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We theoretically investigate the impurity levels and exchange interaction between magnetic impurities in
graphene driven by an off-resonant circularly polarized light field. Our analysis captures the nonperturbative
effects resulting from scattering with magnetic impurities with a strong on-site potential. Under irradiation, a
dynamical band gap opens up at the Dirac point, allowing impurity levels to exist inside the gap. These impurity
levels are shown to give rise to a resonance feature in the exchange energy for impurities located either at
the same sublattice or at different sublattices. The exchange interaction also shows a wider spatial range of
antiferromagnetic behavior due to irradiation. Our work demonstrates that the exchange energy of magnetic
impurities in graphene is extensively tunable by light irradiation in the presence of strong potential scattering.
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I. INTRODUCTION

Magnetic two-dimensional (2D) materials have recently
attracted considerable attention [1,2]. In particular, there has
been much interest over the years in graphene with mag-
netic degrees of freedom that may host interesting spintronic
phenomena and applications [3,4]. Although graphene is
not intrinsically magnetic, magnetism in graphene can arise
extrinsically from adatom deposition, vacancies, and edge
termination [5]. In the presence of a dilute concentration of
magnetic impurities, the dominant mechanism of exchange
interaction between the impurity spins is the long-range
indirect exchange interaction known as the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction, which is an effective
spin-spin interaction mediated by the itinerant electrons in a
nonmagnetic host material. Thus RKKY interaction plays an
important role in understanding the magnetic properties of
graphene with a dilute concentration of magnetic impurities
[6,7]. The RKKY interaction in intrinsic graphene can be
ferromagnetic or antiferromagnetic depending on the posi-
tions of the two magnetic impurities on the lattice, exhibiting
a faster spatial decay, ∼1/R3, than in regular 2D electron
systems [8–10]. One important manifestation of graphene val-
ley physics is the presence of short-range oscillations arising
from intervalley scattering when the impurities are in the
zigzag direction of the honeycomb lattice. These short-range
oscillations are known to be present generically in any mul-
tivalley electron system [11], for which graphene serves as a
specific example. In extrinsic graphene, where free carriers
are present in the conduction or valence band, the RKKY
interaction exhibits the typical Friedel oscillations with a
half-Fermi-wavelength period, in addition to possible valley-
induced short-range oscillations occurring along the zigzag
direction [12].

The ability to control magnetic properties using an external
field offers a promising route to realize new material behav-
iors and functionalities. In dilute magnetically doped systems,

controlling the indirect exchange interaction could provide a
path towards manipulation of the magnetic ordering of the
impurity spins. A number of theoretical works have addressed
the exchange interaction in irradiated systems [13–17] and
demonstrated that the exchange coupling sensitively depends
on the parameters of the driving light field. In graphene,
in particular, off-resonant circularly polarized irradiation can
strongly modify the sign and magnitude of the RKKY in-
teraction between magnetic impurities due to the opening of
a light-induced dynamical gap at the Dirac point [18]. It is
not clear, however, whether this remarkable effect remains
robust for impurities that are characterized by strong poten-
tial scattering. Examples of such impurities are those with
a large on-site potential including vacancies [19,20] (where
theoretically the potential becomes infinite) or adatoms that
couple resonantly with the host electrons (such as hydrogen
adatoms in graphene [21–23]). In these systems, repeated
potential scattering processes between the host electrons and
the impurities are important, which give rise to the formation
of resonant impurity levels.

Generally, the interaction between electrons and a mag-
netic impurity can be characterized by both its spin-
independent and spin-dependent contributions. The RKKY
coupling is usually calculated theoretically considering the
second-order perturbation due to the exchange coupling be-
tween the host electrons and the impurity spins. The role
of the spin-independent potential scattering contribution is
neglected, which is justified when the potential scattering
strength is weak. In contrast, magnetic impurities with a large
on-site potential interaction cause strong electron-impurity
scattering, and the usual RKKY-type perturbation theory for
the indirect exchange interaction breaks down. To capture the
effects of strong potential scattering in these systems, one
would need to go beyond the standard RKKY treatment and
include the effects of electron-impurity scattering to all orders
of the scattering strength.
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In this paper, we consider dilute magnetically doped
graphene under electromagnetic irradiation and elucidate the
consequences of strong potential scattering on the indirect
exchange interaction between the impurity spins. The purpose
of this work is to study how irradiation can modulate the im-
purity energy levels arising in the strong-potential-scattering
regime and investigate how strong potential scattering mod-
ifies the effects of irradiation on the indirect exchange
interaction. To address these questions, we formulate a non-
perturbative theory that goes beyond the typical RKKY
treatment to calculate the resonant impurity levels under irra-
diation and the nonequilibrium indirect exchange interaction
between the magnetic impurities.

The rest of the paper is organized as follows. In Sec. II
we present our theoretical model of graphene with two im-
purity spins under circularly polarized light. We focus on
weak driving fields and present the corresponding Floquet
Hamiltonian and Green’s functions applicable in this regime.
Using the Floquet-Keldysh formalism, we then derive a gen-
eral formula for the time-averaged interaction energy between
two impurity spins in irradiated graphene. In Sec. III, we
introduce the impurity model and calculate the impurity levels
in the presence of two impurities. Numerical results for the
time-averaged exchange energy are then presented in Sec. IV.
Section V concludes the paper with a summary of our main
findings.

II. FORMULATION

A. Setup

The low-energy electrons in single-layer graphene are de-
scribed by the following continuum Dirac Hamiltonian near
the K and K ′ points of the Brillouin zone:

H0 =
∫

dr�†(r)H0�(r), (1a)

H0 = −ih̄vF (τσx∂x + σy∂y), (1b)

where �,�† are the annihilation and creation field operators,
vF = 106 ms−1 is the band velocity, and τ = 1 (τ = −1)
corresponds to the K (K ′) Dirac points. vF is related to the
graphene tight-binding model parameters by h̄vF = 3�a/2 =
6.6 eV Å, with � = 3 eV being the nearest-neighbor hopping
amplitude and a = 1.4 Å being the carbon-carbon distance.
We model the interaction of the graphene electrons with a
magnetic impurity by a short-range interaction V (r) between
the electron and impurity, and the total Hamiltonian is given
by

H = H0 + V (r). (2)

We consider a circularly polarized (CP) light field
E = E0[cos (�t )x̂ + sin (�t )ŷ]/

√
2 normally incident on the

graphene plane with a frequency � and a field amplitude
E0. The field couples to the Hamiltonian equations (1a) and
(1b) via the minimal coupling scheme, and the resulting time-
dependent Hamiltonian of the irradiated system H = H0(t ) +
V (r) becomes time periodic with

H0(t ) = −ih̄vF (τσx∂x + σy∂y)

+ A[−τσx sin (�t ) + σy cos (�t )], (3)

where we have defined A = vF eE0/(
√

2�) as the driving
amplitude. In this paper, we are interested in high-frequency
driving, with h̄� exceeding the electronic bandwidth 6�, and
low drive amplitudes A such that the dimensionless driving
strength A = A/(h̄�) � 1. In this weak-drive regime, the
irradiation is off resonance. After the initial switching on of
the laser and after the initial transients have been washed
out, the system settles into a nonequilibrium steady state
(NESS). The driven system is then periodic in time, and it
is convenient to work with the Floquet picture. As detailed in
Refs. [18,24], a suitable unitary transformation U exists that
makes explicit the contributions from processes due to differ-
ent photon numbers in the transformed Floquet Hamiltonian
H̃F = U †HFU . This is called the photon number representa-
tion and allows for a systematic accounting of processes due
to virtual photons, one-photon resonance, two-photon reso-
nance, and so on. In our currently considered high-frequency,
off-resonance regime, only virtual photon processes are rel-
evant, and one can neglect contributions due to one-photon
and higher-order resonances. This approximation is called the
F0 approximation [24], and the resulting Floquet Hamiltonian
takes a block-diagonal form H̃F = ⊕∞

m=−∞ h̃m, where
⊕

stands for the matrix direct sum over the Floquet space, with
the following 2 × 2 block Hamiltonian h̃m:

h̃m = F0 h̄vF σ̃∗ · k + �

2
σ̃z + mh̄�Iσ̃ , (4)

where � =
√

(2A)2 + (h̄�)2 − h̄�, m ∈ Z, denotes the Flo-
quet mode index, σ̃ stands for the Pauli matrix vector in the
photon number representation, and

F0 = 1

2

[
1 + h̄�√

(2A)2 + (h̄�)2

]
. (5)

Equation (4) describes a quasienergy dispersion εm,k =
±

√
(F0 h̄vF k)2 + (�/2)2 + mh̄� of a ladder of gapped Dirac

cones shifted by integer multiples of h̄�, each with a renor-
malized band velocity F0vF and a photon-induced band gap
� at the K and K ′ points. The retarded Green’s func-
tion becomes block diagonal G̃R = ⊕∞

m=−∞ gR(k, ω̄ − mh̄�)
with gR(k, ω̄ − mh̄�) = [(ω̄ + iη)Iσ̃ − h̃m]−1 being the 2 ×
2 block Green’s function corresponding to the mth Floquet
mode. The real-space representation of this Green’s function
at a single valley can be obtained from a Fourier transforma-
tion as G̃R(R, ω̄) [18], where R = r − r′. The full real-space
Green’s function G̃R

0 (R, ω̄) is then the sum of contributions
from both valleys (detailed expressions of the real-space
Green’s functions are presented in Appendix A).

We now have the system’s Floquet Hamiltonian that will
allow us to use the Floquet Green’s functions to derive other
quantities of interest. In the following, we will derive an
expression for the interaction energy between two impurities
in irradiated graphene, which will allow us to calculate the
exchange energy between two magnetic impurities in Sec. IV.

B. Interaction energy

To formulate a nonperturbative expression for the interac-
tion energy between the impurities, we start by calculating the
exact total energy Etot of the electrons. Employing the familiar
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strategy [25] of introducing a variable coupling constant γ ∈
[0, 1], we consider an auxiliary problem with a Hamiltonian
having a scaled interaction γV

H = H0 + γV (r), (6)

with γ = 1 corresponding to the Hamiltonian equation (2)
with impurities and γ = 0 corresponding to the case without
impurities. With the aid of this parameter γ , one obtains

d

dγ
Etot = 1

γ
〈�0(γ )| γV |�0(γ )〉 , (7)

where �0(γ ) is the exact eigenstate of the Hamiltonian equa-
tion (6). The shift in total energy in the original problem due
to interaction with the impurity potential V can now be written
as

�Etot (t ) = −i
∫ 1

0
dγ Tr

{
lim
r′→r
t ′→t

V (r)G<
γ (r, t, r′, t ′)

}
, (8)

where G<
γ is the lesser Green’s function for the auxiliary

problem with the scaled interaction γV and the trace is taken
over the spin and sublattice indices as well as the position r.

In the following we will use the Floquet-Keldysh Green’s
function formalism and express all time-dependent quantities
in the Floquet representation [26]. Taking the time average
of Eq. (8), we can write the time-averaged shift in the total
energy in the Floquet representation as

�E tot = −i
∫ 1

0
dγ Tr

{∫ �
2

− �
2

dω̄

2π
V (r)

∑
m

[G<
γ (r, r, ω̄)]mm

}
,

(9)

where m ∈ Z labels the Floquet modes and we use the symbol
ω̄ to denote frequencies defined in the first reduced zone
(−�/2,�/2]. We assume that the irradiated graphene sheet
is coupled to a fermion bath that provides a thermalization
mechanism through which energy relaxation takes place. The
Floquet lesser Green’s function is given by

[G<
γ (r, r, ω̄)]mm

=
∑
nn′

∫
dr′[GR

γ (r, r′, ω̄)
]

mn[�<(ω̄)]nn′
[
GA

γ (r′, r, ω̄)
]

n′m,

(10)

where �< = 2iη
⊕∞

n=−∞ f (ω̄ − nh̄�)Iσ = 2iηF (ω) is the
lesser self-energy due to bath coupling, with F (ω) being the
Fermi distribution function and η being a phenomenological
broadening parameter. In the above equation, the interact-
ing retarded and advanced Green’s functions GR,A

γ can be

expressed in terms of their noninteracting counterparts GR,A
0

using the Dyson’s equation. Substituting Eq. (10) into Eq. (9)
and carrying out the integration over γ , after some algebra we
find that Eq. (9) under the F0 approximation becomes

�E tot = F0

∫ �
2

− �
2

dω̄

π

∑
m

f (ω̄ − mh̄�)

× ImTr
{[

ln
(
1 − G̃R

0 F0V
)]

m

}
. (11)

We now focus on the scenario with two magnetic impurities
labeled by “L” (left) and “R” (right), so that in the above

equation V will be the total potential energy V = VL + VR of
the two impurities.

In equilibrium, Eq. (11) reduces to the so-called Lloyd’s
formula [27]

�E tot =
∫ ∞

−∞

dω

π
f (ω)ImTr

{
ln

(
1 − GR

0V
)}

, (12)

which has been used to compute the RKKY interaction be-
tween magnetic impurities [6]. We will not use Eq. (11) since
we are only interested in the interaction energy between the
impurities and not the noninteracting part of the system’s total
energy.

Instead, we will rewrite Eq. (11) to single out specifically
the interaction energy, and for this purpose we will em-
ploy T matrices. The electron Green’s function for scattering
with a single impurity potential V can be written as GR =
GR

0 + GR
0 T GR

0 , where T = V (1 − GR
0V )−1 is the T matrix. The

Green’s function for scattering with two impurities is given
by the Dyson’s equation GR = GR

0 + GR
0 (VL + VR)GR, which,

after some algebra, can be written in terms of the T matrices
TL,R for scattering with the single impurity potentials VL,R

GR = GR
0

(
1 + TRGR

0

)(
1 − TLGR

0 TRGR
0

)−1(
1 + TLGR

0

)
. (13)

Equation (13) nicely separates the scattering contributions
with only one impurity (1 + TL,RGR

0 ) and with both impuri-
ties (1 − TLGR

0 TRGR
0 )−1. This separation will be convenient

in the following when we extract the interaction energy shift
between the two impurities.

Back to the expression of the exchange energy in Eq. (11),
we can use the Dyson’s equation 1 − GR

0V = GR
0 (GR)−1 ex-

pressed in the photon number basis to recast the argument
inside the logarithm in terms of the full Green’s function
(G̃R)−1. Then, expressing Eq. (13) in the photon number basis
to obtain (G̃R)−1 allows us to extract the interaction part of the
energy shift as follows:

�E = 1

π

∫ �
2

− �
2

dω̄
∑

m

f (ω̄ − mh̄�)F0

× Im
{
Tr

[
ln

(
1 − T̃LG̃R

0 T̃RG̃R
0

)]
m

}
. (14)

Since G̃R
0 is block diagonal, the T matrix can be resolved into

2 × 2 blocks in the Floquet space: T̃L,R = ⊕∞
m=−∞ t̃L,R(ω̄ −

mh̄�), where t̃L,R = F0ṼL,R(1 − g̃RF0ṼL,R)−1 are the 2 × 2 T
matrices in the photon number representation. Converting the
frequency variable from the reduced zone representation back
to the extended zone with ω = ω̄ − mh̄�, Eq. (14) then be-
comes

�E = 1

π

∫ ∞

−∞
dω f (ω)F0

× Im{Tr ln [1 − t̃L(ω)g̃R(R, ω)t̃R(ω)g̃R(−R, ω)]},
(15)

where in the extended zone, we have the T matrix

t̃L,R(ω) = F0ṼL,R[1 − g̃R(0, ω)F0ṼL,R]−1 (16)

and the Green’s function

g̃R(R, ω) = eiK·Rσyg
R(R, ω)σy + eiK ′·RgR(R, ω). (17)
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Equation (15) is a central result of this paper, valid for arbi-
trary strengths of impurity scattering in irradiated graphene
under a weak high-frequency off-resonant Floquet drive. Ap-
pealingly, it has a similar form to that of the corresponding
formula in equilibrium [28–30]. In the following section, we
specify the potential V for the magnetic impurities in our
calculations.

III. IMPURITIES WITH MAGNETIC
AND POTENTIAL SCATTERING

A. Impurity model

The impurity potential V generally consists of both spin-
independent and spin-dependent scattering terms, which can
be written as

Vi(r) = A0

(
uIs + h̄λ

2
s · Si

)
δ(r − Ri )Pα, (18)

where A0 = 3
√

3a2/2 is the area of the unit cell, i ∈ {L, R}
labels the impurities at position Ri (hereinafter we set RL

as the origin and RR = R), u is the on-site potential energy,
λ is the exchange coupling strength, (Is, s) are the identity
and Pauli matrices in the spin space, and S is the angular
momentum of the localized impurity spin, which is taken to
be along the out-of-plane direction S = Sẑ. We mention in
passing that such an impurity potential was also considered
in Refs. [31–33], where the effects of strong potential scat-
tering in topological insulators and graphene were studied.
We focus on the case where the impurities are either sub-
stitutional adatoms or vacancies so that they are located at
either one of the two sublattices A or B. Correspondingly,
Pα is the projection operator to sublattice α ∈ {A, B} with
PA,B = (Iσ ± σz )/2, where Iσ is the identity matrix in the
pseudospin space. The two impurities can be located at the
same sublattice sites (AA) or different sublattice sites (AB)
and separated along the zigzag or armchair directions.

For impurities with a weak potential scattering term |u| �
h̄λ|S|/2, u can be neglected, and the resulting exchange in-
teraction between two magnetic impurities reduces to the
standard RKKY interaction that is perturbatively valid up to
λ2. In this paper we are interested in the opposite limit in
which the potential scattering is strong with |u| � h̄λ|S|/2
and cannot be ignored, necessitating the use of Eq. (15) for
the calculation of the exchange energy. In the following we
will discuss the formation of impurity levels and see that it
plays an important role in the exchange energy in this regime.

B. Impurity levels

The impurity energy levels are given by the real part of
the poles of the full Green’s function equation (13), det(1 −
TLGR

0 TRGR
0 ) = 0. In the photon number representation, since

G̃0 is block diagonal, the above equation simplifies to det(1 −
t̃Lg̃Rt̃Rg̃R) = 0 for extended zone frequency ω, giving

1 − T (ω)g̃R
αβ (R, ω)T (ω)g̃R

βα (−R, ω) = 0, (19)

where

T (ω) = νA0
[
1 − νA0g̃R

αα (0, ω)
]−1

(20)

FIG. 1. Time-averaged local density of states of graphene eval-
uated at the impurity sublattice site A in equilibrium [(a)–(c)] and
under irradiation with A = 0.06 [(d)–(f)]. The impurities are located
at A and B separated along the armchair direction with u = 100�.
The upper two, middle two, and lower two panels correspond to the
values of impurity separation R = 31a, 43a, and 55a, respectively.

is a T matrix and

ν = F0

(
u + h̄λ

2
sS

)
(21)

is an effective potential for up spins (s = 1) and down spins
(s = −1). We note that T is independent of α following from
the same property of g̃R

αα (0, ω) [Eq. (A5) in Appendix A].
Further insight can be gained by casting the above condition
into an alternative form as 1 − νA0Geff,± = 0, where Geff,± is
an effective Green’s function

Geff,± = g̃R
αα (0, ω) ±

√
g̃R

αβ (R, ω)g̃R
βα (−R, ω). (22)

The energies of the two impurity states are obtained
from A0ReGeff,± = 1/ν, with line broadenings given by
A0ImGeff,±. In equilibrium, there is no band gap, and the
impurity states have a finite broadening due to coupling to
the continuum of graphene band states. A circularly polarized
illumination opens up a dynamical gap at the Dirac point, and
impurity levels falling inside this gap are not broadened by
coupling to band states.

To examine the effects of irradiation, we first calculate the
time-averaged local density of states given by

ρ(0, ω) = − 1

π
ImTr[GR(0, 0, ω̄)]αα,mωmω

, (23)
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FIG. 2. Real and imaginary parts of the effective Green’s func-
tion Geff,+ (upper panel) and Geff,− (lower panel) for irradiated
graphene with A = 0.06 in the AB armchair case. The impurity sepa-
ration is R = 43a, and effective potentials are ν1 = 50�, ν2 = 100�.

where α is the A or B sublattice of the impurity site at
the origin and the trace is taken over the spin degrees of
freedom. Given an extended-zone frequency value ω on
the left-hand side of Eq. (23), ω̄ and mω on the right-
hand side can be found from ω = ω̄ − mω h̄� with mω =
−sgn(ω)
|ω|/� − 1/2�, where 
 � is the ceiling function. It
should be noted that GR(0, 0, ω̄) in Eq. (23) is the full interact-
ing Green’s function obtained from Eq. (13) in the presence of
two impurities. Throughout our numerical calculations in this
section and in Sec. IV, we have chosen the following values:
frequency h̄� = 6.6�, dimensionless driving strength A =
A/(h̄�) = 0.06, and exchange coupling h̄λ|Si|/2 = 0.1 eV.
The frequency value is chosen to be larger than the electronic
bandwidth 6� so that the driving field is off-resonant, and the
driving strength is chosen so that it satisfies the weak-drive
condition A � 1. Figure 1 shows, both in equilibrium and
under irradiation, ρ(0, ω) for two impurities situated at A and
B sublattice sites and separated along the armchair direction.
As expected, irradiation induces a gap in the local density
of states, and two sharp lines corresponding to the impurity
levels emerge.

We have examined the formation of the impurity levels
for different impurity configurations (AA and AB, zigzag
and armchair). For the AA case, both impurity levels are
found to be always below the Dirac point. For the AB case,
however, the two impurity levels remain below the Dirac

FIG. 3. Exact numerical result for the impurity energy Eimp for
graphene in equilibrium A = 0 and irradiated with light A = 0.06 in
the AB armchair case as a function of the effective potential ν. The
upper, middle, and lower panels correspond to impurity distances
R = 31a, 43a, and 64a, respectively.

point only for small ν, and increasing ν eventually pushes
the upper impurity level above the Dirac point. These findings
are found to hold for both zigzag and armchair separations.
Figure 2 illustrates the above for the AB armchair case
through the graphical solution for ωimp±. The upper panel
demonstrates that increasing ν can push the impurity level
ωimp+ past zero to positive values, while the lower panel
shows that ωimp− remains always negative. As expected,
ImGeff,± is zero inside the band gap. We mention in passing
that, in equilibrium, this “Dirac point crossing” behavior of
ωimp+ is associated with the transition from a repulsive to
an attractive interaction between nonmagnetic impurities in
graphene [29].

Figure 3 shows the numerically obtained impurity levels
as a function of increasing potential ν under equilibrium and
irradiated conditions. We see that there is a considerable dif-
ference in the impurity energy levels between the two cases.
In particular, turning on irradiation is seen to reduce the dif-
ference between the two impurity levels. This difference is
largest for small impurity strengths and gradually decreases
with ν. Thus, for impurity strengths that are not too large,
the impurity levels can be dynamically tuned by irradiation.
From Eq. (19), we have also derived approximate analytic
results for the in-gap impurity levels for large ν � � in both
the AB and AA case. We set the broadening parameter η to
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zero in this calculation, so that the impurity states inside the
gap |ωimp| < �/2 are undamped and have a zero linewidth.

For the AB armchair case, we can arrive at the following
equation from Eq. (19):

1 + 1

2π

νω

(F0 h̄vF )2/A0
ln

∣∣∣∣ �2

ω2 − (�/2)2

∣∣∣∣ ≈ ±| sin θAB| × A0ν

(F0 h̄vF )2π

√
�2

4
− ω2K1

(
R

F0 h̄vF

√
�2

4
− ω2

)
. (24)

This equation can be rewritten into the following recursive equation of ω:

ω ≈ ω0 ln
∣∣ 2�

�

∣∣
ln

∣∣∣ �√
(�/2)2−ω2

∣∣∣ ±
| sin θAB|

√
(�/2)2 − ω2K1

(√
(�/2)2−ω2R

F0 h̄vF

)
ln

∣∣∣ �√
(�/2)2−ω2

∣∣∣ , (25)

where ω0 = −π
√

3F 2
0 �2/(2ν ln (2�/�)). We make a very rough estimate ω = ω0 on the right-hand side of this equation, and

by comparing with the exact result numerically solved from Eq. (19) we find that using the initial value ω0 in the recursion
relation yields a good approximation for the impurity energy level. Then the following approximate equation is derived for the
impurity energy:

ωimp,± ≈ ω0 ln
∣∣ 2�

�

∣∣ ± | sin θAB|ξK1
(

ξR
F0 h̄vF

)
ln

∣∣�
ξ

∣∣ , (26)

where θAB = θR − K · R, with K = (2π/(3
√

3a), 0), and ξ =
√

(�/2)2 − ω2
0.

In the AA case, we can follow a similar approach using the corresponding component of the Green’s functions, and Eq. (19)
can be approximated as

1 + 1

2π

νω

(F0 h̄vF )2/A0
ln

∣∣∣∣ �2

ω2 − (�/2)2

∣∣∣∣ ≈ ±
√

2

(
ω2 + �2

4

)
+ 2

(
ω2 − �2

4

)
cos 2K · R

× ν

2π

A0

(F0 h̄vF )2
K0

(
R

F0 h̄vF

√
�2

4
− ω2

)
. (27)

Similarly to the AB case, the following recurrence relation is derived:

ωimp,± ≈ ω0 ln
∣∣ 2�

�

∣∣
ln

∣∣∣ �√
(�/2)2−ω2

∣∣∣ ±

√
ω2 cos2 θAA + (

�
2

)2
sin2 θAAK0

(√
(�/2)2−ω2R

F0 h̄vF

)
ln

∣∣∣ �√
(�/2)2−ω2

∣∣∣ . (28)

In the AA case the initial value ω0 in the recursion relation still gives a good approximation, and the following approximation of
the impurity level can be derived using the initial value ω0 in the recursive relation:

ωimp,± ≈ ω0 ln
∣∣ 2�

�

∣∣
ln

∣∣�
ξ

∣∣ ±
√

ω2
0 cos2 θAA + (

�
2

)2
sin2 θAAK0

(
ξR

F0 h̄vF

)
ln

∣∣�
ξ

∣∣ , (29)

where θAA = K · R. In Fig. 4 we plot the above approximate
results in Eqs. (26) and (29) as well as the exact numerical
results; it is seen that they are in close agreement. Both solu-
tions ωimp± are negative in the AA armchair case, whereas in
the AB armchair case ωimp+ turns positive for large enough ν

(or small enough R) with ωimp− remaining negative.
Having investigated the impurity energy levels induced by

the impurity potentials, we will present in the next section the
results for the exchange energy. The physics of the impurity
levels can be demonstrated by their effect on the exchange
energy.

IV. EXCHANGE ENERGY

The important role of the impurity levels in the exchange
energy can be recognized from the observation that the con-
dition determining the impurity levels also appears directly
in the integrand of Eq. (15). This can be appreciated more
clearly if we take the exchange coupling λ to be small and
expand Eq. (15) up to leading order in λ. Then the time-
averaged interaction energy takes the typical form �E =
Jαβ (R)SLSR with an RKKY coupling strength Jαβ (R) =
(F 2

0 λ2h̄2/4)χαβ (R), where χαβ (R) is the time-averaged spin
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susceptibility

χαβ (R) = −2F0

π

∫ ∞

−∞
dω f (ω) × Im

{
A2

0g̃R
αβ (R, ω)g̃R

βα (−R, ω){[
1 − uAg̃R

αα (0, ω
)]2 − u2

Ag̃R
αβ (R, ω)g̃R

βα (−R, ω)
}2

}
, (30)

where uA = F0A0u. In writing the above we have noticed that
g̃R

αα (0, ω) is independent of the value of α. Equation (30)
generalizes the so-called nonlinear spin susceptibility studied
in Ref. [34] to the nonequilibrium regime. The vanishing of
the denominator of the integrand in Eq. (30) gives the impurity
levels in the absence of exchange coupling. Furthermore, in
the limit when the on-site potential u = 0, it can be shown
that Eq. (30) gives precisely the RKKY interaction energy
previously obtained in the perturbative limit [18].

We now perform exact nonperturbative calculations for the
exchange energy using Eq. (15). The delta-function potentials
in Eq. (18) allow the spatial integrations in Eq. (15) to be
straightforwardly carried out. Numerical convergence of the
frequency integration in Eq. (15) can be facilitated by rotat-
ing it from the real axis to the imaginary axis. To compute
the exchange energy, we evaluate the interaction energies for

FIG. 4. Comparison of the exact numerical result and analytical
approximation for the impurity energy ωimp for graphene irradiated
with light A = 0.06 as a function of the effective potential ν. The
upper and lower panels correspond to the AB armchair case with
R = 43a and the AA armchair case with R = 39a.

impurity spins aligned in parallel and antiparallel along the
z direction and calculate their difference. Equation (15) then
becomes

�Eαβ (R) = −F0

π

∑
s=±1

∫ ∞

0
dω

×Re
{
Tr ln

[
1 − T s

α g̃R
αβ (R, iω)T s

β g̃R
βα (−R, iω)

]}
,

(31)

where

T s
α = νA0

[
1 − νA0g̃R

αα (0, iω)
]−1

. (32)

For the parallel-spins configuration, T s
β is given by the same

expression as in Eq. (32); for antiparallel spins, T s
β is given

by Eq. (32) with λ inside ν replaced by −λ. The exchange

energy is then obtained [6,9] as E
ex
αβ = �E

↑↑
αβ − �E

↑↓
αβ , where

�E
↑↑
αβ and �E

↑↓
αβ are the interaction energies for impurity

spins aligned in parallel and antiparallel, respectively.
Figures 5 and 6 show the evaluated exchange energy in

units of J0 h̄2 as a function of impurity separation for the AA
and AB cases. J0 is the characteristic scale for the exchange
spin-spin coupling defined as

J0 = a

2π h̄vF

(
λh̄

4a2

)2

. (33)

FIG. 5. Time-averaged exchange energy E/(J0 h̄2) vs impurity
separation R/a for impurities situated at sublattices AA and along the
zigzag (left column) and armchair (right column) directions. The red
line shows the equilibrium (A = 0) case, and the black line shows
the irradiated case (A = 0.06). The upper, middle, and lower panels
correspond to on-site potentials u/� = 0, 10, and 20, respectively.
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FIG. 6. Time-averaged exchange energy E/(J0 h̄2) vs impurity
separation R/a for impurities situated at sublattices AB and along the
zigzag (left column) and armchair (right column) directions. The red
line shows the equilibrium (A = 0) case, and the black line shows
the irradiated case (A = 0.06). The upper, middle, and lower panels
correspond to on-site potentials u/� = 0, 10, and 20, respectively.

We first focus on Fig. 5 showing the AA case for zigzag (left
column) and armchair (right column) directions. The overall
trends of the two sets of results are similar, and the main
difference arises in the zigzag case, where there are additional
short-range oscillations due to intervalley scattering. For this
reason we can focus our attention first on the armchair case
(right column). The upper panel shows the case with u = 0 in
the absence of an on-site potential, with the negative values of
the exchange energy indicating a ferromagnetic coupling. At
a finite u (middle panel), the exchange energy stays negative
for large R but changes sign to positive for small enough R.
Thus, at large R, the exchange energy for finite u behaves
qualitatively in the same way as that for u = 0. This sign
change is present in both equilibrium and irradiated cases and
occurs at similar values of R. A larger difference between
the equilibrium and irradiated cases is observed at a larger
u (bottom panel). Here, the sign change in the irradiated case
occurs at an R value almost doubling that in the equilibrium
cases. Thus one can see that irradiation has the effect of
extending the region of antiferromagnetic exchange behavior
over a wider range of impurity separation. A more dramatic
difference is seen in the zigzag case (left column), as there
are now short-range oscillations on top of the aforementioned
behavior in the armchair case. One can see that irradiation
increases the amplitudes of the short-range oscillations so that
the exchange energy now periodically changes sign with a pe-
riod given by 3

√
3a/2. In the large-R regime under irradiation,

while the armchair case shows a ferromagnetic exchange cou-
pling, the zigzag case shows periodic positive values caused
by these light-enhanced short-range oscillations. When u
increases (middle and lower panels), these oscillations shift
the exchange energy to overall more positive values.

For the AB case (Fig. 6), again we first focus on the arm-
chair configuration (right column), where the exchange energy
does not contain short-range oscillations. The exchange en-
ergy favors antiferromagnetic alignment of impurity spins
when u = 0 (top panel). In the presence of a finite u (middle
and bottom panels), the exchange energy exhibits a wide dip
extending to negative values at equilibrium. Under irradiation,
the range of this dip is reduced considerably, so that the
exchange energy recovers a positive value at a smaller R. As
we discuss below, this dip is a resonance feature induced by
the emptying of the occupation of the upper impurity level.
The zigzag configuration (left column) behaves in a similar
way except with the short-range oscillations superposed onto
the overall trend of the exchange energy displayed by the
armchair case.

In equilibrium, the appearance of a resonance feature in the
AB case is associated with the upper impurity level crossing
the Dirac point where the Fermi energy is located [29]. Our
results in Fig. 6 show that irradiation has the effect of narrow-
ing the spatial range of this resonance feature. Furthermore,
since irradiation induces a dynamical gap where undamped
impurity levels can exist, this resonance feature is no longer
restricted to occur only at EF = 0 as in equilibrium, but can
now occur for a range of Fermi energies within the gap.
This can be demonstrated using the AA case as an exam-
ple. In equilibrium, both impurity levels always stay below
the Dirac point, and therefore there is no resonance feature
due to crossing of the upper impurity level with the Fermi
level located at the Dirac point. However, under a strong
enough driving field, both impurity levels can fall within the
light-induced gap. Then, tuning the Fermi energy to a value
in between the two impurity levels will induce a resonance
feature in the exchange energy. This is illustrated in the upper
panel of Fig. 7, which shows the exchange energy for the
AA armchair case at different nonzero Fermi energy values.
The lower panel displays the locations of the resonant value
of R given by the minimum of each curve. This value of R
is the closest physical distance on the graphene lattice that
satisfies Eq. (19). Comparing the bottom and the top panels
shows that indeed the resonant R gives rise to a corresponding
resonant feature in the exchange energy displayed in the upper
panel. At EF = −0.15�, the exchange exhibits a large jump at
R = 96a, similar to the resonance features in the AB armchair
case shown in Fig. 6. Hence, unlike in equilibrium, where such
a resonance feature only occurs in the AB case, irradiation can
induce a resonance feature in both the AA and AB cases.

A final remark on the tunability of the exchange energy
by the driving field is in order. When the Fermi level is
located at the middle of the light-induced gap, the case with
no potential scattering (u = 0) offers a limited tunability on
the exchange energy only through its magnitude. However,
for impurities with strong potential scattering, the exchange
energy becomes more extensively tunable not only through
its magnitude but also through its sign. This can be seen, for
example, in the AA armchair case in Fig. 5. For u = 0, the
exchange is ferromagnetic when the driving field is switched
either off or on. In contrast, for u = 20�, there exists a range
R ∼ 80a–150a for which the sign of the exchange can be
tuned from ferromagnetic to antiferromagnetic by switching
on the driving field. Similarly, in the AB armchair case in
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FIG. 7. The upper panel shows the time-averaged exchange en-
ergy E/(J0 h̄2) vs impurity separation R/a for impurities situated at
sublattices AA and along the armchair direction with negative Fermi
energy. The driving field strength is A = 0.06. The lower panel
plots the magnitude of the difference Geff,± − 1/ν, with its minimum
giving the position of the resonance feature in the exchange energy.

Fig. 6, the exchange remains antiferromagnetic for u = 0 in
the presence or absence of a driving field. In contrast, for
u = 20�, there exists a range of R � 50a for which the sign
of the exchange changes from ferromagnetic to antiferro-
magnetic under a driving field. Thus the presence of strong
potential impurities enhances the tunability of the exchange
interaction by the driving field and may present an interesting
prospect for light-controlled switching of antiferromagnetic
and ferromagnetic exchange coupling.

V. CONCLUSION

We have presented a calculation of the impurity levels and
exchange energy of magnetic impurities in a graphene sheet
irradiated by a circularly polarized light in the weak-drive
regime. By using the T-matrix and the Floquet Green’s func-
tion formalisms, a theory of the exchange energy beyond the
standard RKKY treatment is obtained, capturing the effects
of a strong on-site potential and a weak driving light field.
Due to the opening of a light-induced dynamical gap at the
Dirac point, impurity levels can exist inside the band gap.
We have obtained numerical and analytical results for the
impurity energy levels inside the gap due to a pair of magnetic
impurities. For impurities located at either the same (AA)

or different (AB) sublattice sites, irradiation has the effect
of extending the spatial range of antiferromagnetic behavior
in the presence of strong on-site potential, and the exchange
energy exhibits a resonance feature that originates from the
crossing of the Fermi energy with one of the impurity levels.
The presence of this feature in the same-sublattice case is
unique under irradiation and is due to the induced band gap
under circularly polarized radiation.
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APPENDIX A: FLOQUET GREEN’S FUNCTIONS WITHIN
THE F0 APPROXIMATION

For completeness we include the expressions of the Floquet
Green’s functions in the F0 approximation that were originally
derived in Ref. [18].

The 2 × 2 Hamiltonian h̃n [Eq. (4)] in the photon number
representation gives the following real-space Green’s function
after a Fourier transformation:

gR(R, ω) = ζ

{[
−(ω + iη)Iσ̃ + �

2
σ̃z

]
χ0(R, ω)

− σ̃∗ · R̂χ1(R, ω)

}
, (A1)

where ζ = [2π (h̄vF F0)2]−1 and R̂ is the unit vector along R.
χ0(R, ω) and χ1(R, ω) are defined as

χ0(R, ω) = π i

2
H (1)

0 [κ (ω)R], (A2)

χ1(R, ω) = −π

2
h̄vF F0κ (ω)H (1)

1 [κ (ω)R], (A3)

with H (1)
0 and H (1)

1 being the zeroth-order and first-order Han-
kel functions of the first kind, respectively, and

κ (ω) = sgn(ω)

h̄vF F0

√
(ω + iη)2 − �2

4
. (A4)

The 2 × 2 Green’s functions at R = 0 can be obtained from
a Fourier transformation of the momentum-space Green’s
function with a momentum cutoff �/h̄vF ,

gR(0, ω) = −ζ

2

(
ω ± �

2

)
Iσ̃

{
ln

∣∣∣∣ �2

ω2 − (�/2)2

∣∣∣∣
− i

�πF0√
�2 + (�/2)2

[
θ

(
ω − �

2

)

− θ

(
− ω − �

2

)]}
. (A5)

The full real-space Green’s function consists of contributions
from both valleys:

G̃R
0 (R, ω̄) = eiK·R�yG̃R(R, ω̄)�†

y + eiK ′ ·RG̃R(R, ω̄), (A6)

where �y = iσy ⊗ I∞ is a unitary transformation between
the bases for the transformed Floquet Hamiltonian at the K
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and K ′ valleys and I∞ is the identity matrix in the Flo-
quet space. We also have G̃R = ⊕∞

m=−∞ gR(k, ω̄ − mh̄�)
with gR(k, ω̄ − mh̄�) = [(ω̄ + iη)Iσ − h̃m]−1. The diagonal
blocks of Eq. (A6) take the following form:

[
G̃R

0 (R, ω̄)
]

m
= g̃R(R, ω̄ − mh̄�)

= eiK·Rσyg
R(R, ω̄ − mh̄�)σy

+ eiK ′ ·RgR(R, ω̄ − mh̄�). (A7)

APPENDIX B: DERIVATION OF THE INTERACTION
ENERGY

For completeness we include the more detailed derivation
for the equations used in Sec. II B. By substituting Eq. (10)
into Eq. (9) and carrying out the integration over γ we get

�E tot = −iTr

{∫ �
2

− �
2

dω

2π

∞∑
i, j=0

1

i + j + 1

× (
V GR

0

)i+1
2iηF (ω)

(
V GA

0

) j+1

}
, (B1)

where the trace is taken over the spin and sublattice indices.
The trace is also taken over position coordinates in the follow-
ing way, taking the i = j = 0 term, for example:

∫
drdr′V (r)GR

0 (r, r′)2iηF (ω)V (r′)GA
0 (r′, r). (B2)

Up to this point so far, our derivation of the exchange en-
ergy does not make use of any assumption as to the driving
strength, and Eq. (B1) holds for arbitrary values of the driving
field as allowed by the Floquet theory. Now we bring in the
assumption of a high-frequency, weak drive with h̄� > 6�

and A = A/(h̄�) � 1. We apply the suitable unitary trans-
formations such that we can now write the Green’s functions
in the photon number representation within the F0 approxima-
tion, and thus we transform Eq. (B1) into the photon number
representation as G̃ = U †GU . Then the Green’s functions be-
come block diagonal in the Floquet space, which allows us to
carry out the calculation in each Floquet mode individually.
The details of the transformation can be found in our pre-
vious work [18]. As the potential matrix V is also diagonal
in the Floquet space, we use the properties of the unitary
transformations to combine the unitary transformations with
the projection operators in the potential matrix yielding extra
constant factors F0 to get rid of the transformation matrices. It
is then possible to decompose our calculation into separate
Floquet modes; in particular, we can derive the following
relation which is useful in later calculation:∫

dr′G̃R
0 (r, r′)F0FG̃A

0 (r′, r′′)

=
∫

dr′
∞⊕

m=−∞
F0 f (ω̄ − mh̄�)

[
G̃R

0 (r, r′)
]

m

[
G̃A

0 (r′, r′′)
]

m.

(B3)

Using the relation∫
dr′G̃R

0 (r, r′)G̃A
0 (r′, r′′) = i

2η

[
G̃R

0 (r, r′′) − G̃A
0 (r, r′′)

]
,

(B4)

for the block-diagonal Green’s functions in the F0 approxima-
tion, it is straightforward to arrive at a similar relation for each
of the individual blocks [G̃R

0 ]m and [G̃A
0 ]m,∫

dr′[G̃R
0 (r, r′)

]
m

[
G̃A

0 (r′, r′′)
]

m

= i

2η

([
G̃R

0 (r, r′′)
]

m
− [

G̃A
0 (r, r′′)

]
m

)
. (B5)

Using Eqs. (B3) and (B5), we can get from Eq. (B1)

�E tot = i

2π
F0

∫ �
2

− �
2

dω̄
∑

m

f (ω̄ − mh̄�)

× Tr

{ ∞∑
i, j=0

1

i + j + 1

[
F0VAi

(
G̃R

0 − G̃A
0

)
B j

]
m

}
,

(B6)

where we have defined A = G̃R
0 F0V and B = F0V G̃A

0 . We
define D = G̃A

0 F0V and use the cyclic property of the trace
to get

�E tot = i

2π
F0

∫ �
2

− �
2

dω̄
∑

m

f (ω̄ − mh̄�)

× Tr

{ ∞∑
i, j=0

1

i + j + 1

[
F0VD jAi

(
G̃R

0 − G̃A
0

)]
m

}

= iF0

2π

∫ �
2

− �
2

dω̄
∑

m

f (ω̄ − mh̄�)

× Tr

{ ∞∑
i, j=0

[
(A − D)D jAi

i + j + 1

]
m

}
. (B7)

In order to carry out the sum, we use the following procedure.
First, by writing into infinite series we can show the following
equality:

Tr{ln (1 − D)} − Tr{ln (1 − A)}

= Tr

{ ∞∑
n=1

1

n
(An − Dn)

}

= Tr

{
(A − D)

∑
0�m<n<∞

1

n
(Dn−1−mAm)

}

= Tr

{
(A − D)

∞∑
i, j=0

1

i + j + 1
(D jAi )

}
. (B8)

Using this equality in Eq. (B7), we combine the two log-
arithms into one using the fact that the retarded Green’s
functions are the conjugate transpose of the advanced Green’s
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functions to arrive at Eq. (11):

�E tot = 1

π

∫ �
2

− �
2

dω̄
∑

m

f (ω̄ − mh̄�)F0ImTr

× {[
ln

(
1 − G̃R

0 F0V
)]

m

}
. (B9)

APPENDIX C: DERIVATION OF EQUATIONS (13)–(15)

In this Appendix we show the derivation for the expres-
sions using the T matrix in Sec. II B. From the Dyson’s
equation GR = GR

0 + GR
0 (VL + VR)GR we can expand and

write out in series form

GR = GR
0 + GR

0 (VL + VR)GR
0

+ GR
0 (VL + VR)GR

0 (VL + VR)GR
0 + · · ·

= GR
0 + GR

0VLGR
0 + GR

0VRGR
0

+ GR
0VLGR

0VLGR
0 + GR

0VLGR
0VRGR

0 · · · . (C1)

The core of our calculation uses the T matrix T = V (1 −
GR

0V )−1. For large values of impurity potential, it is difficult
to justify the convergence of the Born series. Nevertheless, the
T-matrix approximation has been used extensively in regimes
of strong impurity potential (e.g., see Refs. [30,32,35,36]), in-
cluding the unitary limit where the potential strength becomes
infinite [37–39].

By sorting out similar terms and combining common terms
using the T-matrix formalism we arrive at a more compact
expression:

GR = GR
0 + GR

0 TLGR
0 + GR

0 TRGR
0

+ GR
0 TL

(
1 − GR

0 TRGR
0 TL

)−1
GR

0 TR
(
1 + GR

0 TL
)
GR

0

+ GR
0 TR

(
1 − GR

0 TLGR
0 TR

)−1
GR

0 TL
(
1 + GR

0 TR
)
GR

0 + · · · .

(C2)

Then, using similar tricks on the T-matrix expression and
combining common factors, we finally arrive at

GR = GR
0

(
1 + TRGR

0

)(
1 − TLGR

0 TRGR
0

)−1(
1 + TLGR

0

)
. (C3)

Making use of this expression, we can infer the following
equation for GR

0 (GR)−1, which is used to derive Eq. (14):

GR
0 (GR)−1 = GR

0

(
1 + T LGR

0

)−1

×(
1−T LGR

0 T RGR
0

)(
1+T RGR

0

)−1(
GR

0

)−1
. (C4)

We can use this equation in Eq. (11) and rewrite it as a sum of
the terms using the properties of trace and logarithm:

�E tot = F0

∫ �
2

− �
2

dω̄

π

∑
m

f (ω̄ − mh̄�)

× Im
{
Tr

{[
ln

(
1 + T̃LG̃R

0

)−1]
m

}
+ Tr

{[
ln

(
1 − T̃LG̃R

0 T̃RG̃R
0

)]
m

}
+ Tr

{[
ln

(
1 + T̃RG̃R

0

)−1]
m

}}
. (C5)

From this equation we separate out the interaction part of the
energy shift as shown in Eq. (14). We can then use the fact
that the potentials are Dirac delta functions and express all
matrices in terms of their diagonal blocks to express our result
in the following form, which helps us convert Eq. (14) into the
extended zone:

�E = 1

π

∑
m

∫ �
2

− �
2

dω̄ f (ω̄ − mh̄�)F0

× Im{Tr ln [1 − t̃L(ω̄ − mh̄�)g̃R(R, ω̄ − mh̄�)t̃R

× (ω̄ − mh̄�)g̃R(−R, ω̄ − mh̄�)]}. (C6)

Shifting each piece of the sum in Eq. (C6), the following
expression is derived:

�E = 1

π

∑
m

∫ �
2 +mh̄�

− �
2 +mh̄�

dω f (ω)F0

× Im{Tr ln [1 − t̃L(ω)g̃R(R, ω)t̃R(ω)g̃R(−R, ω)]},
(C7)

which yields Eq. (15).
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