogy may be a choice to address this issue with controllable
spin-spin interactions, but it is difficult to implement in exper-
iments [10,11].

Recently, electrical circuit manifests as an exceptional
platform to study topological physics [7,12–37], which can
imitate the tight-binding (TB) model in condensed matter
physics by the inductor-capacitor (LC) network. Conve-
niently, one can introduce an arbitrary hopping term between
different nodes in the circuit. For example, the higher-order
topological (HOT) insulators have been widely explored
in circuits [14,15,19,20,24–27], which however focused on
short-range interactions or hoppings.

It is thus interesting to establish a fruitful connection be-
tween these two different topical areas of physics, i.e., LRIs
and HOT phases. In this work, we investigate how LRIs
affect the HOT insulators both in theory and experiment.
To this end, we first derive the full phase diagram which
includes four topologically distinct phases in the breathing
kagome circuit with LRIs, specifically, a HOT phase, a bound
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state in the continuum (BIC, higher-order topology supporting
corner-localized bound states in the continuum [38]), a Dirac
semimetal (DSM) phase, and a trivial insulator phase. Inter-
estingly, the HOT phase can be further classified into three
types of corner states. The type-I corner states are pinned to
zero admittance due to the generalized chiral symmetry, and
they are localized at three vertexes of the lattice. The type-II
and type-III corner states are at finite admittances and split
from the edge state continuum, which are akin to the edge
states but exponentially decaying away from the second and
third cells along the boundary, respectively [see the second
and third subfigures in Fig. 1(b)]. Moreover, the type-II corner
states separate from the lowest and highest edge modes and
appear for an arbitrary LRI. By contrast, the type-III ones split
from the edge state continuum only in the strong-coupling
region, namely, a critical LRI value is required to move them
out of the edge band. By measuring the impedance distribu-
tion and the voltage signal propagation, we directly observe
all three types of corner states in experiments. In addition,
we numerically identify the BIC and DSM phases. We show
that the position of the Dirac points depends on the strength
of LRI, which may help to control the transport behaviors of
Dirac states.

The paper is organized as follows. In Sec. II, we present the
circuit model and derive the full phase diagram. The emerging
corner states are analyzed in Sec. III. We perform experimen-
tal measurements in Sec. IV. Conclusions are drawn in Sec. V.
Technical details are given in Appendices.

II. CIRCUIT MODEL AND PHASE DIAGRAM

As shown in Fig. 1(a), we consider an infinite breathing
kagome LC circuit with LRIs, by introducing next-nearest-
neighbor (NNN) hopping terms (capacitors CN ) to the lattice.
The NNN interactions can be regarded as LRIs for two rea-
sons. In most topological systems with true LRIs, one can
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FIG. 1. Breathing kagome circuit with LRIs supporting four topologically distinct phases. (a) Schematic plot of an infinite breathing
kagome circuit with NNN hoppings. The breathing means alternatively arranged intracell and intercell hoppings CA and CB. The black, green,
and gray line segments represent the capacitors CA, CB, and CN , respectively, and each node is grounded by an inductor L. The basic vectors
a1 = (1, 0) and a2 = (1/2,

√
3/2). (Inset) First BZ. (b) Phase diagram of Z3 Berry phase by tuning the ratio CA/CB and CN/CB. The blue,

green, white, and gray regions represent the HOT, BIC, DSM, and trivial insulator phases, respectively. The red curve indicates the critical
NNN hopping strength for the emergence of type-III corner states. (Insets) Schematic plots of three types of corner states. (c) At CA/CB = 0.1
(CB = 1 nF), the band structures for CN/CB = 0, 0.25, 0.5, 0.75, 1, and 1.5, respectively, corresponding to the blue symbols (from left to right)
in (b).

consider the NNN hopping terms without missing the key
physics, because higher-order terms beyond NNN can only
contribute negligible effects [5,6]. Besides, the concept of LRI
very recently has been adopted in systems with NNN interac-
tions [7]. Labelling the nodes of the circuit by a = 1, 2, . . .

the response at frequency ω follows Kirchhoff’s law: Ia(ω) =∑
b Jab(ω)Vb(ω), with Ia the external current flowing into node

a, Vb the voltage at node b, and Jab(ω) being the circuit Lapla-
cian: Jab(ω) = iω[−Cab + δab(

∑
n Can − 1

ω2La
)] with Cab the

capacitance between nodes a and b, and La being the grounded
inductance at node a. The sum is taken over all connected
nodes. The dashed red triangle represents the unit cell includ-
ing three nodes, with the first Brillouin zone (BZ) plotted in
the inset of Fig. 1(a). For convenience, we express J (ω) as
iH (ω), with H (ω) akin to the Hermitian TB Hamiltonian
expressed as

H = H0 +HNNN, (1)

where H0 and HNNN represent the NN and NNN coupling
Hamiltonian, respectively (see Appendix A for details). Next,
as suggested in Refs. [39–42], we use Z3 Berry phase to
distinguish these phases in the parameter space (the CA-CN

plane), which is computed by

θ =
∫

L1

Tr[A(k)] · dk (mod 2π ), (2)

where A(k) is the Berry connection: A(k) = i�†(k) ∂
∂k �(k)

with �(k) being the eigenvector of (1) for the lowest band. L1

is an integral path in BZ: K ′ → � → K ′′, shown by the green
line segment in the inset of Fig. 1(a) (see Appendix A for
discussion). The computation of Z3 Berry phase is displayed
in Fig. 1(b). Here, we obtain three different Z3 Berry phases,
i.e., Z3 = 2π/3, −2π/3, 0, and an ill-defined value, filled by
blue, green, gray, and white colors, respectively. Specifically,
Z3 = 2π/3 denotes the HOT phase, Z3 = −2π/3 indicates
the BIC phase (see Appendix B), and Z3 = 0 is the trivial
insulator phase. The ill-defined Z3 belongs to the DSM phase
owing to the gapless band structures (ZN Berry phase can only

be rigorously defined for a gapped system. In the presence of
strong NNN couplings, the lowest two bands touch each other.
One thus cannot have a well-defined Z3). It is noted that,
in the absence of the NNN coupling, one can only observe
the type-I corner state and trivial phase by tuning the ratio
CA/CB [25]. However, by adjusting certain capacitances of CA

or CB in this lattice by breaking the crystal symmetry (such as
C3 symmetry), one may expect some peculiar edge states as
illustrated in Ref. [31].

Figures 1(c) displays the band structures for different
capacitance ratio CN/CB at CA/CB = 0.1 [blue symbols in
Fig. 1(b)]. For 0 < CA/CB < 1, in the absence of NNN hop-
ping term (CN = 0), the band structures are gapped, which
belongs to the HOT phase [25]. As we increase the capaci-
tance CN , the lowest two bands firstly converge at K point at
CN/CB = 0.5 and reopen beyond it, and then close again at
M point when CN/CB = 1 (see Appendix A). The degenerate
point subsequently moves along the M → � trace, forming
the DSM state (see Appendix C). This phenomenon may
provide a feasible method to manage the unique transport
properties of itinerant Dirac states, in exploring the physics of
anomalous quantum Hall effect [43], minimum conductivity
[44,45], and Klein tunneling [46,47]. For CA/CB > 1, two
gapless thresholds appear at CA/CB = 2CN/CB and CA/CB =
CN/CB, and the behaviors of band structures are similar to the
foregoing ones (not shown). Below, we focus on the HOT
phase, i.e., 0 < CA/CB < 1 and 0 < CN/CB < 0.5 [blue re-
gion in Fig. 1(b)].

III. CORNER STATES

To observe the corner states, we consider a finite-size
circuit network with N = 360 nodes with the configuration
being shown in Fig. 2(a). Diagonalizing the circuit Laplacian
J (ω), we obtain both the admittance spectrum and wave func-
tions. In the following calculations, we consider CA/CB = 0.1
with CB = 1 nF. Figure 3(a) shows the admittance spectrum
for different NNN hopping strengths. Except for the isolated
zero-admittance mode (red segment), the other two modes
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FIG. 2. Finite-size circuit model and the photograph of experimental setup. (a) Illustration of a finite-size kagome circuit with 360 nodes.
The gray, green, and gray line segments represent the capacitors CA, CB, and CN , respectively, and each node is grounded by capacitors and
inductors with configurations shown in the insets. (b) Photograph of the printed circuit broad used in experiments. The inset zooms in the local
details of the circuit.

(magenta and green segments) escape from the edge spec-
trums, which represent the type-II and type-III corner states,
see Fig. 3(b) for details. We demonstrate that the type-II
corner states appear for any CN > 0, while the type-III corner

states emerge only when CN > CNc with CNc the critical value,
as shown by the dark blue region in Fig. 1(a) (see Appendix D
for details). In Ref. [5], the same lattice is constructed in a
photonic system but with a rather weak LRI. Therefore, only

FIG. 3. Admittance spectrums, wave functions, and impedances. (a) The admittance spectrum as a function of the capacitance ratio CN/CB

at ω = ωc. The red, magenta, green, blue, and gray curves represent the type-I corner, type-II corner, type-III corner, edge, and bulk states,
respectively. (b) The details of the admittance spectrum [gray rectangle in (a)]. (c) Admittance spectrum at CN/CB = 0.275 [dashed black line
in (b)]. (d) The wave-function profiles of the type-I corner, type-II corner, type-III corner, and edge states. (e) The impedance of the first,
third, nineth, 84th, and 78th node as a function of the driving frequencies. (f) The distributions of impedance at different frequencies. Colored
pentagrams on the top right corner indicate the measured frequencies marked in (e). (Insets) The distributions of impedance of type-III corner
and edge state with higher Q-factor inductors (Q = 200).
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FIG. 4. Experimental measurements of the impedance. (a) Experimental impedance dependence on the driving frequency. The red,
magenta, green, and blue pentagrams mark the positions of the impedance peak of type-I corner, type-II corner, type-III corner, and edge states
( f1 = 450 kHz, f2 = 503 kHz, f3 = 537 kHz, and f4 = 528 kHz). (b) The distributions of experimental impedance at the four frequencies f1,
f2, f3, and f4. (c) The negative resistance is connected to each boundary node inside the green shadow. The schematic diagram (d) and the
experimental realization (e) of the negative resistance (here, we adopt Rn = Ra = Rb = 4.99 k	). (f) Experimental impedance as a function
of the driving frequency with negative resistances, with f ′

1 = 447 kHz, f ′
2 = 499 kHz, f ′

3 = 534 kHz, and f ′
4 = 523 kHz. The impedance

distribution of (g) the type-III corner state and (h) edge state with negative resistances measured at frequency f ′
3 and f ′

4, respectively.

the type-II corner states were observed there, and they split
from both the lowest and highest boundary modes. In order
to find the type-III corner states, one needs a stronger LRI,
and the circuit then exhibits its superiority for such a pur-
pose. The strong NNN interactions induce strong couplings
between nodes at different edges, so the internal edge modes
can separate from the edge state continuum and form the
type-III corner states.

Next, we analyze a representative example at CN/CB =
0.275 [the dashed black line in Fig. 3(b)]. Specifically, we
choose CN = 0.275 nF and L = 39 μH. The admittances
jn are depicted in Fig. 3(c), with five kinds of eigenmodes
donated by red, magenta, green, blue, and gray circles, corre-
sponding to type-I corner, type-II corner, type-III corner, edge,
and bulk states, respectively. It is noted that the type-I corner
states are pinned to zero admittance, while type-II and type-III
corner states are at finite admittances. Figure 3(d) shows the
wave functions of the corner states and edge states, from
which one can distinguish them clearly. The wave functions
of the type-II (type-III) corner states are resembling those
of the edge states, which have been proved to be topologi-
cal [5,48], but exponentially decaying away from the second
(third) cell along the boundary. This behavior can be viewed
as the boundary states of the topological edge modes, i.e., the
corner states.

In an electrical circuit, one can use the impedance between
the node and ground to reflect the mode near the zero ad-
mittance [16,25,29]. In order to observe the different states
mentioned above, one can shift the corresponding modes to
zero admittance by changing the driving frequency without
modifying the wave functions. Here, we adopt the impedance
between the first, third, nineth, 84th, 78th nodes and the

ground to quantify the signals from the type-I corner, type-II
corner, type-III corner, edge, and bulk states [see numbered
nodes in Fig. 2(a)], respectively. Figure 3(e) shows the the-
oretical impedance as a function of the driving frequency, in
which the red, magenta, green, blue, and gray curves denote
the signal from the aforementioned five nodes, respectively.
It is noted that we consider the quality factor (Q factor) of
inductor here with the value Q = 45 measured in the exper-
iment. One can see that the impedance peaks of the type-I,
type-II, type-III, and edge states appear at f1 = 444 kHz,
f2 = 497 kHz, f3 = 530 kHz, and f4 = 520 kHz, respectively,
marked by four colored pentagrams, which means the four
states close to zero admittance at these frequencies.

We calculate the distributions of the impedance at f1, f2, f3

and f4, with the results plotted in Fig. 3(f). At frequency f1 =
444 kHz, the type-I corner modes are pinned at zero admit-
tance. We depict the distribution of impedance at the resonant
frequency in the first subfigure of Fig. 3(f). The impedances
concentrate on three vertexes of the sample, which confirms
the existence of the type-I corner states. For type-II corner
states, we find the distributions of the impedance are iden-
tical to the corresponding eigenmode profiles at frequency
f2. However, the impedance curve of the edge state behaves
as an extension and submerges the type-III corner states due
to the finite Q factor of inductor. Therefore, the distributions
of the impedance for type-III corner states seem to sprinkle
throughout the edge. To distinguish the type-III corner states
from edge states, one needs to improve the Q factor of in-
ductors. We plot the distributions of impedance with higher
Q-factor inductors (Q = 200) in the insets of Fig. 3(f), then
one can distinguish the type-III corner states from the edge
states. Next, we verify these numerical results by experiments.
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IV. EXPERIMENT

As shown in Fig. 2(b), we manufacture a printed circuit
broad (PCB) to observe three kinds of corner states. To di-
rectly compare with the numerical calculations, we choose
the same electric elements as those in theoretical analysis,
but each circuit element has a natural 2% tolerance. The
impedance of circuit is measured by the impedance ana-
lyzer (Keysight E4990A). Figure 4(a) shows the experimental
impedances at different driving frequencies. Similarly, we
adopt the impedances between the first, third, nineth, 84th,
78th nodes and the ground to characterize the type-I corner
(red curve), type-II corner (magenta curve), type-III corner
(green curve), edge (blue curve), and bulk (gray curve) states,
respectively. The experimental results are fully consistent with
the numerical ones. Then, we measure the distribution of
impedance at four frequencies marked by red, magenta, green,
and blue pentagrams in Fig. 4(a), with the results plotted in
Fig. 4(b). One can observe the type-I corner states, type-II
corner states clearly, but the type-III corner states mix with
the edge states due to the low Q factor.

The Q factor of an inductor is defined as Q = ωL/r, where
the r comes from inevitable losses. To compensate for the
dissipation, we introduce active elements to the boundary
nodes [light green region in Fig. 4(c)], realized by connecting
a series of negative resistances −R with the configuration
shown in Figs. 4(d) and 4(e) (see Appendix E). We numeri-
cally compare two cases that −R is introduced to all nodes and
to boundary nodes only, which gives almost identical results.
We therefore only add negative resistances to edge nodes to
reduce the experimental complexity. As a consequence, the
effective Q-factor of inductors is improved to about 150, so
the impendence peak becomes very sharp, with the peak value
being enhanced by about 400%, as shown in Fig. 4(f). We then
measure the distribution of impedance at frequency f ′

3 and f ′
4

again and clearly separate the type-III corner states from the
edge states, see Figs. 4(g) and 4(h). From these experimen-
tal results, we find that all corner states are robust against
the disorder because the elements intrinsically have 2%
tolerance.

To directly observe the dynamic response of the circuit,
we measure the propagation of the voltage signals for all
three corner states and edge states. As shown in Fig. 5(a), we
impose a voltage signal at the first node (labeled by red ar-
row) by v(t ) = v0 sin(2π f t ) with the amplitude v0 = 5 V and
f = f ′

1 by an arbitrary function generator (GW AFG-3022),
and measure the amplitudes of the steady voltage sign by the
oscilloscope (Keysight MSOX3024A) over the whole sample.
We find that the signal is only localized at the first node,
indicating the type-I corner state. With the same method, we
further observe the type-II corner, type-III corner, and edge
states at frequency at the f ′

2, f ′
3, and f ′

4, with the results plotted
in Figs. 5(b)–5(d), respectively. Meanwhile, we show theo-
retical results in the insets of each subfigure for comparison,
which agree well with experimental findings.

V. CONCLUSION

To summarize, we investigated the effect of LRIs on the
topological phases in breathing kagome circuits. With ap-

FIG. 5. Experimental observation and theoretical calculation of
the voltage propagations. [(a)–(d)] The distributions of the amplitude
of the voltage signal in devices with the signal source imposed
between the first, third, nineth, 84th node and the ground at frequency
f ′
1 = 447 kHz, f ′

2 = 499 kHz, f ′
3 = 534 kHz, and f ′

4 = 523 kHz,
respectively. (Insets) Numerical results.

propriate LRIs, we discovered the type-III corner state and
presented a direct experimental observation. We showed that
the type-III corner states split from the edge modes, and
originate from the strong coupling between nodes at differ-
ent edges. With stronger LRIs, the BIC and DSM phases
subsequently emerge in this system. Our results highlighted
the important role played by LRI in topological phases and
phase transitions. Our findings significantly advance the un-
derstanding of the localization behavior of HOT states and
may spur future studies in other systems, such as acoustic
lattices, photonic crystals, and cold atoms, and in higher di-
mensions allowing peculiar hinge states and Weyl semimetal
states. It is worth mentioning that the NNN hopping terms in
our system differ from the LRIs in the field of strongly corre-
lated electrons that are closely related to local and nonlocal
density interactions. LRIs beyond long-range hopping may
exhibit other appealing properties, which deserve thorough
exploration in the future.
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APPENDIX A: THE GENERALIZED CHIRAL SYMMETRY,
Z3 BERRY PHASE, AND PHASE TRANSITIONS

As shown in Fig. 6, the NN coupling Hamiltonian is given
by

H0 =
⎛
⎝Q0 Q1 Q2

Q∗
1 Q0 Q3

Q∗
2 Q∗

3 Q0

⎞
⎠, (A1)
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FIG. 6. Schematic plot of an infinite-size kagome circuit com-
posed of three types of capacitors CA, CB, and CN , and each node is
grounded by an inductor. Inset: the first BZ with three colored arrows
indicating the integral paths.

with matrix elements

Q0 = ω

[
2(CA + CB) − 1

ω2L

]
,

Q1 = −ω
[
CA + CBe−i(kx/2+√

3ky/2)
]
,

Q2 = −ω[CA + CBe−ikx ],

Q3 = −ω
[
CA + CBe−i(kx/2−√

3ky/2)], (A2)

where kx(y) is the wave vector in the x̂(ŷ) directions, and

HNNN =
⎛
⎝QN0 QN1 QN2

Q∗
N1 QN0 QN3

Q∗
N2 Q∗

N3 QN0

⎞
⎠, (A3)

with matrix elements

QN0 = 4ωCN ,

QN1 = −ωCN
[
e−ikx + ei(kx/2−√

3ky/2)
]
,

QN2 = −ωCN
[
e−i(kx/2−√

3ky/2) + e−i(kx/2+√
3ky/2)

]
,

QN3 = −ωCN
[
e−ikx + ei(kx/2+√

3ky/2)
]
. (A4)

It can be verified that H0 satisfies the generalized chiral
symmetry at resonant frequency ω0 = 1/[

√
L(2CA + 2CB)],

because of �−1
3 H0�3 = H1, �−1

3 H1�3 = H2, H0 +H1 +
H2 = 0, with �3 = diag(1, e

2π i
3 , e

4π i
3 ). If we add the diagonal

element QN0 to Q0, the resonant frequency will shift from
ω0 to ωc = 1/[

√
L(2CA + 2CB + 4CN )]. We find that the

remainder of HNNN still holds the generalized chiral
symmetry. It is to say that the periodic NNN hopping
terms do not break the generalized chiral symmetry but only
cause a shift of the resonant point, which provides symmetry
protection for the triply degenerate zero-admittance mode.

Next, we discuss the relationship between the C3 symmetry
and the quantized Z3 Berry phase. The Berry phase is closely
related to the local twist of the Hamiltonian [39], which is
quantized due to time-reversal symmetry and inversion sym-
metry, for instance. In the breathing kagome lattice, it has
C3 symmetry, so points K , K ′, and K ′′ in the Brillouin zone

are equivalent, as shown in the inset of Fig. 6. So, there are
three equivalent paths for computing Z3 Berry phase: L1:
K ′ → � → K ′′, L2: K ′′ → � → K, and L3: K → � → K ′.
As a result, the Berry phases θ (Li ) should take the same value,
i.e., θ (L1) = θ (L2) = θ (L3). In addition, the integral along
the path L1 + L2 + L3 is equal to zero, i.e.,

∑
i=1,2,3 θ (Li ) =

0. Therefore, we obtain the quantized Z3 Berry phase θ ≡
θ (Li ) = 2πk/3 with k = 0, 1, 2.

To show the details of phase transition at K and M
points, we analyze the eigenvalues and wave functions
at these two points. At K point, the admittance spectra
are given by j (1)

K = CA + CB − 4CN , j (2)
K = CA − 2CB + 2CN ,

and j (3)
K = −2CA + CB + 2CN with the corresponding wave

functions expressed as φ1 = [−
√

3
2 i − 1

2 ,
√

3
2 i − 1

2 , 1]T , φ2 =
[
√

3
2 i − 1

2 ,−
√

3
2 i − 1

2 , 1]T , and φ3 = [1, 1, 1]T . We find that
the lowest band exchanges from j (2)

K to j (1)
K at CN/CB = 0.5

[the first phase transition in Fig. 1(b)]. Meanwhile, the expec-
tation value of the phase of wave functions for the lowest band
ϕC3 = arg(φ†R3φ) [48] changes from 2π

3 to − 2π
3 (same as

the Z3 Berry phase), where R3 =
(

0 0 1
1 0 0
0 1 0

)
is the threefold

rotational operator.
At M point, the admittance spectra are j (1)

M = CA + CB −
2CN , j (2)

M = CN − CB/2 − CA/2 − �/2, and j (3)
M = CN −

CB/2 − CA/2 + �/2 with the eigenmodes φ1 = [0,−1, 1]T ,
φ2 = [−(CA + CB − 2CN − �)/(2CA − 2CB), 1, 1]T , and
φ3 = [−(CA + CB − 2CN + �)/(2CA − 2CB), 1, 1]T . Here

� =
√

9C2
A − 14CACB − 4CACN + 9C2

N − 4CBCN + 4C2
N .

The lowest two bands close at CN/CB = 1, accompanied by
the exchange of the lowest band from j (2)

M to j (1)
M and the

wave functions from φ2 to φ1 [the second phase transition in
Fig. 1(b)]. In the case of CN/CB > 1, the lowest two bands
touch each other and form the semimetal states. For the trivial
state, the wave-function phase ϕC3 is 0.

APPENDIX B: BOUND STATE IN THE CONTINUUM

In Fig. 3(a), one cannot find any isolated mode in the range
of 0.5 < CN/CB < 1 [green region in Fig. 1(b)]. However, if
we evaluate the inverse participation ratio (IPR)

p =
∑

i

|φn|4 (B1)

of the system, where φn is the normalized wave function with∑
i |φn|2 = 1, we find localized states buried in the bulk and

edge continuum, as shown in Fig. 7(a). The IPR has been
widely adopted to study Anderson localization in disordered
systems [49], and to confirm the existence of HOT states re-
cently [50,51]. Taking CN/CB = 0.75 as an example, we find
two groups of localized states appearing in the continuum, as
shown in Fig. 7(b). We plot their wave functions in Figs. 7(c)
and 7(d), respectively. We confirm that both localized states
actually are corner states.

APPENDIX C: DIRAC SEMIMETAL STATE

To illustrate the DSM state, we plot the band structure of
an infinite kagome circuit in Fig. 8(a). The lowest two bands
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FIG. 7. Admittance spectrums and eigenmodes of BIC. (a) The
admittance spectrum as a function of CN/CB at CA/CB = 0.1, with
the IPR indicated by the color map. The magenta dots represent
the localized states, while gray dots mean extended states. (b) The
admittance spectrum at CN/CB = 0.75 with the inset showing the
details. [(c) and (d)] The profile of the wave functions of the localized
states with the state number n = 180 and 194, respectively.

linearly touch each other at six points, which corresponds to
the DSM state. Besides, by tuning the capacitance CN , we find
that the positions of the six Dirac points continuously move
(one of them moves along the path M → �), see Fig. 8(b).

To obtain an analytical understanding, we begin with
Hamiltonian (1) and rewrite it as a concise form

H =
⎛
⎝ 0 a b

a∗ 0 c
b∗ c∗ 0

⎞
⎠, (C1)

with a = Q1 + QN1, b = Q2 + QN2, and c = Q3 + QN3 [see
Eqs. (A2) and (A4) for details]. The secular equation is given
by

λ3 − (aa∗ + bb∗ + cc∗)λ − ab∗c − a∗bc∗ = 0. (C2)

For a cubic equation, if the discriminant 27(ab∗c +
a∗bc∗)2 = 4(aa∗ + bb∗ + cc∗)3 is satisfied, it must have three
real roots with two degenerate ones. Imposing ky =

√
3

3 kx, the
matrix elements a, b, and c can be simplified as

a = b = −ω(CA + CBe−ikx + CN e−ikx ),

c = −ω(CA + 2CN cos kx ). (C3)

FIG. 8. Tunable Dirac points. (a) Illustration of the band struc-
tures of an infinite system with CA/CB = 0.1 and CA/CN = 1.5.
(b) The positions of the six Dirac points (green dots) move in the first
BZ as CN/CB ranges from 1 to 20. The blue hexagon shows the first
BZ and the gray arrows indicate the moving direction of the Dirac
points.

Divided by −ωCB, the above equations are expressed as

a = b = ta + e−ikx + tne−ikx , c = ta + 2tn cos kx, (C4)

with ta = CA/CB and tn = CN/CB. The discriminant is simpli-
fied as 8(aa∗)3 − 15(aa∗)2c2 + 6aa∗c4 + c6 = 0. Substitut-
ing the expressions of a and c to this equation, we get

2ta(tn − 1) cos kx + 2t2
n cos(2kx ) + t2

n − 2tn − 1 = 0. (C5)

The solution is given by

cos(kx )

= − ta − tatn + √
t2
a t2

n − 2t2
a tn + t2

a + 4t4
n + 8t3

n + 4t2
n

4t2
n

.

(C6)

At tn = 1, we have cos(kx ) = −1 (kx = ±π ). In the case
of tn < 1 (tn > 1), the value of the right part of Eq. (C6) is
greater (less) than 1, so we can obtain a real solution of kx only
for tn > 1. In the limit of tn → ∞, we obtain limtn→∞ cos kx =
−1/2 and kx = ± 2π

3 , which is the terminal of the Dirac points.

We therefore prove that the solution ky =
√

3
3 kx is indeed the

trajectory of the Dirac points. Due to the C3 symmetry of the
lattice, the other two equivalent traces of Dirac points exist
along the lines of ky = −

√
3

3 kx and kx = 0, respectively. To
show the linear touching of lowest two bands, we consider the
circumstance of CN → ∞ with Dirac points at (kDP

x , kDP
y ) =

(± 2π
3 ,± 2

√
3π

9 ) and (0,± 4
√

3π
9 ), marked by the blue dots in

Fig. 8(b). In such a case, we can analytically solve the band
structure as

j (1)
n = 2ωCN , j (2)

n = ωCN

⎡
⎣−1 −

√
3 + 4 cos

3kx

2
cos

√
3ky

2
+ 2 cos(

√
3ky)

⎤
⎦,

j (3)
n = ωCN

⎡
⎣−1 +

√
3 + 4 cos

3kx

2
cos

√
3ky

2
+ 2 cos(

√
3ky)

⎤
⎦. (C7)
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FIG. 9. Simplified models explaining the origin of type-II and
type-III corner states. [(a) and (b)] The first-order and second-order
perturbation models. (c)(d) The numerical admittance spectrums
(gray lines) and perturbed ones (dashed red lines).

In the vicinity of the Dirac points, one can expand the
lowest two bands [ j (2),(3)

n ] as

jn(px, py) = ωCN [−1 + 3
√

2

2
px + 3py + O (p2)], (C8)

with px = kx − kDP
x , py = ky − kDP

y and |p| � 1. One can
clearly see a linear band crossing near the Dirac points.

APPENDIX D: ORIGIN OF THE TYPE-II AND TYPE-III
CORNER STATES

To explain the origin of the type-II corner states, we con-
sider the first-order perturbation as shown in Fig. 9(a). The
perturbed Hamiltonian is given by

V = −ω

⎛
⎜⎜⎜⎜⎜⎜⎝

0 CA
2 0 0 0 0

CA
2 0 CA

2 0 0 0
0 CA

2 0 CA
2 + CN 0 0

0 0 CA
2 + CN 0 CA

2 0
0 0 0 CA

2 0 CA
2

0 0 0 0 CA
2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(D1)
Diagonalizing the above matrix, we obtain the perturbation
solution

δ jn = ±ω
(CA + 2CN )2 + C2

A

2CA + 4CN
, (D2)

with the results plotted by dashed red lines in Fig. 9(c). The
two solutions are type-II corner states. The NNN couplings
cause an effective interaction (ωCN ) between two dimers
across the corner, which splits the type-II corner states from
the edge spectrums.

For type-III corner states, we have to consider the second-
order perturbation as shown in Fig. 9(b). The system is
described by a 15 × 15 Hamiltonian matrix V ′ (not shown).
By diagonalizing it, we obtain the dashed red spectrums in
Fig. 9(d), which can explain the type-III corner states well.
The NNN couplings induce extra interactions to edge nodes

FIG. 10. Strong coupling. (a) SSH model with different bulk
nodes. The red arrows represent the effective capacitance for energy
splitting. (b) Effective interactions between edge nodes. (c) The
admittance spectrum of the two effective models in (b) (black lines
for left panel and blue lines for right panel). (d) Critical curve for the
emergence of type-III corner states.

by connecting to the bulk nodes, which yields the type-III
corner states.

To study the band splittings, we consider three Su-
Schrieffer-Heeger (SSH) models [32] as shown in Fig. 10(a),
described by the following Hamiltonian Hi (i = 1, 2, 3, we
set CB = 1)

H1 = ω

(
0 CN

CN 0

)
, (D3)

H2 = ω

⎛
⎜⎝

0 CN 0 0
CN 0 1 0
0 1 0 CN

0 0 CN 0

⎞
⎟⎠, (D4)

H3 = ω

⎛
⎜⎜⎜⎜⎜⎝

0 CN 0 0 0 0
CN 0 1 0 0 0
0 1 0 CN 0 0
0 0 CN 0 1 0
0 0 0 1 0 CN

0 0 0 0 CN 0

⎞
⎟⎟⎟⎟⎟⎠. (D5)

The hopping terms CN cause the splitting of the bound-
ary modes as δω1 = 2ωCN , δω2 = 2ω(C2

N − C4
N ), δω3 =

2ω(C3
N − C5

N ), which can be approximatively regarded as an
effective capacitances CN , C2

N , and C3
N to directly connect the

two boundary nodes, as the red arrows shown in Fig. 10(a).
Next, we will show how these connections induce the type-II
and type-III corner states.

As shown in Fig. 10(b), one can separate the nodes of the
breathing kagome lattice into three types: single, dimer, and
trimer. The edge spectra are formed by the boundary dimers.
Then, we reduce to the effective one-dimensional problem
with two edges (green sectors) meeting at the corner, as shown
in Fig. 10(b). The effective hopping term ωCN connects the
third to the fourth nodes, and as a result, the first and sixth
bands split from the edge state continuum and form the type-II
corner state [see black line in Fig. 10(c)]. To explain the
energy splitting of the type-III corner state, we consider the
interaction ωC2

N between the second and fifth, and the result
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is plotted in Fig. 10(c). We find the second and fifth blue
spectrums first submerge in the edge spectrums and then di-
verge from them at a critical point, and result in the emergence
of the type-III corner states. Therefore, a threshold exists for
the appearance of type-III corner states, as labeled by the
orange dot in Fig. 9(d). In Fig. 10(d), we plot the critical points
of emergence of type-III corner state for different capacitance
CA, and one can find the type-III corner state in the blue re-
gion. The critical points can be fitted by the following formula

CA

CB
= 0.0058 exp

(
21.11

CN

CB

)
, (D6)

and different CA gives different threshold CNc. Furthermore,
by taking the effective coupling ωC3

N between first and sixth
nodes into account, we find the third and fourth spectrums can
deviate from the edge state continuum a little but cannot es-
cape from them. Therefore, one can only observe two types of
corner states splitting from the edge spectrums in the present
model.

APPENDIX E: THE REALIZATION OF THE NEGATIVE
RESISTANCE

As shown in Figs. 4(d) and 4(e), the negative resistance is
realized by an integrated operational amplifier XL5532 and
three resistances Ra, Rb, and Rn.

For an ideal operational amplitude, i+ = 0, i− = 0, and
ud = 0 (most modern amplifiers have large gains and input
impedances, so the analysis is feasible in a real circuit). Ac-
cording to Ohm’s law, we obtain

vin − vo = iRn, vo = Ra + Rb

Rb
vin. (E1)

Combining these two equations, we have

vin

i
= −Ra

Rb
Rn. (E2)

Here, we choose Ra = Rb = Rn = 4.99 k	, so the network is
equivalent to a negative resistance due to vin = i(−Rn).
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